1 radiation hardness of monolithic active pixel sensors dennis doering, goethe-university frankfurt...

21
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline - Operation principle of MAPS - Radiation damage effects - MAPS with high-resistivity epitaxial layer - Parameters of radiation hardness - Conclusion

Upload: raymond-payne

Post on 13-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

1

Radiation Hardness of Monolithic Active Pixel Sensors

Dennis Doering, Goethe-University Frankfurt am Main

on behalf of the CBM-MVD-Collaboration

Outline- Operation principle of MAPS - Radiation damage effects- MAPS with high-resistivity epitaxial layer - Parameters of radiation hardness- Conclusion

/172/21

Applications of MAPS

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012

Picture STAR

Picture CBM

International Linear ColliderCBM-Experiment (FAIR, GSI)

STAR-Experiment

MAPS are developed for applications as vertex detector since 1999 at IPHC (Strasbourg).

/17/21

Operation principle

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 3

SiO2

N+ P+

P-

P+

Sensing diode

Epitaxial Layer

P-Well

Substrate

N+

50 µm

~50 µm thin sensors low material budget ⇒High granularity good spatial resolution ⇒

10-40 µm => a few µm resolution

/17/21

Operation principle

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 4

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

e-

N+

e-

Particle

Sensing diode

/17/21

Non-ionizing radiation effects:Signal response

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 5

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

N+

e-

Sensing diode

Defects

/17/21

Signal response

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 6

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

3000

3500

4000

4500

En

trie

s [1

bin

=4

AD

C]

Charge collected [e]

Unirradiated

Irradiated ( 3·1014neq

/cm2 )

MIMOSA-18 AHR 10µm Ru-106-T= -34°C

MPV: (591 ± 4) e(491 ± 20) e

/17/21

Non-ionizing radiation effects: Leakage current/Noise

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 7

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

N+

--

Sensing diode

Defects

/17/21

5

10

15

20

25

30

35

40

45

50

55

60

No

ise

[e]

Temperature [°C]

Unirradiated

1014neq

/cm2

3·1014neq

/cm2

-3

Noise

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 8

Rad

iatio

nda

mag

e

/17/21

5

10

15

20

25

30

35

40

45

50

55

60

No

ise

[e]

Temperature [°C]

Unirradiated

1014neq

/cm2

3·1014neq

/cm2

-3

Noise

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 9

Rad

iatio

nda

mag

e

/17/21

5

10

15

20

25

30

35

40

45

50

55

60

-34-27-15

No

ise

[e]

Temperature [°C]

Unirradiated

1014neq

/cm2

3·1014neq

/cm2

-3

Noise

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 10

Rad

iatio

nda

mag

e

Cooling

2 times higher noise with respect to unirradiated

/17/21

Non-ionizing radiation effects

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 11

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

N+

e-

--

Sensing diode

Defects

/17/21

Non-ionizing radiation effects

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 12

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

N+

e-

--

Radiationdamage

Sensing diode

Defects

/17/21

Non-ionizing radiation effects

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 13

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

N+

e-

--

Radiationdamage

Sensing diode

Defects

/17/21

Signal to Noise ratio

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 14

0 5 10 15 20 25 300

10

20

30

40

50

60

70

80

20µm (operated at room temp.) 10µm (operated at -20°C)

Sig

na

l to

No

ise

Radiation dose [1013neq

/cm2]

S/N limit (MIPS)

Technical feasible limits reached:- Pixel pitch- Operating temperature

Region of interest

?

/17/21

High-resistivity

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 15

Larger depleted volumes guided charge collection ⇒ ⇒ Improved charge collection efficiency (CCE)

SiO2

N+ P+

P-

P+

Epitaxial Layer

P-Well

Substrate

depleted volume

Low-resistivity High-resistivity

High-resistivity: Decrease of doping concentration in epitaxial layer.

Sensing diode

/17/21

Signal response

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 16

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

3000

3500

4000

4500

En

trie

s [1

bin

=4

AD

C]

Charge collected [e]

Low resistivity unirradiated

MIMOSA-18 AHR 10µm Ru-106-T= -34°C MPV: (293 ± 5) e

/17/21

Signal response

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 17

More charge collected in a high resistivity epitaxial layer.

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

3000

3500

4000

4500

En

trie

s [1

bin

=4

AD

C]

Charge collected [e]

Low resistivity unirradiated High resistivity unirradiated

MIMOSA-18 AHR 10µm Ru-106-T= -34°C MPV: (293 ± 5) e

(591 ± 4) e

/17/21

Signal response

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 18

Radiation damage effect after 3·1014neq/cm²: Some signal get lost due to recombinations. However, the high resistivity sensor is even irradiated better than the low resistivity sensor unirradiated.

0 200 400 600 800 1000 1200 1400 1600 1800 20000

500

1000

1500

2000

2500

3000

3500

4000

4500

En

trie

s [1

bin

=4

AD

C]

Charge collected [e]

Low resistivity unirradiated High resistivity unirradiated

High resistivity 3·1014neq

/cm2

MIMOSA-18 AHR 10µm Ru-106-T= -34°C MPV: (293 ± 5) e

(591 ± 4) e(491 ± 20) e

/17/21

Improvements using high resistivity

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 19

0 5 10 15 20 25 300

10

20

30

40

50

60

70

80

Low-resistivity 20µm (operated at room temp.) Low-resistivity 10µm (operated at -20°C) High-resistivity 10µm (operated at -34°C)

Sig

nal to

Nois

e (R

u-1

06

)

Radiation dose [1013neq

/cm2]

Error bars: Signal fit uncertainty * 10% noise uncertainty

*Beam test is pending

S/N limit (MIPS)

*

Parameters:- Pixel pitch- Operating temperature- Resistivity of epitaxial layer

/17/21

How to improve the non-ionizing radiation hardness of MAPS:- Operate the sensor at low temperature ( -30°C)- Small pixel pitch ( 10µm)- High-resistivity epitaxial layer (used here 400 Ωcm)

Conclusion

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 20

/17/21

How to improve the non-ionizing radiation hardness of MAPS:- Operate the sensor at low temperature ( -30°C)- Small pixel pitch ( 10µm)- High-resistivity epitaxial layer (used here 400 Ωcm)

⇒ Radiation hardness beyond 3·1014neq/cm²

Conclusion

Dennis Doering: Radiation hardness of MAPS DPG Mainz March 2012 21