biomass gasification overview presentation)

48
National Renewable Energy Laboratory Biomass Gasification Biomass Gasification Overview Overview Presented by Richard L. Bain January 28, 2004 Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle

Upload: api-3799861

Post on 10-Apr-2015

2.804 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Biomass Gasification Overview Presentation)

National Renewable Energy Laboratory

Biomass GasificationBiomass GasificationOverviewOverview

Presented by Richard L. Bain

January 28, 2004

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle

Page 2: Biomass Gasification Overview Presentation)

Office of the Biomass ProgramOffice of the Biomass Program

GoalsGoalsReduce U.S. dependence upon foreign sources of petroleumRealization of the Industrial Biorefinery

MissionMissionTo foster research and development on advanced technologies to transform our abundant biomass resources into clean, affordable, and domestically-produced biofuels, biopower, and high-value bioproducts for improving the economic development and enhancing the energy supply options of the U.S.

Page 3: Biomass Gasification Overview Presentation)

The Unique Role of Biomass

While the growing need for sustainable electric power can be met by other

renewables…

Biomass is the only renewable that can meet our demand for carbon-based

liquid fuels and chemicals

Page 4: Biomass Gasification Overview Presentation)

Research Focus for the Biorefinery

Thermochemical Platform

Sugar Platform

BiomassCombined Heat & Power

Residues

Clean Gas

Conditioned Gas

Sugar Feedstocks

Advanced Biomass R&D

Systems Integration

Fuels, Chemicals, & Materials

Integrated Industrial Biorefineries

Page 5: Biomass Gasification Overview Presentation)

Thermochemical Platform Costs for SynGas Intermediate Impact of Overcoming Technical Barriers

0

2

4

6

8

10

12

14

16

18

20

Base550 tpd

Nth plant

Feed Handling

ThermochemicalConversion

Gas Conditioning

Sensors & Controls Process Integration

Cos

t of P

rodu

ctio

n ($

/GJ)

Without IntegratedDemonstrations

With IntegratedDemonstrations

Reference: Hamelink and Faaij (2001)

Pioneer Plant Costs

Page 6: Biomass Gasification Overview Presentation)

Performance SpecificPerformance SpecificProgram GoalsProgram Goals

Year 2003 2005 2010 2015 2020 2025 2030Minimum Syngas Selling Price ($/GJ, LHV) 9 8.3 6 5.6 5.1 4.7 4.3

Corresponding H2 cost ($/kg) 2.16 1.98 1.26 1.17 1.08 0.99 0.90jproduct, e.g., methanol ($/gal)

1.30 1.20 0.90 0.70 0.65 0.60 0.54

Feedstock cost ($/dry ton delivered) 30 30 30 30 30 30 30

Plant size (dry tons/day) 550 550 2,000 2,000 2,000 2,000 4,000

Feed Preparation/Gasification: 10% reduction in product cost by 2010

Gas Cleanup: 20% reduction in product cost by 2010

System Integration: 10% reduction in product cost by 2010

Strategic FitStrategic Fit

Page 7: Biomass Gasification Overview Presentation)

Gasification Cleanup Synthesis

Conversionor Collection Purification

Separation Purification

Pyrolysis

OtherConversion *

Biomass

Biomass Thermochemical ConversionFor Fuels and Chemicals

* Examples: Hydrothermal Processing, Liquefaction, Wet Gasification

PRODUCTS

• Hydrogen• Alcohols• FT Gasoline• FT Diesel• Olefins• Oxochemicals• Ammonia• SNG

• Hydrogen• Olefins• Oils• Specialty Chem

• Hydrogen• Methane• Oils• Other

Page 8: Biomass Gasification Overview Presentation)

Basic DefinitionsBasic Definitions

Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms for the production of electric power, heat, chemicals, or fuels.

Black Liquor is the lignin-rich by-product of fiber extraction from wood in Kraft (or sulfate) pulping. The industry burns black liquor in Tomlinson boilers that 1) feed back-pressure steam turbines supplying process steam and electricity to mills, 2) recover pulping chemicals (sodium and sulfur compounds) for reuse.

