development of the cbm-mvd: development of the cbm-mvd: the prototype michal koziel on behalf of...

13
DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration [email protected] (+49) 069 / 798-47119

Upload: maddison-yellen

Post on 30-Mar-2015

237 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

DEVELOPMENT OF THE CBM-MVD

THE PROTOTYPEMichal Koziel

on behalf of CBM-MVD collaboration

MichalKozielPhysikuni-frankfurtde (+49) 069 798-47119

The MVD ndash required performances

Required performances (SIS-100)

Radiation tolerance

gt 1013neqcm2 amp gt3 MRad

Read-out speed gt 30 kframess

Intrinsic resolution

lt 5 microm

Operation in vacuum

bdquoLightrdquo support and cooling

Material budget ~ 03 X0

CBM-MVD will- improve secondary vertex resolution- host highly granular silicon pixel

sensors featuring fast read-out excellent spatial resolution and robustness to radiation environment

See PSenger introduction

Sensor development

Front-End Electronics

Supportamp cooling

MWinter

Radiation tolerance

Research fields towards the MVD

Syst

em

in

tegra

tion

JStroth

Main challenges

bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

bull Provide cooling and support with low material budget

Progress towards the MVD

200

820

1

0

Material budget

~ 245 X0

SensorMIMOSA-20

~200 framessfew 1011 neqcm2 amp

~300 kRad750microm thick

Cooling amp support

TPG+RVC foam Material budget

~ 03 X0

SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

CPdigitalhigh data rates

Cooling amp support

CVD diamond

ReadoutSerialanalog

will meet all

requirementsSensor

MIMOSIS-1 (diff geometry)

Readout speed

~30 kframessRadiation tol gt1013

neqcm2 amp gt3 MRad

Demonstrator

Prototype

Finalfrac12 of 1st station

4 sensors

201

2

2015

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 2: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

The MVD ndash required performances

Required performances (SIS-100)

Radiation tolerance

gt 1013neqcm2 amp gt3 MRad

Read-out speed gt 30 kframess

Intrinsic resolution

lt 5 microm

Operation in vacuum

bdquoLightrdquo support and cooling

Material budget ~ 03 X0

CBM-MVD will- improve secondary vertex resolution- host highly granular silicon pixel

sensors featuring fast read-out excellent spatial resolution and robustness to radiation environment

See PSenger introduction

Sensor development

Front-End Electronics

Supportamp cooling

MWinter

Radiation tolerance

Research fields towards the MVD

Syst

em

in

tegra

tion

JStroth

Main challenges

bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

bull Provide cooling and support with low material budget

Progress towards the MVD

200

820

1

0

Material budget

~ 245 X0

SensorMIMOSA-20

~200 framessfew 1011 neqcm2 amp

~300 kRad750microm thick

Cooling amp support

TPG+RVC foam Material budget

~ 03 X0

SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

CPdigitalhigh data rates

Cooling amp support

CVD diamond

ReadoutSerialanalog

will meet all

requirementsSensor

MIMOSIS-1 (diff geometry)

Readout speed

~30 kframessRadiation tol gt1013

neqcm2 amp gt3 MRad

Demonstrator

Prototype

Finalfrac12 of 1st station

4 sensors

201

2

2015

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 3: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Sensor development

Front-End Electronics

Supportamp cooling

MWinter

Radiation tolerance

Research fields towards the MVD

Syst

em

in

tegra

tion

JStroth

Main challenges

bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

bull Provide cooling and support with low material budget

Progress towards the MVD

200

820

1

0

Material budget

~ 245 X0

SensorMIMOSA-20

~200 framessfew 1011 neqcm2 amp

~300 kRad750microm thick

Cooling amp support

TPG+RVC foam Material budget

~ 03 X0

SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

CPdigitalhigh data rates

Cooling amp support

CVD diamond

ReadoutSerialanalog

will meet all

requirementsSensor

MIMOSIS-1 (diff geometry)

Readout speed

~30 kframessRadiation tol gt1013

neqcm2 amp gt3 MRad

Demonstrator

Prototype

Finalfrac12 of 1st station

4 sensors

201

2

2015

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 4: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Progress towards the MVD

200

820

1

0

Material budget

~ 245 X0

SensorMIMOSA-20

~200 framessfew 1011 neqcm2 amp

~300 kRad750microm thick

Cooling amp support

TPG+RVC foam Material budget

~ 03 X0

SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

CPdigitalhigh data rates

Cooling amp support

CVD diamond

ReadoutSerialanalog

will meet all

requirementsSensor

MIMOSIS-1 (diff geometry)

Readout speed

~30 kframessRadiation tol gt1013

neqcm2 amp gt3 MRad

Demonstrator

Prototype

Finalfrac12 of 1st station

4 sensors

201

2

2015

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 5: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 6: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 7: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 8: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 9: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 10: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 11: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 12: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
Page 13: DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13