contents / İçindekiler - hacettepe · tÜrkİye tanacetum l. cİnsİnİn bazi taksonlarinin polen...

32
Contents / İçindekiler Erol Kodak, N.Münevver Pinar, Nezaket Adigüzel and Aydan Acar POLLEN MORPHOLOGY OF SOME TAXA OF GENUS TANACETUM L. (ASTERACEAE) IN TURKEY TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN MORFOLOJİSİ 2-10 Esra Demir POLLEN ANALYSIS OF HONEY SAMPLES COLLECTED FROM KOMATİ (ÇAMLIHEMŞİN) PLATEAU KOMATİ (ÇAMLIHEMŞİN) YAYLASI BALLARINDA POLEN ANALİZİ 11-16 Fatih Dikmen and Ahmet Murat Aytekin NOTES ON ROPHITES ALGIRUS PÉREZ, 1895 AND ROPHITES QUINQUESPINOSUS SPINOLA, 1808 OF MEDITERRANEAN TURKEY WITH AN UPDATED LIST OF SUBFAMILY ROPHITINAE (HYMENOPTERA: HALICTIDAE) OF TURKEY TÜRKİYE’DEKİ ROPHITINAE (HYMENOPTERA: HALICTIDAE) ALTFAMILYASININ GÜNCEL LİSTESİ İLE TÜRKİYE’NİN AKDENIZ HAVZASINDAKİ ROPHITES ALGIRUS PÉREZ, 1895 AND ROPHITES QUINQUESPINOSUS SPINOLA, 1808 ÜZERINE NOTLAR 17-26 Ömür Gençay Çelemli, Kadriye Sorkun, Bekir Salih CHEMICAL COMPOSITION OF PROPOLIS SAMPLES COLLECTED FROM TEKIRDAG-TURKEY TEKİRDAĞ-TÜRKİYE’DEN TOPLANAN PROPOLİS ÖRNEKLERİNİN KİMYASAL İÇERİĞİ 28-32

Upload: duongminh

Post on 18-Jul-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

Contents / İçindekiler

Erol Kodak, N.Münevver Pinar, Nezaket Adigüzel and Aydan Acar

POLLEN MORPHOLOGY OF SOME TAXA OF GENUS TANACETUM L. (ASTERACEAE) IN TURKEY

TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN MORFOLOJİSİ 2-10

Esra Demir

POLLEN ANALYSIS OF HONEY SAMPLES COLLECTED FROM KOMATİ (ÇAMLIHEMŞİN) PLATEAU

KOMATİ (ÇAMLIHEMŞİN) YAYLASI BALLARINDA POLEN ANALİZİ

11-16

Fatih Dikmen and Ahmet Murat Aytekin

NOTES ON ROPHITES ALGIRUS PÉREZ, 1895 AND ROPHITES QUINQUESPINOSUS SPINOLA, 1808 OF MEDITERRANEAN TURKEY WITH AN UPDATED LIST OF SUBFAMILY ROPHITINAE (HYMENOPTERA: HALICTIDAE) OF TURKEY

TÜRKİYE’DEKİ ROPHITINAE (HYMENOPTERA: HALICTIDAE) ALTFAMILYASININ GÜNCEL LİSTESİ İLE TÜRKİYE’NİN AKDENIZ HAVZASINDAKİ ROPHITES ALGIRUS PÉREZ, 1895 AND ROPHITES QUINQUESPINOSUS SPINOLA, 1808 ÜZERINE NOTLAR

17-26

Ömür Gençay Çelemli, Kadriye Sorkun, Bekir Salih

CHEMICAL COMPOSITION OF PROPOLIS SAMPLES COLLECTED FROM TEKIRDAG-TURKEY

TEKİRDAĞ-TÜRKİYE’DEN TOPLANAN PROPOLİS ÖRNEKLERİNİN KİMYASAL İÇERİĞİ 28-32

Page 2: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 12-24:2-10 (2012) HARUMRESEARCH ARTICLE

2

POLLEN MORPHOLOGY OF SOME TAXA OF GENUS TANACETUM L. (ASTERACEAE) IN TURKEY

TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN MORFOLOJİSİ

Erol Kodak*, N.Münevver Pinar*, Nezaket Adigüzel** and Aydan Acar*

Summary:Morphological features of pollen of 8 Turkish taxa of the complex genus Tanacetum L. were examined using light (LM) and scanning electron (SEM) microscopy. The pollen is tricolporate, trisy-ncolporate or tricolpate. The shape is oblate- spheroidal. The exine is echinate. The ornamentations between spines are granulate, reticulate and rugulate-granulate. The results indicate that the value of pollen characters for taxonomic applications is limited for Tanacetum.

Keywords: Asteraceae, Tanacetum, Pollen, LM, SEM, systematics, melissopalynology.

Özet: Kompleks bir cins olan Tanacetum L. cinsinin Türkiye’deki 8 taksonun polenlerinin morfolojik özellikleri ışık (LM) ve taramalı elektron (SEM) mikroskopları kullanılarak çalışılmıştır. Polenlerin trikolporat, trisinkolporat ve trikolpat oldukları bulunmuştur. Polen şekli oblat-speroidal’dir. Ekzin ekinat’dır. Spinler arasındaki ornamentasyonlar granulat, retikülat ve rugulat- granulat’tır. Sonuçlar, taksonomik uygulamalar için polen karakterlerinin değerinin Tanacetum cinsi söz konusu olduğunda sınırlı olduğunu işaret etmektedir.

Anahtar Kelimeler: Asteraceae, Tanacetum, Polen, LM, SEM, sistematik, melissopalinoloji.

* Ankara University Faculty of Science, Department of Biology, Tandoğan 06100 Ankara, TURKEY **Gazi University Faculty of Science, Department of Biology, Ankara, TURKEYCorresponding Author E-mail: [email protected]

Page 3: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

3

IntroductionBees require large amounts of pollen for their own reproduction. The general view of pollen as an easy-to-use protein source for flower visitors. That is Apis mellifera L. feed on pollen and nectar collected from blooming flowers. Tanacetum L. is also visited by Apis mellifera for pollen diets (Christophe et al. 2008; Hilty 2012). Knowledge about the pollen morphology of ho-ney plants is important in the identification of plant species which contribute toward composition of honey (Howes 1953; Sodré et al. 2001). Silici and Gökçeoglu (2007) have presented that Tanacetum is an important bee plant in the Mediterranean region of Anatolia. T. vulgare L. has been reported as a minor element in honey by Sorkun (2008). The genus Tanacetum is one of the more than 100 genera in the tribe Anthemideae (Soreng and Cope 1991) which contains about 10% of the total genera and 15% of the species of Asteraceae (Heywood and Humphries 1977). About 150 species of Tanacetum are spreaded around the world. They are found throughout temperate, regions, particularly in the northern hemisphere even up to Northern Europe, Canada, Alaska, and Northern Russia (Hultén 1950; Hultén 1968; Heywood 1976; Heywood and Humphri-es 1977), although the center of diversity and probably also the origin for Tanacetum is South-West Asia and the Caucasus in the Old World (Heywood and Hump-hries 1977; Soreng and Cope 1991). In Turkey, Tana-

cetum is represented by 60 of which are 27 taxa (47%) endemic (Grierson 1975; Yildirimli 1989; Ekim et al. 2000).

In this study, 8 taxa belonging to the genus Tanacetum were investigated; T. balsamita L. subsp. balsamita L., T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson, T. argenteum (Lam.) Willd. subsp. flabel-lifolium (Boiss. End Heldr.) Grierson, T. argenteum (Lam.) Willd. subsp. argenteum (L.) All., T. argente-um (Lam.) Willd. subsp. canum (C. Koch) Grierson, T. depauperatum (Post) Grierson, T. haradjanii (Rech. Fil.) Grierson and T. tomentellum (Boiss.) Grierson. T. argenteum subsp. flabellifolium, T. argenteum subsp. argenteum, T. depauperatum, T. haradjanii are local endemic species. T. balsamita L. subsp. balsamita L., T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson, T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Grierson and T. tomentellum (Boiss.) Gri-erson are widely distributed, nonendemic taxa. The distribution map of the taxa is given in Figure 1.

Pollen morphology has provided an approach to the systematic relationships among the genera of Astera-ceae (Wagenitz 1955; Stix 1960; Erdtman 1969; Pinar and Inceoglu 1996; Pinar and Adigüzel 1998; Pinar and Oybak Dönmez 2000; Punt and Hoen 2009). The-re are numerous publications on pollen morphology

Figure 1. Distribution of the eight investigated Tanacetum L. taxa in Turkey

World (Heywood and Humphries 1977; Soreng and Cope 1991). In Turkey, Tanacetum is

represented by 60 of which are 27 taxa (47%) endemic (Grierson 1975; Yildirimli 1989; Ekim

et al. 2000).

In this study, 8 taxa belonging to the genus Tanacetum were investigated; T. balsamita L.

subsp. balsamita L., T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson, T.

argenteum (Lam.) Willd. subsp. flabellifolium (Boiss. End Heldr.) Grierson, T. argenteum

(Lam.) Willd. subsp. argenteum (L.) All., T. argenteum (Lam.) Willd. subsp. canum (C.

Koch) Grierson, T. depauperatum (Post) Grierson, T. haradjanii (Rech. Fil.) Grierson and T.

tomentellum (Boiss.) Grierson. T. argenteum subsp. flabellifolium, T. argenteum subsp.

argenteum, T. depauperatum, T. haradjanii are local endemic species. T. balsamita L. subsp.

balsamita L., T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson, T. argenteum

(Lam.) Willd. subsp. canum (C. Koch) Grierson and T. tomentellum (Boiss.) Grierson are

widely distributed, nonendemic taxa. The distribution map of the taxa is given in Figure 1.

Figure 1. Distribution of the eight investigated Tanacetum L. taxa in Turkey

Pollen morphology has provided an approach to the systematic relationships among the

genera of Asteraceae (Wagenitz 1955; Stix 1960; Erdtman 1969; Pinar and Inceoglu 1996;

Pinar and Adigüzel 1998; Pinar and Oybak Dönmez 2000; Punt and Hoen 2009). There are

numerous publications on pollen morphology of genus Tanacetum (Inceoğlu and Karamustafa

1977; Ramos & Mederos 2008; Punt and Hoen 2009).

The aim of this study is to illustrate the range of variability in pollen characters of T.

balsamita subsp. balsamita, T. balsamita subsp. balsamitoides, T. argenteum subsp.

flabellifolium, T. argenteum subsp. argenteum, T. argenteum subsp. canum, T. depauperatum,

Page 4: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 4

of genus Tanacetum (İnceoğlu and Karamustafa 1977; Ramos & Mederos 2008; Punt and Hoen 2009).

The aim of this study is to illustrate the range of vari-ability in pollen characters of T. balsamita subsp. bal-samita, T. balsamita subsp. balsamitoides, T. argente-um subsp. flabellifolium, T. argenteum subsp. argen-teum, T. argenteum subsp. canum, T. depauperatum, T. haradjanii, T. tomentellum found in Turkey in order to establish their availability for future taxanomic and melissopalynological works.

Material and MethodsThe material was collected from wild populations. The collectors and localities are provided in the “Spe-cimens examined” for each taxon. The specimens are deposited in GAZİ (Gazi University Herbarium), AEF (Ankara University Farma Herbarium) and HUB (Ha-cettepe University Herbarium).