Page 9: Biomass Gasification Overview Presentation)

Poplar Corn Stover Chicken Litter Black LiquorProximate (wt% as received)

Ash 1.16 4.75 18.65 52.01Volatile Matter 81.99 75.96 58.21 35.26Fixed Carbon 13.05 13.23 11.53 6.11Moisture 4.80 6.06 11.61 9.61

HHV, Dry (Btu/lb) 8382 7782 6310 4971

Ultimate, wt% as received

Carbon 47.05 43.98 32.00 32.12Hydrogen 5.71 5.39 5.48 2.85Nitrogen 0.22 0.62 6.64 0.24Sulfur 0.05 0.10 0.96 4.79Oxygen (by diff) 41.01 39.10 34.45 0.71Chlorine <0.01 0.25 1.14 0.07Ash 1.16 4.75 19.33 51.91

Elemental Ash Analysis, wt% of fuel as received

Si 0.05 1.20 0.82 <0.01 Fe --- --- 0.25 0.05 Al 0.02 0.05 0.14 <0.01 Na 0.02 0.01 0.77 8.65 K 0.04 1.08 2.72 0.82 Ca 0.39 0.29 2.79 0.05 Mg 0.08 0.18 0.87 <0.01 P 0.08 0.18 1.59 <0.01 As (ppm) 14

Representative Biomass & Black Liquor Compositions

Page 10: Biomass Gasification Overview Presentation)

Representative Biomass and Coal PropertiesRepresentative Biomass and Coal Properties

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Biomass 1 Biomass 2 Coal 1 Coal 2 Tar Sands

Name Wood Red Corn Cob Grundy, IL. No 4 Rosebud, MT AthabascaClassification HvBb sub B Bitumen

Proximate Analysis, wt% Dry Moisture 25-60 16 8.16 19.84 Volatile Matter 77-87 ca. 80 40.6 39.02 Fixed Carbon 13-21 -- 45.47 49.08 Ash 0.1-2 4 13.93 9.16Ultimate Analysis, wt % Dry C 50-53 45 68.58 68.39 83.6 H 5.8-7.0 5.8 4.61 4.64 10.3 N 0-0.3 2.4 1.18 0.99 0.4 Cl .001-0.1 -- 0.12 0.02 -- O 38-44 42.5 6.79 16.01 0.2 S 0-0.1 0 4.76 0.79 5.5 Ash 0.1-2 4 13.93 9.16

H/C Atomic Ratio 1.4-1.6 1.5 0.8 0.81 1.47 HHV, Dry, Btu/lb 8,530- 9,050 7,340 12,400 11,684 17,900

Page 11: Biomass Gasification Overview Presentation)

Basic DefinitionsPyrolysisPyrolysis

Basic Definitions

• Thermal conversion (destruction) of organics in the absence of oxygen • In the biomass community, this commonly refers to lower temperature

thermal processes producing liquids as the primary product• Possibility of chemical and food byproducts

GasificationGasification• Thermal conversion of organic materials at elevated temperature and

reducing conditions to produce primarily permanent gases, with char, water, and condensibles as minor products

• Primary categories are partial oxidation and indirect heating

Page 12: Biomass Gasification Overview Presentation)
Page 13: Biomass Gasification Overview Presentation)

Thermochemical ConversionOf Biomass and Black Liquor

LowPressure

0.2 MPa

HighPressure

ENSYNDynamotiveBTGFortum

Bio-OilChanging World

TechnologiesChemrec (O2)Noell

GTI (O2)Carbona (O2)HTW O2)Foster Wheeler (O2)

FERCO (Indirect)MTCI (Indirect)Pearson (Indirect)TUV (Indirect)

For CHP:TPS (Air)Carbona (Air)Lurgi (Air)Foster Wheeler (Air)EPI (Air)Prime Energy (Air)

