be nyah i a subgrid drag models

Upload: drmazhar1

Post on 14-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    1/20

    continuum and discrete simulations?

    Sofiane Ben ahiaUS DOE, National Energy Technology Laboratory

    May 4-6, 2010

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    2/20

    Collaborations

    Research was conducted in collaboration with two groups:

    Filtered drag models: Y. Igci and S. Sundaresan1 (Princeton University)

    EMMS drag model: W. Wang and J . Li2 (Institute of ProcessEn ineerin , Chinese Academ of Sciences)

    1 Igci, Y.; Andrews, A.T.; Sundaresan, S.; Pannala, S.; OBrien, T.AIChE J. 2008; 54; 1431-1448.

    2K-2571

    u, .; ang, .; , . em. ng. c . ; ; - .

    2

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    3/20

    Goals, Objectives, and Challenges

    Conduct fast and accurate gas-solids f low simulations

    us ng coarse gr s.

    Implement EMMS and filtered drag models in MFIX

    Conduct comparative study of these drag models with

    experimental data3

    Challenges:

    Subgrid models are still being developed

    Consideration of other effects (e.g. polydispersity,particle-wall interaction)

    2K-2571

    3

    3 Benyahia, S. On the effect of subgrid drag closures. Ind. Eng. Chem. Res. DOI: 10.1021/ie900658k

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    4/20

    Simulation Conditions2

    Twogassolids

    outlets

    0.35m

    0.14m

    Process temperature 297 K

    Process pressure 1.01 x 105 Pa

    Air density ~1.2 kg/m3

    Air viscosity 1.8 x 10-5 Pas

    Gas-phase turbulence length-scale 0.01 m

    Solids density 930 kg/m3

    .

    60cells

    10.5m

    450cells

    Particle diameter 54micron

    Single-particle terminal velocity 0.074 m/s

    Particle-particle restitution coefficient 0.9

    2.78m

    artc e-wa resttuton coe c ent 0.7

    Specularity coefficient 0.0001

    Particle-particle angle of internalpi/6

    Two

    solids

    side

    inlets

    0.35m

    0.14meps_mf =0.4

    eps =0.3, Vs:computedParticle-wall angle of friction pi/16

    Void fraction at maximum packing 0.4

    Void fraction at minimum fluidization 0.6

    2K-2571

    4

    as n e

    Vg=1.5m/s2 Lu, B.; Wang, W.; Li, J . Chem. Eng. Sci. 2009; 64; 3437-3447.

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    5/20

    Instantaneous values of friction coefficient

    1.6

    1.2

    filtered

    EMMS

    WenYu

    0.8Hd

    0

    .

    0.5 0.6 0.7 0.8 0.9 1

    Voidage

    2K-2571

    5

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    6/20

    Void fraction contour profiles

    Wen-Yu drag Filtered drag EMMS drag Wen-Yu dra Filtereddra EMMS dra

    2K-2571

    6

    Instantaneous Time-averaged

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    7/20

    Solids mass flux through outlets40050

    Solids massflux (kg/m2s)

    Solids massflux (kg/m2s)

    EMMS

    300

    30

    40Wen-Yu

    10010

    20

    00

    0 10 20 30 40Time (sec)

    Drag model Wen-Yu Filtered EMMS Experimental

    Solids mass flux(kg/m2s)

    205 12.3 16.9 14.3

    2K-2571

    7

    Standard deviation(kg/m2s)

    25.2 5.64 5.59 -

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    8/20

    Vertical void fraction profiles10 10

    6

    8

    m)

    EMMS

    FilteredWenYu

    experiment6

    8

    )

    EMMS

    Filtered

    WenYu

    experiment

    4

    Height(

    4

    Height(

    2 2

    0

    0.7 0.8 0.9 1Voidfraction

    0

    0.7 0.8 0.9 1Voidfraction

    2K-2571

    8

    Numerical data based oncomputed pressure gradient

    Numerical data based oncomputed void fraction

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    9/20

    Horizontal profiles at 7 m above inlet

    Solidsmassflux2

    0.2

    EMMS

    Filtered

    WenYu 0

    400

    0.1s

    400

    EMMS

    Filtered

    WenYu

    0

    0 0.03 0.06 0.09Width(m)800

    0 0.03 0.06 0.09Width(m)

