design and performance of the alice trd frontend electronics

23
University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration Venelin Angelov Kirchhoff Institute for Physics Chair of Computer Science University Heidelberg, Germany Phone: +49 6221 54 9812 Fax: +49 6221 54 9809 Email: [email protected] heidelberg.de WWW: www.ti.uni-hd.de Design and performance of the ALICE TRD frontend electronics • Introduction • Multi Chip Module - PASA+TRAP • Readout tree and GTU • TRAP and MCM production test • Conclusions

Upload: others

Post on 27-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 1

Venelin AngelovKirchhoff Institute for PhysicsChair of Computer ScienceUniversity Heidelberg, GermanyPhone: +49 6221 54 9812Fax: +49 6221 54 9809Email: [email protected]: www.ti.uni-hd.de

Design and performance of the

ALICE TRD frontendelectronics

• Introduction• Multi Chip Module - PASA+TRAP• Readout tree and GTU• TRAP and MCM production test• Conclusions

Page 2: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 2

TRD Structure

TR-detector

zr

φ

B=0.4T

verte

x

18 sectors in azimuth

5 mod

ule rin

gs

module

6 pl

anes

8 MCM ≡ 144 channels

chambermax

. 16 p

adrow

s

MCM

18 channels

♦ 1.2 million channels♦ 1.4 million ADCs♦ peak data rate: 16 TB/s♦ ~65000 MCMs♦ computing time: 6 µs

♦ MCM performs amplification,digitization, straight line fit,readout network

Page 3: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 3

TRD & MCM FunctionalityTRD chamber event display for MCM functionality

3cm

Transition Radiation Detector♦ the TRD is a drift chamber to detect

the trajectory of charged particles♦ in addition a radiator stack in front to

cause transition radiation to separate electrons from pions

Multi Chip Module♦ the MCM amplifies and digitizes the analog signals

and stores the data♦ it performs a line fit and ships the track data off the

detector to a global tracking unit♦sends zero-suppressed ADC data after L1A

Page 4: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 4

Line Fit & Global Trackingmodule profile

tracklets

virtualplane

track

projectedtracklets

tracklet processor♦ straight line fit via a linear

regression method♦ searching for dedicated patterns

(for energy cut and electron - pion separation)

♦ raw data buffer

global tracking♦ projection of ‘tracklets’ to a virtual

plane♦ searching for tracklets belonging

together♦ perform cut and generate trigger

Page 5: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 5

Data Flow and Data Reduction

MCM - Multi Chip Module L1 triggerto CTP

TRD PASA ADCTracklet

PreprocessorTPP

TrackletProcessor

TP

NetworkInterface

NIto HLT& DAQ

GTU

detector6 layers

1.2 millionanalog channels

chargesensitive

preamplifiershaper

10 Bit ADC10 MSPS

21 channels

event bufferstore raw data until L1A

builds readout treefor

trigger & raw data

fit tracklets fortrigger functionality

process raw datamonitoring

merge trackletsinto tracks for

triggerprocess raw data

for HLT

digital filterpreprocess data

event buffer

time:data / event:

peak rate:mean rate:reduction:

during first 2 µs (drift time)33 MB

16 TB/s257 GB/s

1

after 3.5 µs after 4.1 µsmax. 80 KB600 GB/s

-~ 400

after 6 µssome bytes

--

to trigger decision

Page 6: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 6

Multi Chip Module4 cm

PASA

Digital Frontendand Tracklet Preprocessor

MasterState

Machine

Internal ADCs (Kaiserslautern)

MIMDProcessor:

4 CPUs,Global Register File,Interrupt controllers,

Counter/Timers,Arbiter for the Global I/O Bus

Quad-ported DMEM

Instruction Memory

External Pretrigger

Network Interface

SerialInterface

ReadoutNetwork

Serial Interface

slaveGlobalI/O-Bus

Page 7: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 7

PASA - Preamplifier and Shaper

PASA - Preamplifier and Shaping Amplifier

♦ FWHM: 116 ns♦ ENC: 850 electrons at 25 pF♦ Gain: 12 mV/fC♦ Integral Nonlinearity: 0.3%♦ Power: 3.3V, 90 mA / chip♦ Process: 0.35µm AMS♦ Area: 21.3 mm²♦ Yield: 99.8% of the first 20 000 chips

ChargeSensitive

Preamplifier

P/Zcancellation

Shaper 1InputPadsx18

Shaper 2

diff outputto the ADC

3.46

mm

6.15 mm

Page 8: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 8

ADC - Analog to Digital Converter200 µm

x2

1 0 1

threshold

0

1024

result

x2

x2

0 ...

...