Chemrec (Air)

Feed: Biomass Feed: Black LiquorFeed: Biomass

MTCI-also BlackLiquor

Gas Product: PNNL Wet Gasification (CH4/H2)

10-25 MPa 1- 3 MPa 2 – 3 MPa

SyngasProductDry Ash Slag

Low(300-600°C)

Medium(700-850°C)

High(900-1200°C)

Temperature

Page 14: Biomass Gasification Overview Presentation)

Technical Barrier AreasTechnical Barrier AreasHydrogen

& BioproductsFuels

& ChemicalsExport

ElectricityBiomass ResiduesDedicated Crops

Feed Processing& Handling

Gasification&

Pyrolysis

GasConditioning& Separation

SyngasUtilization

Heat& Power

Generation

BiorefineryResidues

Feed Processing and HandlingGasification / ConversionGas Cleanup and Catalytic ConditioningSyngas UtilizationProcess IntegrationProcess Control, Sensors, and Optimization

Critical IssuesCritical Issues

Page 15: Biomass Gasification Overview Presentation)

Biomass Thermochemical ConversionPrimary Technical Barriers

Gasification Pyrolysis Black Liquor Gasification

• Feed Pretreatment- Feeder reliability- Feed modification

• Gasification- Tar & Heteroatom chemistry- Gasifier Design

• Gas Cleanup & Conditioning- Catalytic Conversion- Condensing Cleanup- Non-condensing Cleanup

• Syngas Utilization- Cleanliness requirements- Gas composition

• Process Integration• Sensors and Controls

• Oil Handling- Toxicity- Stability- Storage- Transportation

• Oil Properties- Ash- Acidity

• Oil Commercial Properties- Commercial Specifications- Use in Petroleum Refineries

• Containment- Metals- Refractories- Vessel design- Bed behavior/agglomeration

• Mill Integration - Steam- Power- Causticizing

• Fuels Chemistry- Carbon management- Tars- Sulfur management- Alkali management- Halogen management

• Sensors and Controls

Page 16: Biomass Gasification Overview Presentation)

Representative Gasification PathwaysRepresentative Gasification Pathways

Acid GasRemoval

Feed Preparation& Handling

Synthesis

ProductCO2

CatalyticConditioning& Reforming

CompressionLP IndirectGasification

Biomass ShiftConversion CompressionLow Pressure

Gasification

LP IndirectGasification

Compression& Reforming

Cold GasCleanup

Hot GasCleanup

High PressureGasification

Oxygen

CompressionReforming

Page 17: Biomass Gasification Overview Presentation)