    2K-2571

    9

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    10/20

    Future work

    Why is the pressure gradient under-8

    10

    HiFriction(phi=0.01)

    pre c e a e o om sec on o

    riser? 6

    eight(m)

    LoFriction(phi=0.0001)

    experiment

    Increase particle-wall friction inJ ohnson-J ackson BC

    2

    4

    Effect of polydispersity is currentlyinvestigated by considering threeparticle sizes of 30, 60, and 120

    0

    0.7 0.8 0.9 1Voidfraction

    microns

    2K-2571

    10

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    11/20

    Are subgrid models needed for discretepart c e s mu at ons

    There is no reason why not if fluid flow is not properly

    resolved (coarse grids)

    The same approach3 used for continuum models can be

    applied for discrete models, i.e. does the slip velocity

    increase from that of homogeneous state as Euleriangrid is refined?

    2K-2571

    11

    3 Agrawal et al. The role of meso-scale structures in rapid gas-solids flows. J. Fluid Mech. 445 (2001) 151.

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    12/20

    -

    0 ggggg V

    gVxVPVVtV

    gg

    N

    pppg

    c

    p

    pgggggg

    ggg T

    1

    Continuum gas-phase

    conservation equations

    gVVPPVVt

    Vsssgpssgsssss

    sss

    Continuum solids-phasemomentum equation

    sp

    sppg

    p

    p

    p

    gp PVxV

    Pg

    td

    Vd

    Newtons law of motion fordiscrete particles

    65.23

    g

    ppggg

    Dp

    VxVC

    max

    max

    max

    old

    ss

    ss

    s

    s

    PP

    2K-2571

    12

    pt s

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    13/20

    Simulation conditions

    Fully periodic domain

    Air density 1.3 kg/m3

    Air viscosity 1.8 x 10-5 Pas

    0.4 m

    So s ens ty 1500 g/m

    Particle diameter 75 micron

    Void fraction at maximum packing 0.4

    Eulerian grid density 8x32, 16x64, 32x128, 64x256

    2K-2571

    13

    0.1 m

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    14/20

    Snapshots of particle position-velocity (8x32)

    2K-2571

    14

    1.0 sec 1.5 sec 2.0 sec 10 sec 20 sec

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    15/20

    Snapshots of particle posit ion-velocity (16x64)

    2K-2571

    15

    1.0 sec 1.5 sec 2.0 sec 10 sec 20 sec

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    16/20

    Snapshots of particle position-velocity (32x128)

    2K-2571

    16

    1.0 sec 1.5 sec 2.0 sec 10 sec 20 sec

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    17/20

    Snapshots of particle position-velocity (64x256)

    2K-2571

    17

    1.0 sec 1.5 sec 2.0 sec 10 sec 20 sec

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    18/20

    Transient Favre-averaged slip velocity

    2K-2571

    18

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    19/20

    Slip-velocity for continuum & MP-PIC models

    Grid size 8x32 16x64 32x128 64x256

    Continuum slipvelocity & St. Dev.

    (cm/s)

    18.70.16

    22.63.9

    49.610.8

    52.08.7

    MP-PIC slipvelocity & St. Dev.

    (cm/s)

    18.50.005

    18.50.005

    50.715.1

    55.413.8

    2K-2571

    19

  • 7/30/2019 Be Nyah i a Subgrid Drag Models

    20/20

    Summary

    Sub-grid corrections are demonstrated to be

    both needed and useful for both continuum

    and discrete approaches to gas-solids flow

    Our limited quantitative analysis indicates thatthe same subgrid corrections developed for

    continuum models may be used with DPM

    2K-2571

    20