550

µm

functionality ofcyclic ADCs

ADC - Analog to Digital ConverterProf. Tielert, Uni Kaiserslautern

♦ 10 Bit, 10 MSPS, no latency♦ Cyclic ADC, 240 MHz internal♦ ENOB: 9.5♦ Power: 10 mW / channel (programmable)♦ Area: 0.11 mm² (550 x 200 µm²)

Page 9: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 9

ADC Performance

0

200

400

600

800

1000

50 100 150 200 250 300 350 400

ADC

out

put

-1 0 1

50 100 150 200 250 300 350 400

RES

samples

110 kHz sinwave, 10 MSPS, RMS=0.39, ENOB=9.57

Sinwave measured using one CPU to copy the ADC data into the memory.

Note that by the normal operation in the detector the ADC data will be processed and stored without turning on the CPUs.

Page 10: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 10

Filter & Preprocessor21

dig

ital c

hann

els

from

AD

Cs

(10

MH

z)

21x

preprocessor10

10

hist

ory

fifo

nonl

inea

rity

corr.

pede

stal

cor

r.ga

in a

djus

tmen

tta

il ca

ncel

latio

ncr

osst

alk

canc

ell.

even

t buf

fer

12

12 chan

nel s

elec

tion

max

. 4 p

ositi

on

posi

tion

calc

ulat

ion

posi

tion

corre

ctio

n 8

8

calc

ulat

e su

ms

for r

egre

ssio

nse

lect

can

dida

tes

max

. 4 c

and.

232

232

to p

roce

ssor

filter & event buffer

C

LR

y y+1y-1

amp

posCOGorigin

deflection

time

bins

Page 11: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 11

MIMD Processor

MIMD processor♦ 4 CPUs♦ shared memory / register file♦ global I/O bus arbiter♦ separate instruction memory♦ coupled data & control paths

Preprocessor, 4 sets of fit data

decoder

pipe

line

regi

ster

PC

ALU

select operands

CON FIT

write backinterrupt

I/O busarbiter

PRF

externalinterrupts

CPU0

DMEM GRFIMEM

CPU♦ Harvard style architecture♦ two stage pipeline♦ 32 Bit data path♦ register to register operations♦ fast ALU

• 32x32 multiplication• 64/32 radix-4 divider

♦ maskable interrupts♦ synchronization mechanisms

local I/O bussesclks rstpowercontrol global I/O bus

Page 12: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 12

SCSN - Slow Control Serial Network

Master(DCS)

Slave

Slave

Slave

Slave

Slave

ring

0

ring

1

Slave

serial

Slave

bridged

Master(DCS)

Slave

Slave

Slave

Slave

Slave

ring

0

ring

1

SCSN♦ Up to 126 slaves per ring♦ CRC protected♦ 24 MBit/s transfer rate♦ 16 addr., 32 data-

bits/frame

Page 13: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 13

Readout Tree~1.2 million analog channels

NI - Network Interface♦ I/O interfaces

•direct access via local I/O interfaces•global I/O configuration and status registers

♦4 input, 1 output ports•8 Bit data at 120 MHz DDR (240 MB/s)•+ strobe, parity and spare bit

♦data resynchronization♦ input fifos (256 Bytes / port)♦1 clock cycle input to output latency incl.

data resynchronization

16416 data collecting and data processing MCMs

3 to 1 trees

16416 data collecting and signal processing MCMs

65664 signal processing MCMs

4 to 1 trees

4 to 1 trees

direct connection

global tracking unit

optical fibers

Readout♦collecting data of 65664 MCMs♦ interface to the GTU are 1080 optical

links with 2.4 GBit/s each♦ readout latency: ~200 ns♦ full trigger readout within 600 ns

4104 data collecting MCMs

1080 data collecting MCMs

1080 x 2.4 GBit/soptical Links (OASE)

Page 14: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 14

Detector Readout~1,200,000 channels / ADCs

10 Bit, 10 MSPS20 samples/eventpreprocessing

~65,000 MCMs4 CPUs at 120 MHz4 tracklets/MCM at max.

18 channels/MCM

~4,100 Readout Boards8 Bit data, 120 Mhz DDRcollected via tree structure

16+1 MCMs/board

1,080 Optical Links (OASE)2.4 GB/s, integratedserializer/deserializer

2 links/chamber

90 Track Matching Units (GTU)2.4 GBit/s, integratedserializer/deserializer

1 TMU/module

1 Central Trigger Proc.

Network InterfaceReadout

On-MCM signalprocessing

Optical transmissionvia OASE

0

2

4

4.6

6time [µs]

Pretrigger

Drift timepreprocessing finished

Processing timeresulting track segments

are delivered to the NI,processor is switched off

Transmission timeGTU starts 200ns after

processing (transfer), after600ns all data is transferred

GTU finished

~1,200,000 channels / ADCs10 Bit, 10 MSPS20 samples/eventpreprocessing

~65,000 MCMs4 CPUs at 120 MHz4 tracklets/MCM at max.