Pyrolysis

Reduction

Combustion

Gas, Tar, Water

Ash

Biomass

Air

C + CO2 = 2COC + H2O = CO + H2

C + O2 = CO24H + O2 = 2H2O

Updraft Gasifier

Pyrolysis

Reduction

Combustion

Gas, Tar, Water

Ash

Biomass

Air

C + CO2 = 2COC + H2O = CO + H2

C + O2 = CO24H + O2 = 2H2O

Updraft Gasifier

Biomass

Pyrolysis

Reduction

Combustion

Gas, Tar, Water

AshAir

C + CO2 = 2COC + H2O = CO + H2

C + O2 = CO24H + O2 = 2H2O

Downdraft Gasifier

Biomass

Pyrolysis

Reduction

Combustion

Gas, Tar, Water

AshAir

C + CO2 = 2COC + H2O = CO + H2

C + O2 = CO24H + O2 = 2H2O

Downdraft Gasifier

Freeboard

Fluid Bed

PlenumAir/Steam

Biomass

Ash

Cyclone

Fluid-Bed Gasifier

Freeboard

Fluid Bed

PlenumAir/Steam

Biomass

Ash

Cyclone

Fluid-Bed Gasifier

Biomass

N2 or Steam

Furnace

Char

Recycle Gas

Flue Gas

Entrained Flow Gasifier

Air

Biomass

N2 or Steam

Furnace

Char

Recycle Gas

Flue Gas

Entrained Flow Gasifier

Air

Secondary

Circulating Fluid-Bed Gasifier

Fly Ash

Bottom Ash

Biomass

Air/Steam

GasifierPrimaryCyclone

CycloneSecondary

Circulating Fluid-Bed Gasifier

Fly Ash

Bottom Ash

Biomass

Air/Steam

GasifierPrimaryCyclone

Cyclone

Fly Ash

Bottom Ash

Biomass

Air/Steam

GasifierPrimaryCyclone

Cyclone

Page 18: Biomass Gasification Overview Presentation)

Community Power Corporation’sCommunity Power Corporation’sBioMax 15 Modular Biopower SystemBioMax 15 Modular Biopower System

Page 19: Biomass Gasification Overview Presentation)

FERCO GASIFIERFERCO GASIFIER-- BURLINGTON, VTBURLINGTON, VT

350 TPD350 TPD

Page 20: Biomass Gasification Overview Presentation)

Carbona Project: Skive, DenmarkCarbona Project: Skive, Denmark

BIOMASSBIOMASS

ASHASH

AIRAIR

ASHASH

POWERPOWER

HEATHEAT

FUELFUELFEEDINGFEEDING

GASIFIERGASIFIERTAR CRACKERTAR CRACKER

GAS COOLERGAS COOLER GAS COOLERGAS COOLERSTACKSTACK

HEAT RECOVERYHEAT RECOVERY

GAS TANKGAS TANK

GAS ENGINE(S)GAS ENGINE(S)

Page 21: Biomass Gasification Overview Presentation)
Page 22: Biomass Gasification Overview Presentation)

Typical Gas Heating ValuesTypical Gas Heating Values

Gasifier Inlet Gas Product Gas Product GasType HHV

MJ/Nm3

Partial Oxidation Air Producer Gas 7Partial Oxidation Oxygen Synthesis Gas 10Indirect Steam Synthesis Gas 15

Natural Gas 38Methane 41

Page 23: Biomass Gasification Overview Presentation)

Gas composition versus reactor typeGas composition versus reactor type

Gasifier FERCO Carbona Princeton IGTModel

Type Indirect CFB Air FB Indirect FB PFBAgent steam air s team O2/steamBed Material olivine sand none alum inaFeed w ood chips w ood pelle ts black liquor w ood chips

Gas Com position H2 26.2 21.70 29.4 19.1 CO 38.2 23.8 39.2 11.1 CO2 15.1 9.4 13.1 28.9 N2 2 41.6 0.2 27.8 CH4 14.9 0.08 13.0 11.2 C2+ 4 0.6 4.4 2.0GCV, MJ/Nm 3 16.3 5.4 17.2 9.2

Page 24: Biomass Gasification Overview Presentation)

Gas composition versus reactor typeGas composition versus reactor type

Gasifier Tech Univ Free Univ Univ of USEPA IGTVienna of Brusse ls Zaragosa

Type Indirect FB Air FB Dow ndraft Updraft PFBAgent steam air air air O2/s teamBed Material s ilica s ilica none none alum inaFeed w ood chips w ood chips w ood chips w ood chips w ood chips

Gas Com position H2 31.5 9 - 11 16 10 19.12 CO 22.7 15 - 17 21.5 14.8 11.07 CO2 27.4 18 14.4 12.8 28.88 N2 2.8 Diff 44.4 28.9 27.77 CH4 11.2 5 - 7 3.3 4.9 11.21 C2+ 4 3 NA NA 1.95

Page 25: Biomass Gasification Overview Presentation)

Gasifier TypesGasifier Types--Advantages and DisadvantagesAdvantages and Disadvantages

Gasifier Advantages Disadvantages Updraft Mature for heat

Small scale applications Can handle high moisture No carbon in ash

Feed size limits High tar yields Scale limitations Producer gas Slagging potential