Pollen slides were prepared using by the technique of Wodehouse (1935). LM studies were done with a Leitz-Wetzlar microscope. Measurements are based on at least 30 pollen grains for each taxon. For SEM studies, pollen grains were coated with gold for four minutes in a sputter-coater. Observations were made with a Jeol 100 CXII electron microscope.

The pollen terminology follows Faegri-Iversen (1975) and Punt et al. (1994). The Simpson and Roe graphical test (Van der Pluym & Hideux 1977) was used for sta-tistical calculations.

Specimens examinedThe order of the species was adapted from Grierson (1975). All the specimens are deposied in GAZİ, AEF and HUB: T. balsamita L. subsp. balsamita L., Kon-ya, Koyuncu AEF, Erzurum, Koyuncu AEF; T. bal-samita L. subsp. balsamitoides (Schultz Bip.) Grier-son, Hakkari Koyuncu AEF, Erzurum Koyuncu AEF, Sivas Çelik AEF, Gümüşhane, Kars Koyuncu AEF; T. argenteum (Lam.) Willd subsp. flabellifolium (Bo-iss. End Heldr.) Grierson, Konya Adigüzel GAZİ, T. argenteum (Lam.) Willd. subsp. argenteum (L.) All Kayseri Adigüzel GAZİ, Hakkari Koyuncu AEF; T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Gri-erson, Tunceli Adigüzel GAZİ, Içel Çelik AEF, Er-

zincan Soner AEF; T. depauperatum (Post) Grierson, Hatay Adigüzel GAZİ; T. haradjanii (Rech.) Grierson Adana Çelik AEF; T. tomentellum (Boiss.) Grierson Bitlis, Peşmen HUB.

ResultsDetailed pollen morphological features of the investi-gated taxa are summarized in Table 1 and Fig. 2 and representative pollen grains are illustrated in Fig. 3-4.

Size, symmetry and shapeThe pollen grains are radially symmetrical and iso-polar. The shape is generally oblate-spheroidal (the term according to Erdtman (1969) based on the P / E ratio, Table 1, with polar axes ranging from 20.1 - 34 µm and equatorial axes from 25 to 34 µm, respecti-vely. The largest pollen is found in T. balsamita subsp. balsamita (chromosome number 4n = 36), while the smallest pollen occurs in T. haradjanii. The outline is circular or subcircular in equatorial view and ge-nerally triangular-convex and sometimes circular or circular-convex in polar view. Amb intersemiangular. (Table 1, Fig. 2-4).

AperturesPollen grains of Tanacetum are operculate and usually tricolporate or rarely trisyncolporate and tricolpate. Some species have shown heteromorphic characteris-tics. For example; 2% tricolpate and 98% tricolpora-te in T. balsamita subsp. balsamita and T. argenteum subsp. argenteum and 2% trisyncolporate and 98% tricolporate in T. balsamita subsp. balsamitoides. Col-pus, short or long (11- 18.5 µm) and broad (5-9 µm), and ora lalongated. The highest values were obser-ved in T. balsamita subsp. balsamita and T. argente-um subsp. canum. Margins distinct, regular and ends acute in both of them. Colpus membrane more or less granulate. (Table 1 and Fig. 3,4).

ExineThe stratified exine has an overall thickness which ranges from 3 to 5.5 µm in. Ectexine is thicker than endexine without no costae and no cavea. Intratectal columellae very distinct under spines, but indistinct interspinal region. The spines are commonly conical with a broadened base and a tappered apical portion. The spine length varies between 2- 4.5 µm The width

Page 5: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

5

of spines varies between 2- 4.5 µm. The base of the spines in almost all species studied has 3 or 4 irre-gular seriate perforations with larger holes which are often found distally. Also, large or small cavities are present. Number of cavities are 15-40. Intine is thick (0.75-1.5 µm) (Table 1 and Fig. 3,4).The pollen wall is provided with spines and its either granulate, reticulate and rugulate-granulate. In all of the species, the tectum surrounding the spine base is microperforate. Table 1 provides a summary of the tectal morphology.

DiscussionThe grains of taxa of Tanacetum can be ascribed to the ‘’Anthemis type‘’ of Stix (1960), and Anthemis ar-vensis type of Punt and Hoen (2009). The results of our investigation show that the pollen dimensions (E and, P / E ratio), the thickness of the exine and intine, the shape of the polar and equatorial views and the aperture type of the Turkish taxa of Tanacetum were comparatively homogenous (Table 1 and Figure 2). Ramos and Mederos (2008) and Özmen et al. (2009) confirmed that the pollen morphologies of taxa of Ta-nacetum are homogenous.Most Tanacetum species are diploid, having 2n= 2x= 18 with the basic chromosome number x=9. The chro-mosome count (2n=36) of T. balsamita subsp. balsa-mita is also the report of the tetraploid level (Wata-nable 2011; Inceer and Hayırlıoğlu 2012). Chatuverdi

et al. (1990) and Brochman (1992) report that pollen grain size strongly correlates with the level of poly-ploidy. In this study, the relationship between ploidy level or chromosome number and pollen size at the ta-xon level in T. balsamita subsp. balsamita is demons-trated statistically; higher ploidy levels correspond to an increase in pollen grain size (Table 1 and Fig. 2). Mesfin et al. (1995) said that the ornamentations bet-ween spines are important characters for Asterace-ae. Ornamentations between spines are granulate in Tanacetum balsamita subsp. balsamita, T. balsamita subsp. balsamitoides and T. haradjanii, or reticulate in T. tomentellum, and rugulate-granulate in T. depa-ratum, T. argenteum subsp. argenteum, T. argenteum subsp. flabellifolium and T. argenteum subsp. canum. (Table 1 and Fig. 4).The general aperture form is tricolporate, but T. bal-samita subsp. balsamita (2% tricolpate, 98% tricolpo-rate), T. argenteum subsp. argenteum (2% tricolpate, 98% tricolporate) and T. balsamita subsp. balsamito-ides (2% trisyncolporate and 98% tricolporate) show considerable aperture type variation (Table 1 and Fig. 3,4). Variations in pollen size and aperture type have been attributed to heteromorphy in pollen grains by Nair and Kaul (1965) and Inceoglu (1973).The taxa can be identificated by the sculpturing types in this study. But the other results of polar and equato-rial axes, pollen shape, exine and intine thickness are generally similar to those taxa of the species.

Page 6: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 6 Ta

ble

1. T

he p

alyn

olog

ical

mes

urem

ents

and

obs

erva

tions

of t

he e

ight

inve

ntig

ated

Tan

acet

um L

. tax

a. C

lg: L

engt

h of

col

pus,

Clt:

Lat

itude

of c

olpu

s,

Plg:

Len

gth

of p

orus

, Plt:

Lat

itute

of p

orus

Po

lar a

xes (

P) µ

m

Equa

toria

l axe

s (E)

µm

Col

pus µ

mPo

re (P

)µm

Spin

e µm

Taxa

Polle

n Sh

ape

P/E

Max

Min

Mea

nM

axM

inM

ean

Exin

eIn

tine

Ape

rture

type

Clg

Clt

Plg

Plt

Leng

th o

f sp

ine

µm

Bas

e of

sp

ine

µm

Orn

amen

tatio

n of

be

twee

n sp

ines

T. b

alsa

mita

sub

sp.

bals

amita

ob

late

-sp

hera

idal

0,97

24,1

3328

,45

2532

28,5

4,25

12%

tric

olpa

te98

% tr

icol

pora

te16

,75

88

82,

874,

17G

ranu

late

T. b

alsa

mita

subs

p.

bals

amito

ide

Grie

rson

obla

te-

sphe

raid

al0,

9523

,127

25,0

525

2826

,53,

750,

872%

tris

ynco

lpor

ate

98%

tric

olpo

rate

11,9

66

63,

254,

62G

ranu

late

T. a

rgen

teum

subs

p.

flabe

llifo

lium

ob

late

-sp

hera

idal

0,82

20,1

3427

,05

2534

29,5

41,

12tri

colp

orat

e14

,25

66

62,

253,

12R

ugul

ate

Gra

nula

te

T. a

rgen

teum

subs

p.

arge

nteu

mob

late

-sp

hera

idal

0,89

22,8

2523

,925

2927

4,5

1,25

2% tr

icol

pate

98%

tric

olpo

rate

147,

57,

57,

53,

754,

25R

ugul

ate

Gra

nula

te

T. a

rgen

teum

subs

p.

canu

m

obla

te-

sphe

raid

al0,

924

2826

,227

3129

,24

1,25

trico

lpor

ate

178

88

2,25

2,25

Rug

ulat

e G

ranu

late

T. d

epau

pera

tum

ob

late

-sp

hera

idal

0,9

2326

2425

3027

3,75

1tri

colp

orat

e14

66

62,

252

Rug

ulat

e G

ranu

late

T. h

arad

jani

i ob

late

-sp

hera

idal

0,87

21,5

2523

,425

2927

3,7

1,07

trico

lpor

ate

146,

56,

56,

53,

253,

75G

ranu

late

T. to

men

tellu

m

obla

te-

sphe

raid

al0,

9324

2725

,25

2529

27,2

4,75

1,25

trico

lpor

ate

158

88

3,25

3,25

Ret

icul

ate

Page 7: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

7

Figure 2. A Polar axes (P), B Equatorial axes (E)

05

10152025303540

T. balsa

mita

T. balsa

mitoide

s

T. flab

ellifo

lium

T. arge

nteum

T. can

um

T. depa

upera

tum

T. harad

janii

T. tomen

tellum

Taxa

Pola

r axe

s (P

) µm

MaxMinMean

A

05

101520

25303540

T. balsa

mita

T. balsa

mitoide

s

T. flab

ellifo

lium

T. arge

nteum

T. can

um

T. depa

upera

tum

T. harad

janii

T. tomen

tellum

Taxa

Equa

toria

l axe

s (E

) µm

MaxMinMean

B

Figure 2. A Polar axes (P), B Equatorial axes (E)

Page 8: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 8

A B C D

E F G H

I K L M

N O P R

S T U V

W X Y Z

Figure 3. LM photos of Tanacetum species. A-C: T. balsamita L. subsp. balsamita L. A. Polar view B. Polar view and apertures C. Equatorial view. D-F: T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson. D. Polar view. E. Polar view and apertures. F. Equatorial view. G-I: T. argenteum (Lam.) Willd. subsp. flabellifolium (Boiss. End Heldr.) Grierson G. Polar view. H. Polar view ornamentation. I. Equatorial view. K-M: T. argenteum (Lam.) Willd. subsp. argenteum (L.) All.. K. Polar view. L. Polar view of ornamentation. M. Equatorial view. N-P: T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Grierson. N. Polar view O. Polar view and apertures P. Equatorial view. R-T: T. depauperatum (Post) Grierson. R. Polar view. S. Polar view and apertures. T. Equatorial view. U-W: T. haradjanii (Rech. Fil.) Grierson U. Polar view. V. Polar view ornamentation. W. Equatorial view. X-Z: T. tomentellum (Boiss.) Grierson. X Polar view. Y. Polar view and apertures. Z. Equatorial view

Page 9: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

9

Figure 4. SEM photos of Tanacetum species. A-C: T. balsamita L. subsp. balsamita L. A. Equatorial view B. Polar view and apertures C. Ornamentation. D-F: T. balsamita L. subsp. balsamitoides (Schultz Bip.) Grierson. D. Equatorial view E. Polar view and apertures F. Ornamentation. G-I: T. argenteum (Lam.) Willd. subsp. flabellifolium (Boiss. End Heldr.) Grierson G. Equatorial view H. Polar view and apertures I. Ornamentation. K-M: T. argenteum (Lam.) Willd. subsp. ar-genteum (L.) All.. K. Equatorial view L. Polar view and apertures M. Ornamentation.. N-P: T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Grierson. N. Equatorial view O. Polar view and apertures P. Ornamentation.. R-T: T. depaupe-ratum (Post) Grierson. R. Equatorial view S. Polar view and apertures T. Ornamentation.. U-W: T. haradjanii (Rech. Fil.) Grierson U. Equatorial view V. Polar view and apertures W. Ornamentation.. X-Z: T. tomentellum (Boiss.) Grierson. X. Equatorial view Y. Polar view and apertures Z. Ornamentation.