18 channels/MCM

~4,100 Readout Boards8 Bit data, 120 Mhz DDRcollected via tree structure

16+1 MCMs/board

1,080 Optical Links (OASE)2.4 GB/s, integratedserializer/deserializer

2 links/chamber

90 Track Matching Units (GTU)2.4 GBit/s, integratedserializer/deserializer

1 TMU/module

1 Central Trigger Proc.

Network InterfaceReadout

On-MCM signalprocessing

Optical transmissionvia OASE

0

2

4

4.6

6time [µs]

Pretrigger

Drift timepreprocessing finished

Processing timeresulting track segments

are delivered to the NI,processor is switched off

Transmission timeGTU starts 200ns after

processing (transfer), after600ns all data is transferred

GTU finished

Page 15: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 15

OASE2.

15 m

m

5 mmOASE - Optical Advanced SErializer

Prof. Brüning, Uni MannheimProf. Tielert, Uni Kaiserslautern

♦8 Bit at 120 MHz DDR parallel ↔ 2.4 GBit/s serial tranceiver♦SCSN and I²C configuration interfaces, JTAG♦pins to directly connect laser diodes for on-chip connection

Page 16: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 16

OASE backup solution

Replacement for the OASE board with the same connector and speed♦8 Bit at 120 MHz DDR parallel to 16 bit SDR 120 MHz conversion using CPLD♦Commercial gigabit serializer from Texas Instruments♦Driver for the laser diode

Receiver board for testing of the gigabit serializer board♦Amplifier for the photodiode♦Commercial gigabit deserializer from Texas Instruments

The main drawback of this solution is the higher price and the larger number of components

Page 17: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 17

GTU Implementation

Input Unit (Layer 5)

Input Unit (Layer 4)

Input Unit (Layer 3)

Input Unit (Layer 2)

Input Unit (Layer 1)

Input Unit (Layer 0)

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-C

h. 0

U

nit

Z-C

h. 1

U

nit

Z-C

h. 2

U

nit

Z-Channel 2 Z-Channel 1 Z-Channel 0

Track FinderRef. L3

Track FinderRef. L2

Track FinderRef. L1

Merging Unit

Ref. L3

Track FinderRef. L2

Track FinderRef. L1

Track FinderRef. L3

Track FinderRef. L2

Track FinderRef. L1

pt Reconstruction Unit

Track Finder

Trigger Logic

12 Optical Links

Global Tracking Unit♦ receive data from 1080 optical links♦process up to 20,000 track

segments per event♦~1.4 µs total processing time♦90 independent "Track Matching

Units" (TMUs)♦1 (large) FPGA chip per TMU

Page 18: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 18

Integration prototype

DCS boardTrigger & clock distribution, ARM CPU+FPGA, embedded Linux, Ethernet, serial link to the TRAPs …

MCM = PASA+TRAP

Detector prototype prepared for the beam test at CERN

Page 19: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 19

MCM testerAutomatically positioning by video camera and pattern recognition softwareHandshaking with the MCM test softwareTest of 16 MCMs(IPE Karlsruhe)

Tests automatically the MCM (TRAP+PASA)- Power supply control- Check of the reference voltages- Charge injection to the PASA inputs- Digitization of the 3 direct PASA outputs- Sin-wave to the 3 direct ADC inputs- Stimuli to all digital inputs, readback of all digital outputs

Page 20: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 20

Wafer testerTest automatically the TRAP on the wafer:• The supply currents• The serial links and pretrigger• All internal parts using the CPUs• The parallel output• The half of the ADCs using a sin wave generator

400

450

500

550

600

650

0 10 20 30 40 50 60

AD

C o

utpu

t

ADC 13

-4 -2 0 2 4

0 10 20 30 40 50 60

RE

S

samples

Page 21: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 22

Conclusions & outlook

- A cheap and compact (4x4cm) mixed mode Multi Chip Module was developed, combining charge sensitive preamplifier/shaper, ADCs,digital filters, processors and readout network- This makes technically possible the required high integration of the front end electronics in order to readout more than million of channels- The distributed in space digital computing power enables to process such large amount of data in real time- In addition the high speed low latency readout network and the Global Tracking Unit provide the possibility to use the detector not only for tracking but also for generating L1 trigger in the system- The building blocks: PASA & TRAP chips and the MCM are produced/partially produced, the test equipments are developed

Page 22: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 23

TRD Electronics participating institutes

♦ Kirchhoff Institute for Physics, University of Heidelberg, Germany♦ Institute of Microelectronics, University of Kaiserslautern, Germany♦ Institute for Physics, University of Heidelberg, Germany♦ GSI Darmstadt, Germany♦ University of Applied Sciences Cologne, Communications Engineering, Germany

Page 23: Design and performance of the ALICE TRD frontend electronics

University of Heidelberg, Kirchhoff Institute of Physics, V.Angelov for ALICE TRD collaboration 24

THANK YOU