Dow ndraft Small scale applications Low particulates Low tar

Feed size limits Scale limitations Producer gas Moisture sensitive

Fluid Bed Large scale applications Feed characteristics Direct/indirect heating Can produce syngas

Medium tar yield Higher particle loading

Circulating Fluid Bed Large scale applications Feed characteristics Can produce syngas

Medium tar yield Higher particle loading

Entrained Flow Can be scaled Potential for low tar Can produce syngas

Large amount of carrier gasHigher particle loading Potentially high S/C Particle size limits

Page 26: Biomass Gasification Overview Presentation)

Typical Gas, Contaminant YieldsTypical Gas, Contaminant Yields

Hybrid Poplar Switchgrass Mixed WoodsH2, vol % 33.99 24.31 31.82CO 36.67 39.47 31.59CO2 17.91 14.97 17.96CH4 12.56 13.77 11.73C2H4 4.41 5.86 4.50Benzene 1.35 0.96 1.06Toluene 0.31 0.20 0.24H2/CO 0.93 0.62 1.01H2S, ppmv 64-72 323-396 36-63Ammonia, ppmv 290 max 760 max 339-369Cl- cond, ppm-m/v 0 486 max 4 maxK+ cond, ppm-m/v 10 max 208 max 7 maxTot org. C cond ppm-m/v 2060 max 2320 max 2480 maxCyanide, ppm-m/v 37 1442-1472 ND

Page 27: Biomass Gasification Overview Presentation)

Tertiary ProcessesSecondary ProcessesPrimary Processes

VaporPhase

SolidPhase

Low P

Low P

HighP

LiquidPhase High

P

Biomass Charcoal Coke Soot

PrimaryLiquids

PrimaryVapors

Light HCs,Aromatics,

& Oxygenates

Condensed Oils(phenols, aromatics)

CO, H2,CO2, H2O

PNA’s, CO, H2, CO2,

H2O, CH4

Olefins, AromaticsCO, H2, CO2, H2O

CO, CO2,H2O

Pyrolysis Severity

Page 28: Biomass Gasification Overview Presentation)

C o n v e n tio n a lF la s hP y ro ly s is(4 5 0 - 5 0 0 oC )

H i-T e m p e ra tu reF la s hP y ro ly s is(6 0 0 - 6 5 0 oC )

C o n v e n tio n a lS te a mG a s ific a tio n(7 0 0 - 8 0 0 oC )

H i-T e m p e ra tu reS te a mG a s ific a tio n(9 0 0 - 1 0 0 0 oC )

A c id sA ld e h y d e sK e to n e sF u ra n sA lc o h o lsC o m p le x O x y g e n a te sP h e n o lsG u a ia c o lsS y r in g o lsC o m p le x P h e n o ls

B e n z e n e sP h e n o lsC a te c h o lsN a p h th a le n e sB ip h e n y lsP h e n a n th re n e sB e n z o fu ra n sB e n z a ld e h y d e s

N a p h th a le n e sA c e n a p h th y le n e sF lu o re n e sP h e n a n th re n e sB e n z a ld e h y d e sP h e n o lsN a p h th o fu ra n sB e n z a n th ra c e n e s

N a p h th a le n e *A c e n a p h th y le n eP h e n a n th re n eF lu o ra n th e n eP y re n eA c e p h e n a n th ry le n eB e n z a n th ra c e n e sB e n z o p y re n e s2 2 6 M W P A H s2 7 6 M W P A H s

* A t th e h ig h e s ts e v e r ity , n a p h th a le n e ss u c h a s m e th y ln a p h th a le n e a res tr ip p e d to s im p len a p h th a le n e .