A B C D

E F G H

I K L M

N O P R

S T U V

W X Y Z

Page 10: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 10

ReferencesBrochman C. 1992. Pollen and seed morphology of Nordic Dra-

ba (Brassicacea): phylogenetic and ecological impli-cations. Nord J Bot, 12, 657-673.

Chatuverdi M, Yunus D & Nair PK. 1990. Cytopalynological studies of Arachis L. (Leguminosae). Cultivated and wild species and their hybrids. Grana 29, 109-117.

Christophe J., Andreas M.,and Silvia D. 2008. Specıalızed bees faıl to develop on non-host pollen: Do plants chemı-cally protect theır pollen Ecology, 795–804

Ekim T, Koyuncu M, Vural M, Duman H, Aytac Z, Adıguzel N. 2000. Türkiye Bitkileri Kırmızı Kitabı, Ankara: Türkiye Tabiatını Koruma Derneği.

Erdtman G. 1969. Handbook of Palynology, Morphology, Taxo-nomy and Ecology. Munksgaard, Copenhagen.

Faegri K & Iverson J. 1992. Textbook of Pollen Analysis. 4th Edition. New York: Wiley.

Grierson AJC. 1975. Tanacetum L. (emend. Briq.) in P.H. Davis (Ed.) “Flora of Turkey and the East Aegean Islands”, Edinburgh: Edinburgh University Press, 5, 256–292,

Heywood V.H. 1976. Tanacetum. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M.

Heywood V.H. and Humphries C.J. 1977. Anthemideae-syste-matic review. In: Heywood.

Hilty J. 2012. Insect Visitors of Illinois Wildflowers. World Wide Web electronic publication. illinoiswildflo-wers. info, version.

Howes F.N. 1953. Plantas melíferas. Barcelona, Espanha, Reverté, 35p.

Hultén E. 1950. Atlas of the distribution of vascular plants in NW Europe. Generalstabens Litografiska Anstalts Förlag, Stockholm, 512 p.

Hultén E. 1968. Flora of Alaska and Neighboring territories. A manual of the vascular plants.Stanford University Press, Stanford, California. 1008 p.

İnceoğlu Ö. and Karamustafa F. 1977. The pollen morphology of plant in Ankara region I. Compositae. Communi-cations 21, 77-100.

İnceer H. Hayırlıoglu Ayaz S. 2012. Karyological studies of some representatives of Tanacetum L. (Anthemide-ae-Asteraceae) from North-east Anatolia. Plant.Syst.Evol 298, 827-834.

İnceoğlu O. 1973. Asyneuma canescens (W. K.) Griseb. & Schenk’in polen morfolojisi ve heteremof polenler. Türk Biyoloji Derg 23, 89-94.

İrena E. La Serna Ramos and Miguel A.PadronMederos 2008. Polen morphology of endemic species of the Gonos-permum Less., Lugoa DC.

And Tanacetum L.complex (Asteraceae: Anthemideaae) in the Canary Islands (Spain), and its taxonomical implica-tions. Grana 47, 247-261.

Mesfin T., Crawford d.j. and Smith E.B.1995. Pollen morphology of North Coreopsis (Compositae). Grana 34, 21-27

Nair PK & Kaul KN. 1965. Pollen grain in a gigantic of Rauwol-fia serpentine. Current Sci 34, 256-257.

Özmen E., Kızılpınar İ., Özüdoğru B., Doğan C. and Erik S. 2009. Pollen morphology of some taxa of aromatic genus Tanacetum L. (Asteraceae). Fabad J. Pharm. Sci. 34, 1-11.

Pınar N.M. and İnceoğlu Ö. 1996. A Comparative study on the pollen morphology of Centaurea triumfettii All. gro-ups A, B and C with light and electron microscopy. Turkish Journal of Botany, 20, 395-398

Pınar N.M. and Adıgüzel N. 1998. Pollen morphology of some Turkish Artemisia L. (Compositae) species. Ot Siste-matik Botanik Dergisi, 5(2), 87-92.

Pınar N.M. and Oybak Dönmez E. 2000. Pollen morphology of some Turkish endemic Helichrysum Gaertner speci-es (Compositae). Pakistan Journal of Botany 32 (2), 295-301.

Punt W., Blackmore S., Nilson S. And Le Thomas A. 1994. Glossary of polen an spore terminology LPP foun-dation, Utrecht.

Punt W & Hoen PP 2009. The Northwest European Pollen Flo-ra,70: Asteraceae-Asteroideae. Rev Palaeobot and Palyno 157, 22-183.

Ramos I.E. and Mederos M.A.P. 2008. Pollen morphology of endemic species of the Gonospermum Less., Lugoa DC. and Tanacetum L. complex

S. Silici & M. Keceoglu 2007. Pollen analysis of honeys from Mediterranean region of Anatolia Grana; 46, 57–64

Sodré G.D., Marchini L.C., Moreti A.C. and Carvalho C. 2001. Análises polínicas de méis de Apis mellifera L., 1758 (Hymenoptera: Apidae) do litoral norte do Estado da Bahia. Rev Agric, 76, 215-225.

Soreng R.J. and Cope E.A. 1991. On the taxonomy of cultiva-ted species of the Chrysanthemum Genus-Complex (Anthemideae; Compositae). Baileya, 23, 145-165.

Sorkun K. 2008. Türkiye’nin Nektarlı Bitkileri, Polenleri ve Balları. Palme Yayıncılık, Ankara.

Stix E. 1960. Pollenmorphologische Untersuchungen an Com-positen. Grana Palynol, 2(2), 41-114.

Watanable W. 2011. Index to chromosome numbers in Astera-ceae. http://www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e, updated.

Wagenitz G. 1955. Pollenmorphologie und Systematik in der Gattung Centaurea L. s.l. Flora, 142, 213-277.

Wodehouse PP 1935. Pollen Grains. New York: McGraw-Hill.Valentine D.H., Walters S.M. and Webb D.A. (eds). Flora Euro-

paea, Plantaginaceae to Compositae (and Rubiaceae).Cambridge University Press, Cambridge, 4,169-171.

Van der Pluym A & Hideux M 1997. Applications d’une met-hodologie quantitative a la palynologie d’Eryngium maritimum (Umbelliferae), Plant Syst Evol, 127, 55-85.

Yıldırımlı Ş. 1989. Munzur dağlarının yeni, ilginc ve tukenen bitki turleri. Hacettepe Fen ve MühendislikBilimleri Dergisi, 10, 39-47,

Aytuğ B.1971. İstanbul Çevresi Bitkilerinin Polen Atlası. İstan-bul Üniversitesi Orman Fakültesi

Page 11: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 12-24:11-16 (2012) HARUMRESEARCH ARTICLE

11

POLLEN ANALYSIS OF HONEY SAMPLES COLLECTED FROM KOMATİ (ÇAMLIHEMŞİN)

PLATEAUKOMATİ (ÇAMLIHEMŞİN) YAYLASI BALLARINDA POLEN ANALİZİ

Esra Demir*

Summary: This study presents the pollen analyses of 10 floral honeys from Komati (Çamlıhemşin) Plate-au in Rize. Samples were obtained from each beehive selected randomly from 10 different apiaries in the year 2011. All the honey samples were identificated under the light microscope. These samples examined Total Pollen Number in 10 g honey (TPN-10g). The pollen analyses revealed 1 unifloral honey and 9 mul-tifloral honeys. The dominant group of pollen grains consisted of : Castanea sativa MILLER., Ericaceae, Fabaceae and Rosaceae. The amount of moisture in the samples of honey was identified between 15% and 19%.

Keywords: Honey, Pollen Analysis, TPN-10g, Komati Plateau

Özet: Bu çalışma Komati Yaylası’ndan 10 bal örneğinin polen analizlerini içermektedir. Örnekler, 2011 yılında, rastgele belirlenmiş 10 farklı arılıktan seçilen birer kovandan toplanmıştır. Toplanan bütün bal örnekleri ışık mikroskobu altında teşhis edilmişlerdir. Bu örneklerde Toplam Polen Sayısı (TPS-10) ince-lenmiştir. Polen analizleri sonucunda 1 bal unifloral ve 9 bal multifloral olarak saptanmıştır. Dominant polen gruplarını Castanea sativa MILLER., Ericaceae, Fabaceae ve Rosaceae taksonları oluşturmakta-dır. Bal örneklerindeki nem miktarı %15 ile %19 arasında tespit edilmiştir.

Anahtar Kelimeler: Bal, Polen Analizi, TPS-10g, Komati Yaylası

* Recep Tayyip Erdoğan University Faculty of Science, Department of Biology, 53100 Rize, TURKEYCorresponding Author E-mail: [email protected]

Page 12: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 12

IntroductionHoney is great importance for commercial and impor-tance source of nutriment for people. The taste, smell and color of honey is to change according to the nectar of the flowers (Kaya et al., 2005).

Honey is the natural sweet substance produced by honeybees from the nectar of blossoms or from secre-tions of living parts of plants or excretions which hon-eybee (Apis mellifera L.) collect, transform and com-bine with specific substances of their own, store and leave in the honey comb to ripen and mature (Ünal and Küplülü, 2006).

Beekeeping activity can be pursued only in such re-gions where bee flora is available. Therefore, identifi-cation of bee forage plants and their propagation help in improving the bee forage wealth and the concomi-tant efficacy of beekeeping industry and commercial honey production.

The melissopalynological studies have significant application in the establishment of apiary industries. Analyses of pollen from honey and pollen loads pro-vide relevant information for the pollen and nectar sources of an area. This knowledge is helpful for de-veloping an apiary industry and commercial honey production (Bhusari et al., 2005).

The first pollen analyses of honey were studied by Pfister (Kaya et al., 2005). In Turkey pollen analysis of honey was the first made by Qustiani (Stawiartz and Wreblewska, 2010). The first pollen analysis were carried out by Sorkun and İnceoğlu between 1979 and 1981 (Çam et al., 2010).

In Turkey Başoğlu et al. (1996) were the first to de-termine honey quality by using the TPN-10 method. From 1996 and on, quality assessment trough the TPN-10 g as a melissopalynologic analysis has contin-ued (Bölükbaşı, 2009).

Pollen analysis were performed in 73 honey samples obtained from Sandomierska (Stawiardz and Wre-blewska, 2010), 78 samples obtained from Muğla (Öz-kök, 2009), 25 honey samples obtained from Canary Islands (La-Serna Ramos et al. 1999), 14 samples ob-

tained from Chubut (Forcone 2008), 13 samples ob-tained from Arıt (Mısır 2011), 20 samples obtained from Burdur (Taşkın 2009).

Honey is hygroscopic; that is, it has excellent wa-ter absorbing properties. Thus honey will change in moisture content according to the surrounding at-mosphere. This characteristic is important in storing honey because it will absorb water when exposed to high relative humidity (RH) and will give off water when exposed to low RH, until an equilibrium point is reached. High moisture honey will ferment (Sanford 1994).

The amount of moisture that occurred in honey is a very important factor and the criteria that determine the quality of honey. The amount of honey is affected by plant source, temperature, rains, condition of bee glaze, the work during the marketing and degree of maturation of honey. Keeping the honey not soured is related to the amount of water in the structure of honey. According to Turkish food Codex, Notification of Honey, the amount of moisture of honey can not be more than the value 20% (MEB, 2012).

The current study aimed at identifying nectar contain-ing flower plants, which contribute to the formation of honey from Komati Plateau of Çamlıhemşin in Rize.

Material and MethodThe honey samples were collected from different bee-hive the month of July- August in 2011. During the field studies, herbarium materials were collected. Reference pollen preparations was made from the her-barium materials.

The preparation of the honey samples were done using the method defined by the International Bee Research Association (Von Der Ohe et al., 2004). Preparations were made from each honey samples for identifica-tion of pollen. After identification, 200 pollen sam-ples were counted in each preparation. Source books (Aytuğ, 1971) were used during the pollen analyses. Olympus CX21 microscope was used for the analyses.

Pollen types were classified into four categories: be-tween 1% and 5% was considered as the rare group,

Page 13: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

13

between 6% and 20% was considered as the minor group, between 21% and 50% was considered second-ary group and pollen exceeding 50% was called the dominant group (Doğan and Sorkun 2001). Based on the total number of plant elements, honeys are placed into one of the following classes (Sorkun 2008): Class I with less than 2000 pollen grains per gram of honey (includes unifloral honeys with underrepresented pol-len); class II with 2000–10 000 pollen grains includ-ing most of multifloral and honeydew honeys and mix-tures of flower and honeydew honeys; class III with 10 000–50 000 pollen grains includes unifloral honeys with overrepresented pollen and honeydew honeys; class IV with between 50 000–100 000 including unifloral honey with strongly overrepresented pollen and some pressed honeys; and class V with more than 100 000 pollen grains (Dobre et al. 2012).

The amount of moisture in honey samples which was stored at 20°C was measured with Portable Refrac-tometer.

ResultsThe results of melissopalynologic analyses, 9 samples were identified multifloral honey, because they includ-ed pollen grains of multiple taxa. A sample which is unifloral, referred as chesnut honey. In the honey sam-ples 1,3,4,5,7 and 10 no pollen was found in dominant amount. The sample number 6 Rosaceae pollen grains were found in dominant amount, whereas Ericaceae and Onobrychis pollen grains were found secondary amount. In the honey sample 8 Ericaceae pollen grains were found in dominant amount. In the honey sample 9 Castanea sativa MILLER. pollen grains were found in dominant amount while no pollen grains are found secondary and minor amount. Lauraceae and Poacaea pollen grains were found rare amount in the sample number 9 (Table I).In this study ,TPN-10 g values ranged from 4 927 to 31

215. The sample number 9 contained the least number of TPN-10 g and sample number 1 contained the most number of TPN 10 (Table I).

Moisture content of the honey samples were up to standart of honey notification of Turkish Food Codex 2012.

DiscussionThe results of microscopic analyses revealed that taxa variability is greatest in the rare group, followed by minor, secondary and dominant groups (Table I). This seems to confirm the view that variability is always little amoung pollen taxa in dominant groups, while greater among rare, minor and secondary groups (Doğan and Sorkun 2001).

It is determined that nectar contributing to formation of honey is obtained from plants with pollen grains included in dominant and secondary groups (Erdoğan et al. 2009).In the study that made on the honey samples from Komati Plateau pollen grains of Castanea sativa MILLER. Ericaceae and Rosaceae were determined in dominant group. In seven samples no pollen grains were found in dominant group.

Castanea sativa MILLER. pollen grains were found to be dominant due to the prevalence of chestnust trees.

In the multifloral honey samples were obtained pollen grains in seconder and minor group while in the uni-floral honey sample no pollen grains were obtained in seconder and minor groups.

AcknowledgementsTechniqual support of this work by Kadriye Sorkun, Ömür Gençay Çelemli and Şeyda Turan is gratefully acknowledged.

Page 14: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 14

Table I. Pollen Spectra, TPN-10 g Values (*Dominant pollen,**Secondary Pollen,***Minor Pollen,****Rare Pollen) and the Amount of Moisture

H. S.Number

Pollen spectrum TPN-10 g The Amount of Moisture

%

1 * - ** Castanea sativa. MILLER., Ericaceae, Rosaceae *** - **** Brassicaceae, Fabaceae, Pinaceae, Rumex

31 215 17.5

2 * - ** Ericaceae, Rosaceae *** Castanea sativa MILLER., Fabaceae **** Dipsacaceae, Lamiaceae, Rumex sp., Salix sp. , Tilia sp.

18 89815

3 * - ** Castanea sativa MILLER., Ericaceae, Rosaceae *** Fabaceae **** Asteraceae, Boraginaceae, Brassicaceae, Poaceae

27 12315.5

4 * - ** Castanea sativa MILLER., Ericaceae *** Fabaceae, Rosaceae

**** Brassicaceae, Lamiaceae, Poaceae, Ranunculus sp.

26 27218.5

5 * -** Castanea sativa MILLER.*** Rosaceae**** Ericaceae, Fabaceae, Salix sp.

9 58519

6 * Rosaceae** Ericaceea, Onobrichis sp.*** Castanea sativa MILLER.**** Salix sp.

9 531 17

7 * -** Ericaceae, Rosaceae*** Fabaceae, Rumex sp.**** Brassicaceae, Lamiaceae, Pinaceae, Salix sp.

26 72818

8 * Ericaceae** Rosaceae*** Salix sp.**** Cistus sp., Lamiaceae, Onobrychis sp., Rumex sp.

10 50018.5

9 * Castanea sativa MILLER.** -*** -**** Lauraceae, Poaceae

4 92718.5

10 * -** Castanea sativa MILLER., Ericaceae, Rosaceae*** Fabaceae**** Boraginaceae, Brassicaceae

12 54218

Page 15: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

15

Table 2. Number of Pollen in Honey Samples

Sample No Taxa Number of Pollen Sample No Taxa Number of

Pollen

1

Ericaceae 69

6

Rosaceae 103

Castanea sativa MILLER. 65 Ericaceae 47Rosaceae 58 Onobrychis sp. 28

Fabaceae 6 Castanea sativa MILLER. 19

Brassicaceae 1 Salix sp. 3Pinaceae 1

7

Ericaceae 85Rumex sp. 1 Rosaceae 75

2

Ericaceae 95 Fabaceae 22

Rosaceae 57 Brassicaceae 9

Fabaceae 32 Salix sp. 5Castanea sativa MILLER. 10 Lamiacaea 2

Lamiacaea 2 Pinaceae 1

Rumex sp. 2 Poaceaea 1

Tilia sp. 1

8

Ericaceae 106Dipsacaceae 1 Rosaceae 66

3

Castanea sativa MILLER. 73 Salix sp. 22

Rosaceae 64 Cistus sp. 2Ericaceae 42 Rumex sp. 2Fabaceae 15 Onobrychis sp. 1

Brassicaceae 3 Lamiaceae 1

Asteraceae 1

9

Castanea sativa MILLER. 190

Poaceae 1 Poaceae 5

Boraginaceae 1 Lauraceaea 5

4

Castanea sativa MILLER. 90

10

Castanea sativa MILLER. 80

Ericaceae 50 Rosaceae 60Rosaceae 34 Ericaceae 41Fabaceaea 12 Fabaceae 13

Brassicaceae 11 Boraginaceae 4

Lamiaceae 1Brassicaceae 1

Ranunculus 1

Poaceae 1

5

Castanea sativa MILLER. 149

Rosaceae 40

Fabaceae 6

Ericaceae 3

Salix sp. 2

Page 16: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 16

Figure I. Microphotographs of Pollen Grains

ReferencesAytuğ B. 1971. İstanbul Çevresi Bitkilerinin Polen

Atlası. İstanbul Üniversitesi Orman FakültesiBaşoğlu F. N., Sorkun K., Löker M., Doğan C. and Wetherilt H.

1996. Saf ve Sahte Balların Ayırt Edilmesinde Fizik-sel, Kimyasal ve Palinolojik Kriterlerin Saptanması. Gıda. 21(2), 67-73.

Bhusari, N. V., Mate, D. M., Makde, K. H. 2005. Pollen of Apis honey from Maharashtra. Grana. 44: 216–224. ISSN 0017-3134.

Bölükbası N. D., 2009. Melissopalynologıc Analysis of Pocked Honey. Mellifera. 9-18:2-8.

Çam B., Pehlivan S., Uraz G., Doğan C.2010. Pollen Analyses of Honey Collected from Various Regions of Ankara (Tur-key) and Antibacterial Activity of These Honey Sam-ples Against Some Bacteria. Mellifera. 10-19:2-16.

Dobre I., Alexe P., Escuredo O., Seıjo M. C. 2012. Palynological evaluation of selected honeys from Romania. Grana. iFirst: 1–9.

Doğan C., Sorkun K. 2001. Pollen Analysıs of Honeys From Aegean, Marmara, Mediterranean and Black Sea Regions İn Turkey. Mellifera.1-1: 33-34

Erdoğan N., Pehlivan S., Doğan C. 2009. Pollen Analysis of Honeys from Sapanca-Karapürçek-Geyve and Taraklı Districts of Adapazarı Province (Turkey). Mellifrea. 9-17:9-18.

Forcone A. 2008. Pollen Analysis of Honey from Chubut (Ar-gentinean Patagonia) Grana. 47: 147–158

Kaya Z., Binzet R., Orcan N. 2005. Pollen Analyses of Honeys From Some Regions in Turkey Apiacata. 40:10-15

La-Serna Ramos, I. E., MeÂndez PeÂrez, B. & Gomez Ferre-ras, C. 1999. Pollen Characterization of Multiforal Honeys from La Palma (Canary Islands). Grana 38: 356±363. ISSN 0017-3134.

Mısır M., 2011. Arıt Bölgesi (Bartın) Ballarında Polen Analizi, Yüksek Lisans Tezi, Bartın.

Özkök A. 2009. The Microscopic, Organoleptic And Chemical Analysis Of Pine Honey And Propolis, Which Are Produced In Muğla Region. Doktora Tezi, Ankara.

Sanford T. M. 1994. Moisture in Honey.University of Florida IFAS Extension.

Sorkun K. 2008. Türkiye nin Nektarlı Bitkileri, Polenleri ve Balları. Palme Yayıncılık.

Stawiardz E., Wroblewska A. 2010. Melissopalynolgıc Analysis Of Multifloral Honeys From The Sandomierska Up-land Area Of Poland. Journal of Apicultural Science. 65-75:54- 1

Taşkın, D., 2009. Burdur Yöresi Ballarının Polen Analizi, Yük-sek Lisans Tezi, Isparta

Ünal C., Küplülü Ö.2006. Chemical Quality of Strained Honey Consumed in Ankara. Ankara Üniv Vet Fak Derg, 53, 1-4.