MixedOxygenates

PhenolicEthers

Alkyl Phenolics

HeterocyclicEthers PAH

LargerPAH

400 oC 500 oC 600 oC 700 oC 800 oC 900 oC

Chemical Components in biomass tars (Elliott, 1988)

Page 29: Biomass Gasification Overview Presentation)

Gasification ApplicationsGasification Applications

• Heat• District heating• Plant steam• Institutional heating

• Combined heat and power• Pulp and paper industry• District heating/electricity

• Electricity only• Cofiring - ash segregation• Integrated gasification combined cycle

• Synthesis gas• Oxygenates - methanol, ethanol, DME, etc.• Fischer-Tropsch Liquids• Hydrogen• Methane• Chemicals

Page 30: Biomass Gasification Overview Presentation)

Biorefinery Utilities ApplicationsBiorefinery Utilities Applications

Page 31: Biomass Gasification Overview Presentation)

Synthesis Gas Synthesis Gas -- Examples Examples of Conversion Processesof Conversion Processes

• Oxygenates• Methanol, DME, Mobil MTG• Mixed alcohols

• Snamprogetti/Topsoe, Lurgi, Dow, IFP/Idemitsu• Modified Fischer Tropsch - ethanol

• Dow, Pearson Technologies• Biochemical (fermentation)

• Mississippi State University, University of Arkansas• Hydrocarbon fuels

• Methane• Fischer Tropsch

• Iron based - Sasol Synthoil• Cobalt based - Shell middle distillate synthesis (SMDS)

• Hydrogen• Methane steam reforming• High and low temperature shift• H2 separation

Page 32: Biomass Gasification Overview Presentation)

SyngasCO + H2

Methanol

H2OWGSPurify

H2N2 over Fe/FeO

(K2O, Al2O3, CaO)NH3

Cu/ZnOIsosynthesis

ThO2 or ZrO2

i-C4

Alkali-doped

ZnO/Cr2 O

3

Cu/ZnO; Cu/ZnO/Al2 O3

CuO/CoO/Al2 O3

MoS2

MixedAlcohols

Oxosynthesis

HCo(CO)4

HCo(CO)3 P(Bu

3 )

Rh(CO)(PPh3 )3

AldehydesAlcohols

Fischer-Tropsch

Fe, C

o, R

u

WaxesDiesel

OlefinsGasoline

Ethanol

Co, Rh

FormaldehydeAg

DME

Al 2O

3

zeolites

MTOMTG

OlefinsGasoline

MTBEAcetic Acid

carb

onyla

tion

CH3O

H +

COCo

, Rh,

Ni

M100M85DMFC

Direct Use

hom

olog

atio

nCo

isob

utyl

ene

acid

ic io

n ex

chan

ge

Page 33: Biomass Gasification Overview Presentation)

BIOMASS SYNGAS

ETHANOL

FEEDPREP GASIFICATION CLEANUP &

CONDITIONING

BIOCONVERSION

SEPARATION

Ethanol From BiomassEthanol From Biomass

Thermochemical Syngas Thermochemical Syngas –– Biochemical EthanolBiochemical Ethanol

Page 34: Biomass Gasification Overview Presentation)

Fischer Fischer TropschTropsch SynthesisSynthesis

Coal,Natural Gas,or Biomass

Gasifier

Air, Oxygen,Steam

Gas Cleanupand Conditioning

Clean syngasH 2 and CO

High T FTS

Low T FTSSlurry (Co) orTubular (Fe)

Reactor

CFB or FFB (Fe)Reactor

Waxes (> C20)Hydrocracking

Diesel

Olefins(C3 - C11)

OligomerizationIsomerizationHydrogenation

Gasoline

Particulate RemovalWet ScrubbingCatalytic Tar ConversionSulfur ScrubbingWGSetc.