Von Der Ohe W., Persano Oddo L., Piana M.L., Morlot M., Martin P.2004. Harmonized Methods of Melissopa-lynology. Apidologie. 35 S18–S25.

Laboratuvar Hizmetleri Bal Analizleri-1 524LT0028. 2012. MEB, Ankara.

Figure I. Microphotographs of Pollen Grains

a. Castanea sativa MILLER.

b. Ericaceae c. Cistaceae d. Asteraceae

e. Rumex sp. f. Lamiaceae g. Pinaceae h. Rosaceae

1µ : x100 2µ : x40 Acknowledgements

Page 17: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 12-24:17-26 (2012) HARUMRESEARCH ARTICLE

17

NOTES ON ROPHITES ALGIRUS PÉREZ, 1895 AND ROPHITES QUINQUESPINOSUS SPINOLA, 1808 OF MEDITERRANEAN TURKEY WITH AN UPDATED

LIST OF SUBFAMILY ROPHITINAE (HYMENOPTERA: HALICTIDAE) OF TURKEY

TÜRKIYE’DEKI ROPHITINAE (HYMENOPTERA: HALICTIDAE) ALTFAMILYASININ GÜNCEL LISTESI ILE TÜRKIYE’NIN AKDENIZ HAVZASINDAKI ROPHITES ALGIRUS PÉREZ, 1895 AND

ROPHITES QUINQUESPINOSUS SPINOLA, 1808 ÜZERINE NOTLAR

Fatih DİKMEN* and Ahmet Murat AYTEKİN*

Summary: The study was conducted in the Mediterranean region of southern Turkey. Two Rophitinae (Halictidae: Hymenoptera) species, Rophites algirus Pérez, 1895 and Rophites quinquespinosus Spinola, 1808 were considered. Taxonomical identification keys, distribution maps and flower visits of these spe-cies were given. Detailed microscopic photos and drawings of some important morphological features were also revealed. Besides, the literature on the fauna of the subfamily Rophitinae was reviewed to es-tablish an updated species list of Turkey. As a result of this overview eight species seem possibly endemic for Turkey.

Key Words: Halictidae, Rophitinae, Fauna, Distribution, Turkey

Özet: Çalışma Türkiye’nin güneyindeki Akdeniz Bölgesi’nde gerçekleştirildi. İki Rophitinae (Halictidae: Hymenoptera) türü, Rophites algirus Pérez, 1895 and Rophites quinquespinosus Spinola, 1808 ele alındı. Bu türlere ait taksonomik tanı anahtarları, yayılım haritaları ve bitki ziyaretleri belirtildi. Bazı önemli morfolojik karakterlere ait fotoğraflar ve çizimler de ayrıca gösterildi. Bunların yanında, Türkiye’deki güncel tür listesinin elde edilebilesi için, Rophitinae altfamilyası faunası üzerine yapılmış olan literatür derlendi. Bu genel taslağın bir sonucu olarak, sekiz türün Türkiye için muhtemelen endemik olabilecek-leri görüldü.

Anahtar Kelimeler: Halictidae, Rophitinae, Fauna, Yayılım, Türkiye

*Hacettepe University Faculty of Science, Department of Biology, 06800 Beytepe, Ankara, Turkey Corresponding Author E-mail: [email protected] study based on part of the PhD thesis of F. Dikmen submitted to Hacettepe University Institute of Science in 22.06.2012.

Page 18: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 18

IntroductionHalictidae (Apiformes: Apoidea: Hymenoptera) is one of the largest families of all bees (Pesenko et al. 2000; Michener 2007). It contains four subfamily (Rophi-tinae, Nomiinae, Nomioidinae, Halictinae) according to Michener (2007) and nearly 3500 species (Pesenko 2007) in the world. From these, Rophitinae is one the most interesting one because of their unique morpholo-gy and biological features. Rophitinae members can be easily separated from other groups by such brief char-acters; antennal sockets placed on lower half of face and clypeus shorter than labrum (Pesenko et al. 2000). Apart from these, they exhibit solitary life and they are mostly oligolectic unlike the other Halictidae members (Pesenko et al. 2000). Patiny and Michez (2006) report-ed that Systropha spp. are the most typical ones that show narrow plant choice and especially oligoleg on Convovulus L. spp. (Convolvulaceae). Moreover, Pat-iny et al. (2007) suggested that there should be an evo-lutionary tendency for Rophitinae species to specialize on the members of certain plant groups.

This subfamily contains nearly 200 species in the world and half of them are distributed in Palaearctic region (Pesenko et al. 2000). Generally in West Pa-laearctic Region and also locally in Turkey it is repre-sented by four genera: Dufourea Lepeletier, Morawit-zia Friese, Rophites Spinola, and Systropha Illiger (Michener 2007). Among them, the most diverse ge-nus is Dufourea and it has generally Holoarctic dis-tribution. Whereas members of the genera Systropha, Morawitzia and Rophites show more likely restricted distributions (Pesenko et al. 2000; Michener 2007).On the other hand there are many tasks had to be done for exact evolutionary explanations. Especially there are still no sufficient and up to date knowledge on the distributions of Rophitinae groups for Turkey. The leading studies which also include scrappy data on the Rophitinae fauna of Turkey are Ebmer (1987; 1988; 1993) and Schwammberger (1976). Moreover the in-formation about the members of the genus Rophites Spinola of Turkey is very scanty.

For these reasons, this study aimed to make contri-butions on the Rophitinae fauna of Turkey. Rophites algirus Pérez, 1895 and Rophites quinquespinosus Spinola, 1808 were considered taxonomically. Sec-

ondly the scattered literature data were evaluated to figure out the updated faunistic list of the subfamily for Turkey.

Materials and MethodsThe study was conducted at Mediterranean Region of Southern Turkey. Field studies were performed during the spring and summer seasons of 2008 and 2009. Ran-dom sampling protocol was used and vegetation bound-aries were followed in collecting bees. Bee specimens were collected via hand nets and aspirators. Mean-while, the plants that have been visited by bees were also recorded or collected for diagnosis. Captured bee samples and collected plants were properly prepared for collections. All of these specimens were depos-ited in the Department of Biology, Faculty of Science, Hacettepe University, Ankara (Turkey). GPS coordi-nates were taken by Garmin Etrex H®. Materials were examined with stereoscopic microscopes for diagnosis. Identification of the bee specimens were made accord-ing to Warncke (1980), Ebmer and Schwammberger (1986) and Niu et al. (2005). Identification of plant specimens were made by Demet Töre (Department of Biology, Faculty of Science, Hacettepe University) and The International Plant Names Index (IPNI 2008) were followed for the author names of the plant taxa. Taxo-nomical identification key for two species were pre-pared. Some important morphological features includ-ing the dorsal view of genitalia of these species were also photographed. Ebmer and Schwammberger (1986) was followed for genitalia inspection.

Ecoregion map (fig.1) was prepared with CFF 2.0 (Car-to Fauna-Flora; Barbier and Rasmont 2000) and modi-fied with Adobe Photoshop© v7.0 for a better visualiza-tion. We followed the explanation of borders of West Palaearctic Region proposed by Patiny et al (2009). Distribution maps (fig. 4) for the Rophites algirus and R. quinquespinosus was also prepared with CFF 2.0 (Barbier and Rasmont 2000: Carto Fauna-Flora). Spe-cies lists for regions and subregions were prepared ac-cording to Schwammberger (1976), Ebmer (1987; 1988; 1993), Baker (1996); Pesenko (1998); Pesenko et al. (2000), Patiny (2003; 2004), Niu et al. (2005), Patiny and Michez (2006), Pesenko and Astafurova (2006), Ascher et al. (2009). The species are listed in tables are in the alphabetical order (tab.1 and tab.3).

Page 19: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

19

Results Species identification key for female1. Frons with thick spines medially, with 7 – 8 spines

under median ocel and 8 – 10 spines laterally (fig. 2a) ……………………………………… R. algirus Pérez

1’. Frons with thick spines medially, with 4 – 5 spines under median ocel and 4 – 5 spines laterally (fig. 2b) ……………………….. R. quinquespinosus Spinola

Species identification key for male1. S6 with a slight thin process longitudinally; distal

lobe of S8 thin; gonostylus narrower and more cylin-drical (fig. 2c, 2e, 3a) ………………R. algirus Pérez

1’. S6 with thick and obvious process longitudinally; distal lobe of S8 thick; gonostylus broader and more foliate like (fig. 2d, 2f, 3b) ……. R. quin-quespinosus Spinola

Rophites algirus Pérez, 1895Distribution: Turkey, Caucasus (Pesenko et al. 2000); Bulgaria, Morocco, France, Iran, Italy, Tunisia, Ukraine (Ascher et al. 2009).Inspected Material: 18-VII-2008, 37°16’70”N, 30°07’27”E, 1963 m, Söbüce Yayla, Antalya, 1♀; 22-VII-2008, 36°20’53”N, 32°35’22”E, 2225 m, Anamur - Ermenek road Gazipaşa cross, Anamur, Mersin, 1♂; 07-VI-2009, 36°21’59”N, 33°13’63”E, 1241 m, Gülnar - Ermenek road, 5 km to Akova, Mersin, 2♂♂; 23-VII-2009, 36°26’84”N, 32°47’30”E, 1752 m, Anamur - Ermenek road, Gazipaşa cross, Ermenek, Karaman, 1♀ (fig. 4a).Visited Flowers: Phlomis armeniaca Willd., P. mono-cephala P.H.Davis, P. sieheana, Stachys byzantina C. koch. (Lamiaceae).

Rophites quinquespinosus Spinola, 1808Distribution: Europe, China, Western Russia, Caucasus, Kazakhstan, Kirgizstan, Turkey (Ascher et al. 2009).Inspected Material: 23-VII-2009, 36°26’84”N, 32°47’30”E, 1752 m, Anamur - Ermenek road Gazipaşa cross, Ermenek, Karaman, 2♀♀ (fig. 4b).Visited Flowers: Ballota saxatilis Sieber ex C.Presl. (Lamiaceae).

Biogeographical resultsThe subfamily Rophitinae is represented by 95 species in Palaearctic region (Pesenko and Astafurova 2006).

As a result of our literature research we can suppose that 29 of them (13 from Dufourea; 11 from Rophites; three from Morawitzia; and two from Systropha) are recorded from Turkey (tab.1). These numbers also con-stitute nearly 30% of Palaearctic fauna and also close with the richness of the fauna of Europe mainland (tab.2). Moreover, eight of them are possibly endemic for Turkey (tab.1). In addition to these data, twelve Ro-phitinae spp. were also listed according to their close distribution within adjacent boundaries (tab.3).

DiscussionDuring our field studies in Mediterranean Region of Turkey only two species belong to Rophites spp. were determined. However it was interesting that all speci-mens were captured at high elevation (between 1200-2200 meters). Secondly it is important that Rophites algirus and R. quinquespinosus are captured just only on Lamiaceae members. This may be counted as a kind of clue about their oligolectic feeding behavior which was also mentioned in Pesenko et al. (2000). However because of the low sampling size it is difficult to make inference about the flower preferences and distributions of the Rophites species within Mediterranean Turkey.