)1) CO + 3H2 CH4 + H2O (Methanation)

)2) nCO + (2n+1)H2 CnH2n+2 + nH2O (Paraffins)

)3) nCO + 2nH2 CnH2n + nH2O (Olefins)

)4) nCO + 2nH2 CnH2n+1OH + (n-1)H2O (Alcohols)

Page 35: Biomass Gasification Overview Presentation)

Simplified Methanol Synthesis Process Flow DiagramSimplified Methanol Synthesis Process Flow Diagram

DesulphurizationNaturalGas Steam Reforming

Steam, O2

syngas (CO/CO2/H2)

Compressor MethanolConverter

Coolingand

DistillationMethanol

syngas recycle loopPurgeGas

BioSyngas

CO + 2H2 CH3OH ∆Hr = -90.64 kJ/molCO2 + 3H2 CH3OH + H2O ∆Hr = -49.67 kJ/molCO + H2O CO2 + H2 ∆Hr = -41.47 kJ/mol

Preferred Stoichiometry: (H2 – CO2)/(CO + CO2) = 2

Page 36: Biomass Gasification Overview Presentation)

Heat and Power Heat and Power -- Prime MoversPrime Movers

Steam turbinesExtracting - for CHPNon extracting - electricity onlySmall to large scale

IC engines5 kW to 2 MWControl of NOx and CO

TurbinesMicroturbinesGas Turbines - GT and IGCC applications

Stirling engines

Fuel cells

Page 37: Biomass Gasification Overview Presentation)

Why Biomass + Fuel Cells?Why Biomass + Fuel Cells?Good temperature and pressure match

Attractive fuel gas characteristics

Allows penetration of fuel cells into markets withoutnatural gas distribution networks

High efficiency maximizes biomass conversion to electricity- reduces biomass demand for energy production

Fossil carbon substitution

Page 38: Biomass Gasification Overview Presentation)

Fuel Cells are "Reverse" Electrolysis

Page 39: Biomass Gasification Overview Presentation)

Fuel In Oxidant In

Depleted fuel Out Depleted Oxidant Out

PEMS

PAFC

MCFC

SOFC H

H O

2

2

O

H O

2

2

O

H O

2

2

O

CO

2

2

O2

H2

HCOH O

2

2

2

H2

CO3=

H+

H+

O=

Anode Cathode

Electrolyte(Ion conductor)

80ºC

200ºC

650ºC

1000ºC

Fuel Cell Schematic

Page 40: Biomass Gasification Overview Presentation)

Freeboard

Fluid Bed

PlenumAir/Steam

Biomass

Ash

Product Gas

Cyclone

Fluid-Bed Gasifier

GasCleanup

Compressor

CoolingAir

IsothermalPre-reformer

HRSG

A C

DC/ACInverter

ProcessWater

Exhaust

CarbonateFuel Cells

A.C.Output

Air

Burner

Page 41: Biomass Gasification Overview Presentation)

Research and Development AreasResearch and Development Areas(not all(not all--inclusive)inclusive)

• Feed characterization• Materials handling

• Storage• Conveying• Moisture control• Comminution• Feeding

• Gasification• Kinetics• Phase equilibria• CFD modeling

• Gas cleanup• Tar, ammonia, water• Particulates, ash• Residual carbon control• Integrated process specific species• Gas separations

• Process integration• Prime mover systems• Catalytic syngas conversion

• Sensors and controls• LCA and TE modeling

Page 42: Biomass Gasification Overview Presentation)

NREL FacilitiesNREL Facilities

MBMSMBMS

TMBMSTMBMS

Gasification (TCUF)Gasification (TCUF)

Engine TestingEngine Testing

EmissionsEmissionsMonitoringMonitoring

Page 43: Biomass Gasification Overview Presentation)

Thermochemical Process Development Unit (TCPDU)Thermochemical Process Development Unit (TCPDU)

Biomass Feed

8-in. FluidizedBed Reactor

Hopper/Feeder

Controller

SuperheatedSteam

ThermalCracker

Cyclones

Char

Settling Tank

Aqueous Effluent

Scrubber

BlowerCoalescing

Filter

Wet scrubbed Syngas

Base Configuration

Page 44: Biomass Gasification Overview Presentation)

TCPDU Process Conditions and TCPDU Process Conditions and Product Gas CompositionProduct Gas Composition