The biogeographical results showed that Turkey is one of the important reserves for the members of Mora-witzia, Rophites and Dufourea. On the other hand Systropha members have Palaeatrctic and African distribution and they are hardly represented within Turkey (tab.2). The members of Morawitzia are gener-ally endemic to Anatolian part of Turkey and Caucasia (Georgia and Armenia) and do not distributed in any other parts of the world. The endemism (nearly 20% of Palaearctic fauna) and the species richness (nearly 60% of the Palaearctic fauna) of the genus Rophites are also high in Turkey (Table.2). These findings gen-erally supports that Turkey is one of the most impor-tant biogeographical zones for bees with considerably diversified fauna. The data presented here might ex-hibit a good ground base for bee conservation studies in Turkey and also would be helpful in such taxonomi-cal studies focusing on the subfamily Rophitinae.

AcknowledgementsThis study partly supported by Hacettepe University Research Foundation Project No: 0701601016.

Page 20: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 20

8

8

Fig. 1: Subregions of West Palaearctic Region and Asia. BA: Balkans; CA: Central Asia;

CAU: Caucasia; EA: Eastern Asia; ME: Middle East; MED: Mediterranean Basin; NA:

Northern Asia; SA: Southern Asia; WP: West Palaearctic Region (including BA, CAU, MED,

and ME regions).

Fig. 1: Subregions of West Palaearctic Region and Asia. BA: Balkans; CA: Central Asia; CAU: Caucasia; EA: Eastern Asia; ME: Middle East; MED: Mediterranean Basin; NA: Northern Asia; SA: Southern Asia; WP: West Palaearctic Region (including BA, CAU, MED, and ME regions).

Page 21: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

21

9

9

Fig. 2: a-b: Female head and the spines on frons; a: Rophites algirus and b: R. quinquespinosus; c-d: Sterna VI (S6) of male; c: Rophites algirus and d: R. quinquespinosus; Sterna VIII (S8) of male; e: Rophites algirus and f: R. quinquespi-nosus.

Page 22: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 22

10

10

Fig. 2: a-b: Female head and the spines on frons; a: Rophites algirus and b: R.

quinquespinosus; c-d: Sterna VI (S6) of male; c: Rophites algirus and d: R. quinquespinosus;

Sterna VIII (S8) of male; e: Rophites algirus and f: R. quinquespinosus.

Fig. 3: Male genitalia drawing and detailed microscopic photograph: a: Rophites algirus and

b: R. quinquespinosus. gb: gonobase; gc: gonocoxite; gs; gonostylus; pv: penis valve; vs:

volsella; S8: Sterna VIII.

Fig. 3: Male genitalia drawing and detailed microscopic photograph: a: Rophites algirus and b: R. quinquespinosus. gb: gonobase; gc: gonocoxite; gs; gonostylus; pv: penis valve; vs: volsella; S8: Sterna VIII.

Page 23: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

23

11

11

Fig. 4: Mediterranean distributions of a: Rophites algirus and b: R. quinquespinosus.

Table.1: The list of the Rophitinae Species of Turkey. 1: Ascher et al. (2009); 2: Ebmer

(1987); 3: Pesenko (1998); 4: Ebmer (1988); 5: Ebmer (1993); 6: Schwammberger (1976); 7:

Pesenko et al. (2000); 8: Baker (1996); Ref: References.

Species Subgenus Ref. Distribution

Dufourea armenia Ebmer, 1987 Cyprirophites 1; 2 Caucasia

Dufourea atrata (Warncke, 1979) Dufourea 1, 3 Endemic - Caucasia

Dufourea caelestis Ebmer, 1987 Dufourea 1; 2 Endemic

Dufourea cypria Mavromoustakis, 1952 Dufourea 1 East Mediterranean

Dufourea graeca Ebmer, 1976 Halictoides 1; 2 Caucasia, Balkan

Dufourea longicornis (Warncke, 1979) Cyprirophites 1 East Mediterranean, Middle East, West Part of

Fig. 4: Mediterranean distributions of a: Rophites algirus and b: R. quinquespinosus.

Page 24: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 24

Table 1: The list of the Rophitinae Species of Turkey. 1: Ascher et al. (2009); 2: Ebmer (1987); 3: Pesenko (1998); 4: Ebmer (1988); 5: Ebmer (1993); 6: Schwammberger (1976); 7: Pesenko et al. (2000); 8: Baker

(1996); Ref: References.

Species Subgenus Ref. Distribution

Dufourea armenia Ebmer, 1987 Cyprirophites 1; 2 Caucasia

Dufourea atrata (Warncke, 1979) Dufourea 1, 3 Endemic - Caucasia

Dufourea caelestis Ebmer, 1987 Dufourea 1; 2 Endemic

Dufourea cypria Mavromoustakis, 1952 Dufourea 1 East Mediterranean

Dufourea graeca Ebmer, 1976 Halictoides 1; 2 Caucasia, Balkans

Dufourea longicornis (Warncke, 1979) Cyprirophites 1 East Mediterranean, Middle East, West Part of East Asia

Dufourea pontica (Warncke, 1979) Halictoides 1; 2 Caucasia

Dufourea quadridentata (Warncke, 1979) Dufourea 1 Endemic

Dufourea salviae Ebmer, 2008 Cyprirophites 1 Endemic

Dufourea schmiedeknechtii (Kohl, 1905) Halictoides 1; 2; 3 North Asia; Caucasia; Europe

Dufourea wolfi Ebmer, 1989 Dufourea 1 Balkans

Morawitzia fuscescens Friese, 1902 Morawitzia 1 Endemic

Morawitzia mandibularis Alfken, 1935 Morawitzia 1 Caucasia

Morawitzia panurgoides Friese, 1902 Morawitzia 1 Caucasia

Rophites algirus Pérez, 1895 Rophites 1; 4 West Palaearctic

Rophites anatolicus (Schwammberger, 1975) Rophitoides 1 Endemic

Rophites canus Eversmann, 1852 Rophitoides 1; 4 Trans-Palaearctic

Rophites caucasicus Morawitz, 1875 Rophites 1; 5 Caucasia

Rophites clypealis Schwammberger, 1976 Rophites 1; 6 Pontic

Rophites foveolatus Friese, 1900 Rophites 1; 5 Caucasia, South Europe

Rophites gusenleitneri Schwammberger, 1971 Rophites 1; 5 Endemic

Rophites hartmanni Friese, 1902 Rophites 1; 4 East Europe, East Mediterranean

Rophites heinrichi Schwammberger, 1976 Rophites 1, 6 Endemic

Rophites leclercqi Schwammberger, 1971 Rophites 1, 7 Balkans

Rophites nigripes Friese, 1902 Rophites 1; 5 East Mediterranean

Rophites quinquespinosus Spinola, 1808 Rophites 1 WP, Middle East

Rophites transitorius Ebmer, 1993 Rophites 1; 5 Endemic

Systropha curvicornis (Scopoli, 1770) Systropha 1; 4 West Palaearctic and East Asia

Systropha planidens Giraud, 1861 Systropha 1; 4; 8 Europe and Middle East

Page 25: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

25

Table 2: Comparison of the Rophitinae fauna of Palaearctic Region, Europe and Turkey.

Genus General DistributionPalaearctic

(Number of Species)

Turkey

(Number of Species)

Europe

(Number of Species)

Dufourea Holarctic 54 11 (3 endemic) 17

Rophites Palaearctic 21 13 (4 endemic) 10

SystrophaMainly Palaearctic

and Africa17 2 (no endemism) 2

Morawitzia Caucasia 3 3 (1 endemic) -

Table 3: The list of the Rophitinae species of adjacent boundaries. 1: Ascher et al. (2009); 2: Ebmer (1987).

Species Reference Distribution

Dufourea alpina Morawitz, 1865 1 Mediterranean (South Europe)

Dufourea bytinskii Ebmer, 1999 1 East Mediterranean

Dufourea dentiventris (Nylander, 1848) 1 Europe, East Asia

Dufourea goeleti Ebmer, 1999 1 East Mediterranean

Dufourea halictula (Nylander, 1852) 1 Europe, Caucasia

Dufourea inermis (Nylander, 1848) 1 Europe, Northeastern and East Asia

Dufourea iris Ebmer, 1987 1; 2 Balkans

Dufourea minuta Lepeletier, 1841 1 Europe, East Asia

Dufourea paradoxa (Morawitz, 1867) 1 West Europe, Central Asia, East Asia

Dufourea similis Friese, 1898 1 North Africa, East Mediterranean

Dufourea trigonellae Ebmer, 1999 1 East Mediterranean

Rophites schoenitzeri Dubitzky, 2005 1 Caucasia

Page 26: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 26

References Ascher J.S., Rozen Jr. J.G. and Schuh T. 2009. Discoverlife

website. Apoidea species guide. http://www.dis-coverlife.org/mp/20q?guide=Apoidea_species

Barbier Y. and Rasmont P. 2000. Carto Fauna-Flora 2.0. Guide d’utilisation. Université de UMH-Hainaut, UMH, Belgique, pp. 59.

Baker D.B. 1996. Notes on some palaearctic and oriental Systropha, with descriptions of new species and a key to the species (Hymenoptera: Apoidea: Halic-tidae). Journal of Natural History, 30: 1527-1547.

Ebmer A.W. 1987. Die westpaläarktischen Arten der Gat-tung Dufourea Lepeletier 1841 mit illustrierten Bestimmungstabellen. Linzer Biologische Be-iträge, 19: 43-56.

Ebmer A.W. 1988. Kritische liste der nicht-parasitischen Halictidae Österreichs mit Berücksichtigung aller mitteleuropäischen Arten (Insecta: Hymenoptera: Apoidea: Halictidae). Linzer biol. Beitr, 20 (2): 527-711.

Ebmer A.W. 1993. Die Bienengattung Rophites Spinola 1808 – Erster Nachtrag. Linzer Biologische Beiträge, 25: 3-14.

Ebmer A.W. and Schwammberger K.H. 1986. Die Bienen-gattung Rophites Spinola 1808 (Insecta: Hyme-noptera: Apoidea: Halictidae: Dufoureinae). Il-lustrierte Bestimmungstabellen. Senckenbergiana biol., 66: 271-304.

IPNI 2008. The International Plant Names Index, www.ipni.org.

Michener C.D. 2007. The Bees of the World. 2nd edition. John Hopkins Univ. Press, Balitimor, USA. 953 p.

Niu Z., Wu Y. and Huang D. 2005. A taxonomic study of the four genera of the subfamily Rophitinae from China (Hymenoptera: halictidae). The Raffles Bulletin of Zoology. 53: 47-58.

Patiny S. 2003. Revision of the subgenus Dufourea (Fla-vodufourea) Ebmer, 1984 (Hymenoptera, Halicti-dae, Rophitinae) and description of a new species D.(Flavodufourea) ulkenkalkana sp.nov. from Ka-zakhstan. Zootaxa, 255: 1-8.

Patiny S. 2004. Description of two new Systropha Illiger 1806 (Hymenoptera, Halictidae, Rophitinae). Linzer Biologische Beiträge. 36 (2): 907-912.

Patiny S. and Michez D. 2006. Phylogenetic analysis of the Systropha Illiger, 1806 (Hymenoptera: Apoidea: Halictidae) and description of a new subgenus.

Annales de la Société entomologique de France, 42(1):27-44.

Patiny S., Michez D. and Danforth B.N. 2007. Phylogenetic relationships and host-plant association within the basal clade of Halictidae (Hymenoptera, Apoidea). Cladistics, 23:1-15.

Patiny S., Rasmont P. and Michez D. 2009. A survey and review of the status of wild bees in the West Pa-laearctic region. Apidologie, 40 (2009): 313-331.

Pesenko Yu.A. 1998. New and little known bees of the genus Dufourea Lepeletier (Hymenoptera, Halictidae) from the Palaearctic Region. - Ent. Obozrenie (St. Petersburg), 77 (3): 670-686 [in Russian with Eng-lish summary. English translation in Ent. Review, 78 (5): 598-612].

Pesenko Yu.A. 2007. The family Halictidae (Hymenoptera): General. In: A key to insects of the Russian Far East. Vol. IV, pt 5. Vladivostok (Dal’nauka): 745-754. [in Russian]

Pesenko Yu.A., Banaszak J., Radchenko V.G. and Cierzniak T. 2000. Bees of the Family Halictidae (Exclud-ing Sphecodes) of Poland: Taxonomy, Ecology, Bionomics. Bydgoszcz, Poland. Bydgoszcz Press. p. 348.

Pesenko Yu.A. and Astafurova Yu.V. 2006. Contributions to the halictid fauna of the Eastern Palaearctic Re-gion: subfamily Rophitinae (Hymenoptera: Hal-ictidae). Entomofauna, 27(27): 317–356.

Schwammberger K.H. 1976. Zwei neue Rophites-Arten aus der Türkei. Ent. Ztschr. 86: 225-228.

Warncke K. 1980. Rophites quinquespinosus Spinola und R. trispinosus Pérez eine oder zwei Bienenarten? (Apidae, Halictinae). Entomofauna, 1/3: 37-52.

Page 27: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 12-24:27-32 (2012) HARUMRESEARCH ARTICLE

27

CHEMICAL COMPOSITION OF PROPOLIS SAMPLES COLLECTED FROM TEKIRDAG-TURKEY

TEKİRDAĞ-TÜRKİYE’DEN TOPLANAN PROPOLİS ÖRNEKLERİNİN KİMYASAL İÇERİĞİ

Ömür Gençay Çelemli *, Kadriye Sorkun*, Bekir Salih**

Summary: The aim of this study is to investigate the chemical compositions of propolis samp-les which were collected from Tekirdağ city of Turkey. A total of 92 different propolis samples collected from eight towns of Tekirdağ were examined by GC-MS (Gas Chromatography and Mass Spectrometry) to determine chemical composition and establish the chemical profile of Tekirdağ propolis.According to the GC-MS results, the compound; aldehydes, alcohols, aliphatic acids and their esters, flavonoids, hydrocarbons, carboxylic acid and their esters, cinnamic acids and their esters ketones, were determined in various amounts. Among these compounds the flavonoids were found in all samples and in higher amounts compare to the other compounds.

Keywords: propolis, GC-MS, Tekirdağ, chemical profile, flavonoid

Özet: Bu çalışmanın amacı Türkiye’nin Tekirdağ ilinden toplanan propolis örneklerinin kim-yasal içeriğini araştırmaktır. Tekirdağ’ın sekiz ilçesinden toplanan toplamda 92 örneğin kim-yasal içeriği GC-MS ile (Gaz Kromatografisi ve Kütle Spektrometresi) incelenmiş ve Tekirdağ propolisinin kimyasal profili oluşturulmuştur.GC-MS sonuçlarına göre aldehidler, alkoller, alifatik asit ve esterleri, flavonoidler, hidrokar-bonlar, karboksilik asit ve esterleri, sinamik asit ve esterleri, keton bileşikleri değişik miktar-larda saptanmıştır. Bu bileşikler arasında flavonoidler tüm örneklerde belirlenmiş ve diğer bileşiklere göre daha yüksek oranlarda olduğu bulunmuştur.

Anahtar kelimeler: propolis, GC-MS, Tekirdağ, kimyasal profil, flavonoid

*Hacettepe University Faculty of Science, Department of Biology, 06800 Beytepe, Ankara, Turkey**Hacettepe University Faculty of Science, Department of Chemistry, 06800 Beytepe, Ankara, TurkeyCorresponding Author E-mail: [email protected] study based on part of the PhD thesis of Ö. G. Çelemli.

Page 28: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 28

IntroductionPropolis or bee glue is a sticky dark-colored material that honey bees collect from plants and use it in the hive: they apply it to seal the walls, to strengthen the borders of combs, to line all cells inside, to embalm dead invaders (Bankova 2005). It is also well known that the propolis possesses antibacterial, antifungal and antiviral properties and many beneficial biologi-cal activities such as antiinflammatory, antiulcer, local anesthetic, hepatoprotective, antitumor, immu-nostimulating etc (Bankova et al. 2000). Bees use it, therefore, as a protective barrier against their enemies (Burdock 1998). However, propolis is being used in the traditional medicine since 3000 BC, in Egypt.

For propolis production, bees use natural materials resulting from a variety of botanical processes in dif-ferent parts of plants. These are substances actively secreted by plants as well as substances exuded from wounds in plants: lipophilic materials on leaves and leaf buds, gums, resins, lattices etc. The plant origin of propolis determines its chemical diversity. Bee glue’s chemical composition depends on the specify of the local flora at the site of collection and thus on the geographic and climatic characteristics of this site (Bankova 2005).

Propolis generally contains 50% resin, 30% wax, 5% pollen, 10% aromatic oils, and 5% other organic resi-dues. Literature reported some important biological activities of propolis. The biological activities were verified due to the content of flavonoids, aromatic ac-ids and esters present in the propolis (Lee et al. 2007).

Material and MethodsPropolis samplesIn 2007-2008 the propolis samples were collected from the hives of Tekirdağ. The hives from eight towns (Çerkezköy, Çorlu, Hayrabolu, Malkara, Merkez, Muratlı, Saray, Şarköy) of Tekirdağ choosed accord-ing to the sampling method. By this method 92 bee farms were choosen to collect propolis. So the study carried on with 92 propolis samples. The number of beehives choosen by sampling method is given in Ta-ble 1. Propolis samples were collected from the edges of frames by scraping with a spatula.

Extraction and sample preparationEach frozen propolis sample was grained and dis-solved in ethanol (96%) with a ratio of 1/3. Then ,the mixture kept in tightly closed bottle and in an incuba-tor at 30°C for two weeks. After incubation period, the supernatant was filtered twice with Watman No 4 and No 1 filter papers. The final solution, (1:10, w/v), called Ethanol Extracts of propolis (EEP) was evapo-rated until completely dryness. About 5 mg of dry substance were mixed with 75 µl of dry pyridine and 50 µl bis (trimethylsilyl) trifluoroacetamide (BSTFA), heated at 80°C for 20 min and the final supernatant was analyzed by GC-MS (Gençay and Salih 2009).

GC-MS analysisA GC 6890N from Agilent (Palo Alto, CA, USA) cou-pled with mass detector (MS5973, Agilent) was used for the analysis of EEP samples. Experimental con-ditions of GC-MS system was as follows: DB 5MS column (30 mx 0.25mm and 0.25 µm of film thick-ness) was used and flow rate of mobile phase (He) was set at 0.7 ml/min. In the gas chromatography part, temperature was kept for 1 min at 50 °C and then in-creased to 150 °C with 10 °C/min heating ramp. After this period, temperature was kept at 150 °C for 2 min. Finally, temperature was increased to 280 with 20 °C/min. heating ramp and kept at 280 °C for 30 min.

Organic compounds in propolis samples were identi-fied using standard Willey and Nist Libraries avail-able in the data acquisiton system of GC-MS, if the comparison scores were obtained higher than 95%. Otherwise, fragmentation peaks of the compounds were evaluated and the compounds were identified us-ing our memorial background for the identification of the compounds appeared in GC-MS chromatograms. For the quantification of the compounds in the ethanol extract, no internal and external standards were used; only percentage reports of the compounds in the sam-ple were used. This was the standard way to quantify most organic compounds in the propolis sample, thus reducing the relative error in <5% .

Results and DiscussionAccording to the GC-MS results aldehydes, alcohols, aliphatic acids and their esters, flavonoids, hydrocar-bons, carboxylic acid and their esters, ketones, cin-

Page 29: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

29

namic acids and their esters were determined in vari-ous amounts in the investigated 92 samples. Among these compounds flavonoids were the compounds ob-served at higher ratios.

The flavonoids; “2-Propen-1-one,1-(2,6-dihydroxy-4-metoxyphenyl)-3-phenyl (Pinostrobin, chalcone), 4, 5-Dihydroxy-7-methoxyflavanone, 4H-1-benzo-pyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7meth-oxy-(Tetrochrysin), 4H-1-Benzopyran-4-one,2,3-di-hydroxy-5,7- dihydroxy-2-phenyl (Pinocembrin), 4H-1-Benzopyran-4-one,5-hidroxy-7-methoxy-2-phenyl, 4H-1-Benzopyran-4-one,3,5,7-trihydroxy-2-phenyl (Galangin), 4H-1-Benzopyran-4-one 5,7 dihydroxy-2-phenyl (Chrysin), 4H-1-Benzopyran-4-one,5,7-dihydroxy-2-(4-hidroxyphenyl) (Acacetin)” were ob-served in Tekirdağ samples.

The compound belong to the aldehydes group were observed in minor amounts.

From aliphatic acids and their esters group mostly ob-served compounds were; Ethyl oleat, Hexadecanoic acid ethyl ester (palmitic acid ethyl ester), Octadecanoic acid ethyl ester (stearic acid ethyl ester), 9-Octadecanoic acid, Linoleic acid ethyl ester, 2-Butenoic acid, 2 methyl, Hex-adecanoic acid, 9, 12-Octadecadienoic acid ethyl ester, Decanoic acid ethyl ester, Dodecanoic acid ethyl ester, Heptadecanoic acid, 15-methyl-,ethyl ester.

From hydrocarbons group; 1,19-Eicosadiene, 10 – heneicosene (c,t), 17-Pentatriacontene, 1-Docosane, 1-Heptadecane, 1-hexacosane, 1,13-Tetradecadiene, 1-Nonadecane 3-Eicosane, 7-Pentadecine, 9–Tri-cosane, (Z)-, 9,10–Antracenedione, 1-hidroxi–2–(hidroximethyl), 9,10-Anthracenedione, 1-hidroxy-2-(hydroxymethyl)-, 9-Hexacosane, 9-Nonadecene Nonadecane, Octadecane, Pentacosane, Benzo-furan, 2,3-dihydro-, Siclotetracosane, Docosane, Eicosane, Tricosene, Heneicosane, Heptacosene, Z-12-pentacosene, Z-5-Nonadecane, Siclotriaco-ntane, 1,3,5,7-Cyclooctatetracane, Naphthalene, 1,2,3,5,6,7,8,8a –octahydro–1, 8a–dimethyl–7–( 1 – methylethenyl)-, [1R–(1.alpha, 7. beta, 8a alpha.)]-, Naphthalene, 1,2,3,4-tetrahydro-1,6-dimethyl-4-(1-methylethyl)-, (1S-cis)-, Naphthalene,1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-,(1S-cis),

Naphthalene, 1, 2, 3 ,4 ,4a ,5 ,6 , 8a-octahydro-7-me-thyl-4-methylen-1-(1-methylethyl) (1.alpha., 4a.beta., 8a.alpha.) compounds were observed frequently but in minor amounts.

As carboxylic acids and their esters ; “Heptadecanoic acid,15-mehyl-ethyl ester, 4-Pentenoic acid, 5-phenyl, Benzoic acid, 4-pentenoic acid, 5-phenyl-cyclopropan-carboxylic acid, 2-phenyl-, methyl ester, 2-butenoic acid, 2-methyl, pentadecanoic acid ethyl ester, 1,2-ben-zenedicarboxylic acid diis ooctyl ester” were found to be main compounds.