TCPDU process parameters 11-Feb-03 to 28-Feb-03steam feed rate (kg/h) 20.0 ± 0.2biomass feed rate (kg/h) 10.5 ± 0.9fluid bed T (ºC) 615 ± 1thermal cracker T (ºC) 775 ± 2product gas flow rate (kg/h) 8.2 ± 0.8material balance 98.9±10%

Average gas composition from indirect wood gasification in TCPDU

2/11 to 2/28/03

GC analysis of Port 3 (vol. %, N2- and steam-free)

hydrogen 26.9 ± 1.4 methane 15.6 ± 0.2 carbon monoxide 26.7 ± 1.4 carbon dioxide 23.5 ± 0.8 ethylene 4.1 ± 0.1 ethane 0.68 ± 0.07 acetylene 0.47 ± 0.04 propylene 0.32 ± 0.04 1-butene 0.16 ± 0.04 H2/CO ratio 1.0 ± 0.1 Tar concentrations by TMBMS (ppmv,

w/ steam and N2) benzene 1732 ± 165 toluene 715 ± 89 cresol 216 ± 44 naphthalene 327 ± 33 phenanthrene 72 ± 7

Averaged mass spectrum (TMBMS) of tars from indirect wood gasification

75 100 125 150 175 2000

2e+4

4e+4

6e+4

8e+4

1e+5 78

91,92

104 116

128

142 152 166 178

192 216

94

108 202

78 - benzene91,92 - toluene94 - phenol104 - styrene108 - cresol116 - indene128 - naphthalene

142 - methylnaphthalenes152 - acenaphthalene166 - flourene178 - anthracene/phenanthrene192 - methylanthracene?202 - pyrene/flouranthene216 - benzo(a)flourene

Page 45: Biomass Gasification Overview Presentation)

Experimental ApproachExperimental Approach

m /z

5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0 2 2 5

Inte

nsity

(arb

.)

- 2 0 0 0 0

- 1 5 0 0 0

- 1 0 0 0 0

- 5 0 0 0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

C O 2 ( /1 0 )

b e n z e n e

t o lu e n e n a p h t h a le n e

p y r e n e

Difference Mass Spectrum (catalyst outlet-inlet) showing destruction of

biomass gasifier tars

Gas Flow Rate

0.35-0.4 kg/hr 7-18 kg/hr

WHSV (weight of feed/hr / weight of catalyst)

1.6 hr-1 0.16-0.48 hr-1

Temperature

700-900°C 850°C

5 cm bench-scale reformer – March, 2001 30 cm pilot-scale reformer – April 2002

Page 46: Biomass Gasification Overview Presentation)

Project StatusProject Status

RFPissued

1/03

Responsereceived

4/03

Revise scopeto reduce cost;Contract placed

6/03

Expecteddelivery

11/03

Installationcomplete

12/03

Catalyst testing

2/04-9/04

Scrubber

Cyclones

Tar Reformer

Page 47: Biomass Gasification Overview Presentation)

time-on-stream (h)

0 1 2 3 4 5 6 7

% c

onve

rsio

n

0

20

40

60

80

100

benzene

methane

850oC 825oC 800oC 775oC 750oC

Methane and benzene breakthrough vs. time-on-stream for temperature ramp experiments with NREL-1 catalyst.

time-on-srteam (h)

0 1 2 3 4 5 6 7

% c

onve

rsio

n

75

80

85

90

95

100

105

benz

ene

slip

(ppm

v)

0

500

1000

1500

2000

total tar

benzene slip(rt. axis)

850oC 825oC 800oC 775oC 750oC

Total tar conversion and benzene slip for NREL-1Catalyst during temperature ramp experiments

Page 48: Biomass Gasification Overview Presentation)

2FBR temperature (oC)

750 775 800 825 850

% c

onve

rsio

n

0

20

40

60

80

100

methane benzenetoluenenaphthalenephenan./anthr.cresol

NREL-1 Temperature Ramp

Steady State conversion of several tar species and methane for NREL-1 catalyst