From cinnamic acid and its esters group; “benzyl cin-namate, 2-Propenoic acid ,3-phenyl- (cinnamic acid), Benzenepropanoic acid (Hydrocinnamic acid), Ben-zenpropanoic acid methyl ester, 2-propenoic acid, 3-phenyl-, methyl ester, 3,4-dimethoxycinnamic acid, 3-hidroxy-4-methoxycinnamic acid, Benzyl benzo-ate“ were observed in minor ratios.

DiscussionAmong the determined compounds, the flavonoids were observed in quite higher amounts. In the most of the samples, chrysin a kind of flavonoid was deter-mined. It has anti-tumor (Hladon et al., 1980), anti-Helicobacter pylori (Itoh et al., 1994), anti-inflamma-tory (Shin et al., 2009), anti-oxidant, antiviral, anti-diyabetogenic, anti-axyoletic (Zheng et al., 2003) ef-fects. So we can say that the 86 samples from Tekirdağ region, contain chrysin, may have valuable biological effects for further studies.

Another kind of flavonoid; pinocembrin was de-termined in 86 Tekirdağ samples. This compound has bacterioteriostatic (Amoros et al., 1992), anti-mould (Miyakado, 1976), antimicrobial, anti-micotic (Metzner et al., 1979), anti-oxidant, anti-inflammato-ry (Gao et al.,2008) and local anesthesic effects. Also its anti microbial effect to Alternalis fungus was de-termined (Miyakado et al., 1976).

Galangin is an other flavonoid found in 53 Tekirdağ samples. It has bacteriostatic (Amoros et al., 1992; Pepeljnjak, 1982), antimicrobial, anti-micotic (Metzner et al., 1979), anti-Helicobacter pylori (Itoh et al., 1994) activities.

Page 30: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 30

Comparing with previous studies in flavonoid con-tents base, similiar to our results galangin (in Bur-sa, Muğla, İzmir, Ankara samples) (Velikova et al., 2000), chrysin; (in Bursa, İzmir, Ankara, Elazığ and Erzincan, Erzurum samples) (Velikova et al., 2000; Kılıç et al. 2005; Silici and Kutluca 2005; Seven et al. 2005), pinocembrin (in Bursa, İzmir, Muğla, An-kara samples), 4,5-Dihidroksi-7-methoxyflavanon (in Ankara and Erzincan samples) (Kılıç et al., 2005) , pinostrobin chalcone ( in Erzincan sample) (Gençay, 2004), acacetin (in Erzurum sample) (Silici ve Kut-luca 2005) had been observed by other researchers.

Benzaldehyde, 3-hydroxy-4-methoxy was found in Ankara and Erzincan samples by Kılıç et al. is simil-iar to our results (2005).

According to the GC-MS results, “ octadecanoic acid” from the frequently observed compounds belong to the aliphatic acids and their esters were found in Ankara and Bursa samples in previous studies. From identified aliphatic acids and esters in Tekirdağ samples , “ethyl oleate” was found in Ankara, Kemaliye-Erzincan samples by Kılıç et al. (2005), “hexadecanoic acid“ in Ankara, Bursa, İzmir samples by Velikova et al (2000).

Benzoic acid, the mostly observed compound from carboxylic acid and esters group in Tekirdağ samples, was found in the samples collected from Ankara, Bursa, İzmir, Muğla (Velikova et al., 2000), and Zon-guldak samples (Girgin et al., 2009) by other research-ers. This compound was identified in 77 Tekirdağ samples in our study and its bacteriostatic, antiseptic properties were showed by former researchs.

Cinnamic acid, that is important for biological ac-tivities of propolis, was observed frequently (in 35 Tekirdağ samples) but in minor amounts in the in-

vestigated samples. This compound also has been ob-served in Ankara, İzmir, Muğla samples by Velikova et al.(2000).

The determined amounts of flavonoid, hydrocarbon, carboxylic acids and their esters were compared by ANOVA-Duncan analysis in town base ( Table 2-4).According to the results of Anova-Duncan analysis, the amount of flavonoid in the propolis samples be-long to the eight towns are very similiar and divided only two groups. As seen in table 2 values are very similiar to each other. Malkara samples contain the highest flavonoid ratios, Çerkezköy samples contain lower flavonoid content compare to the other towns.

It is noticed from table 3 that, there is a big difference between Merkez and Şarköy samples according to the hydrocarbon contents.

According to the results there is a big difference in the amount of carboxylic acids and esters between Şarköy and Saray samples (Table 4).

As a result Tekirdağ propolis samples are valuable for further studies. All the samples are rich in flavonoid content and especially Malkara samples has the high-est flavonoid content that can give antimicrobial, an-tioxidant, etc. activities to propolis samples. Also the samples may have anti viral, anti micotic, anti inflam-matory, anti Staphylococcus aureus activities owing to the cinnamic acids and esters contents.

AcknowledgementThis research is supported by Hacettepe University Scientific Research and Development Office(Project Number: 0701601008).

Page 31: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

31

Table 1. The number of collected propolis samples and collecting areas

Number Towns The number of registered beehives (Nh)

The number of samples that must be collect (nh)

The number of collected samples

1 Çerkezköy 35 7 7

2 Çorlu 44 8 8

3 Ereğli 12 2 -

4 Hayrabolu 48 9 9

5 Malkara 74 14 14

6 Merkez 164 31 31

7 Muratlı 45 9 9

8 Saray 65 12 12

9 Şarköy 11 2 2

TOTAL 9 TOWNS 497 BEEHIVES 94 92

Table 2. The statistical comparing of eight towns of Tekirdağ city according to the Flavonoids amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratlı, 7; Saray, 8; Şarköy

Table 3. The statistical comparing of eight towns of Tekirdağ city according to the hydrocarbons amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratlı, 7; Saray, 8; Şarköy

12

Table 2. The statistical comparing of eight towns of Tekirdağ city according to the Flavonoids

amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratl, 7; Saray, 8; Şarköy

Table 3. The statistical comparing of eight towns of Tekirdağ city according to the

hydrocarbons amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratl, 7; Saray, 8; Şarköy

12

Table 2. The statistical comparing of eight towns of Tekirdağ city according to the Flavonoids

amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratl, 7; Saray, 8; Şarköy

Table 3. The statistical comparing of eight towns of Tekirdağ city according to the

hydrocarbons amount

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratl, 7; Saray, 8; Şarköy

Page 32: Contents / İçindekiler - Hacettepe · TÜRKİYE TANACETUM L. CİNSİNİN BAZI TAKSONLARININ POLEN ... pollen characters for taxonomic applications is ... Distribution of the eight

MELLIFERA 32

ReferencesAmoros M., Sauvager F., Girre L., Cormier M.1992. In vitro

antiviral activity of propolis. Apidologie. 231-240.Bankova V. 2005. Recent trends and important developments

in propolis research. eCAM. 2(1): 29Bankova V.-S., De Castro S.-L and Marcucci M.-C.2000. Propolis: recent advances in chemistry and plant origin. Apid-ologie. 31: 3-15.

Burdock G- A. 1998. Review of the biological properties and toxicity of bee propolis (propolis). Food Chemistry and Toxicology.36, 347–363.

Gao M., Zhang W., Liu Q., Hu J., Liu G., Du G.2008. Pinocem-brin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio, Eur.J. Pharmacol. 591: 73-79.

Gençay Ö. Kemaliye-Erzincan Yöresine Ait Propolislerin Ori-jini ve Kimyasal İçeriğinin Belirlenmesi. Msc thesis. Hacettepe University, Ankara, 2004.

Gençay Ö., Salih B. 2009. GC-MS Analysis of Propolis Samples From 17 Different Regions of Turkey, Four Different Regions of Brazil and One From Japan . Mellifera ,9:17,19-28.

Girgin G., Baydar T., Ledochowski M., Schennach H., Bölükbaşı D., Sorkun K., Salih B., Şahin G., Fuchs D. 2009. Im-munomodulatory effects of Turkish propolis: Chang-es in neopretin release and tryptophan degradation. Immunobiology. 214,129-134.

Hladon B., Bylka W., Wojtaszek ME., Skrzypczale L., Sza-farele P., Chodera A., Kowalewski Z.1980. ın vitro studies on the cytostatic activity of propolis extracts. Arzneim.-Forsch.Drug. Res. 30; 1847-1848.

Itoh J., Chong F., Wang H., Park Y., Ikekagi M., Kilgore N., Lee K.. 2001. Anti-HIV activity of moronic acid de-rivatives and the new melliferone related triterpenoid isolated from Brazilian propolis. Journal of Natural products. 64 (10); 1278-1281.

Kılıç A., Baysallar M., Beşirbellioğlu B., Salih B., Sorkun K., Tanyüksel M. 2005. In vitro antimicrobial activity of propolis against methicillin-resistant Staphylococ-cus aureus and vancomycin-resistant Enterococcus faecium. Annals of Microbiology.55:2, 113-117.

Lee YN., Chen CR, Yang HL., Lin CC., Chang CMJ. 2007. Isolation and purification of 3,5-diprenyl-4-hydroxy-cinnamic acid (artepillin C) in Brazillian propolis by supercritical fluid extractions. Separation and Purifi-cation Technology. 54, 130-138.

Metzner J., Bekemeier H., Paintz M., Schneidewind E.1979. An-timicrobial activity of propolis and its constituents. Pharmazie. 34(2), 97-102.

Miyakado M., Karto T., Ohno N., Mabry T.1976. Pinocembrin and +-β-eudesmol from Hymenoclea monogyra and Baccharis glutinosa. Phytochemisrty. 15 (5). 846.

Pepeljnjak S.1982. Growth inhibition of Bacillus subtilis and composition of various propolis extracts. Pharmazie. 37(12), 1995-2018.

Seven TP., Seven I., Yılmaz M., Şimşek ÜG.2008. The effects of Turkish propolis on growth and carcass characteris-tics in broiler under heat stress. Animal feed Science and technology. 146, 1-2:137-148.

Shin EK., Kwon HS., Kim YH., Shin HK., Kim JK.2009. chry-sin a naturel flavones, improves murine inflamma-tory boel diseases. Biochemical and Biophysical Re-search Communications. 381,502-507.

Silici S., Kutluca S. 2005. Chemical composition and antibacte-rial activitu of propolis collected by three different races of honeybees in the same region. Journal of Ethnopharmacology, 99: 69-73.

Velikova M., Bankova V., Sorkun K., Houcine S., Tsvetkova I. And Kujumgiev A. (2000), Propolis from the Medi-terranean region: chemical composition and antimi-crobial activity. Z. Naturforsch C. 55, 790-793.

Zheng J., Li Y., Zhao J., Xue X., Wu L., Chen F. 2008. Geo-graphical traceability of propolis by high-perfor-mance liquid chromatography fingerprints. Food Chemistry. 108:749-759.

13

Table 4. The statistical comparing of eight towns of Tekirdağ city according to the carboxylic acids and their esters amounts

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratl, 7; Saray, 8; Şarköy

Table 4. The statistical comparing of eight towns of Tekirdağ city according to the carboxylic acids and their esters amounts

*1; Çerkezköy samples, 2; Çorlu samples, 3; Hayrabolu, 4; Malkara, 5; Merkez, 6; Muratlı, 7; Saray, 8; Şarköy