subgrid scale physics in galaxy simulations › starformation_2012 › talks › ... · subgrid...

20
Multiphase structure, star formation and feedback Subgrid scale turbulence energy Isolated disk galaxy simulations Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence and Flow Instabilities with thanks to Harald Braun, Jan Frederic Engels, Jens Niemeyer, IAG Ann Almgren and John Bell, LBNL Christoph Federrath, Monash University yt-project.org Galactic Scale Star Formation, Heidelberg, July/August 2012 Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Upload: others

Post on 28-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Subgrid Scale Physics in Galaxy Simulations

Wolfram Schmidt

CRC 963 Astrophysical Turbulence and Flow Instabilities

with thanks to

Harald Braun, Jan Frederic Engels, Jens Niemeyer, IAGAnn Almgren and John Bell, LBNLChristoph Federrath, Monash Universityyt-project.org

Galactic Scale Star Formation, Heidelberg, July/August 2012

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 2: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Objective

I There are many star formation and feedback recipes forsimulations (Robertson & Kravtsov 2008, Agertz et al. 2009,Tasker & Tan 2009, Bournaud et al. 2010, Dobbs & Pringle2010, Governato et al. 2010, Greif et al. 2010, etc.)

I We do not aim at galaxy simulations in a static environmentwith resolution . 1 pc:

I want to study galaxies in their fully dynamical cosmologicalenvironment, including galactic outflows

I apply a subgrid scale model for the multiphase turbulent ISM(Braun & WS 2012)

I simulations of isolated disk galaxies mainly serve as as atesting case for the model

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 3: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

A Simple Two-Phase Model

Split mass contents of grid cells into cold and warm phases with averagedensities ρc,pa = mc/Vc and ρw,pa = mw/Vw (Springel & Hernquist ’03):

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 4: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Effective Pressure EquilibriumI Basic assumption: two-phase structure given by generalized

virial theorem for ensemble of cold-gas clouds embedded inthe warm medium:

3Pc,eff︸ ︷︷ ︸int. + kin.

− π

10Gρ2

c,pal2c︸ ︷︷ ︸

grav.

− 3Pw,eff︸ ︷︷ ︸ext.

' 0

I Effective pressure Pc,eff = ρc,paσ2c,eff (Chandrasekhar 1951):

σ2c,eff =

c2c

γ+ σ2

c,turb = γ(γ − 1)ec

(1

γ+

1

3M2

c,turb

)I If the bulk of the cold gas is not strongly self-gravitating, then

Pc,eff ' Pw,eff implies

ρc,pa

ρw,pa=σ2

w,eff

σ2c,eff

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 5: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Star Formation ModelI Cold gas is converted into star particles at a rate

ρs = εcoreSFRff fH2ρc

tc,ff, where tc,ff =

(3π

32Gρc,pa

)1/2

I Molecular gas fraction fH2 = mH2/(ρc∆3) is determined by aStromgren-like approach similar to Krumholz et al. 2009

I Dimensionless star formation rate per free fall time is given by(Padoan & Nordlund 2011)

SFRff =

∫ ∞xcrit

xp(x)dx , where xcrit ≈ 0.03715σ2

c,turb

πGρc,pal2c︸ ︷︷ ︸αvir

M2c,turb

I Turbulent density PDF p(x) is assumed to be log-normal withvariance (Federrath et al. 2010)

σ2 ≈ ln(1 + b2M2

c,turb

), where b = 1/3 (soln.) or 1 (compr.)

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 6: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Composite optical HST and Chandra X-ray image of supernova 1987a

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 7: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Supernova Feedback Model

I Supernova rate is determined by the star formation rate andthe Chabrier (2001) fit to the IMF:

ρs,fb(t) =

∫ te

tb

ρs(t − t ′) IMF(m∗)dm∗dt ′

dt ′,

I Increase of warm-gas thermal energy due to heating andcold-gas evaporation (McKee & Ostriker 1977):

d(ρwew)

dt

∣∣∣∣SN

= [(1−εSN)eSN+Aec]ρs,fb, where eSN ≈ 6 · 1049 erg/M�

I Production of turbulent pressure Pturb = 23ρK :

d(ρK )

dt

∣∣∣∣SN

= εSNeSNρs,fb, where εSN ≈ 0.085

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 8: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

The Euler Equations with Subgrid-Scale Dynamics

Couple Euler equations for resolved flow variables to unresolvedturbulence energy ρK such that ρ(E + K ) is conserved:

∂tρ+ ∇ · (uρ) = 0

∂t(ρu) + ∇ · (ρu⊗ u) = −∇

(P+

2

3ρK

)︸ ︷︷ ︸

eff. pressure

+ ∇ · τ ∗sgs︸ ︷︷ ︸nondiag. stresses

+ρ(g + fext)

∂tρE + ∇ · (ρuE ) = −∇ ·

[u

(P+

2

3ρK

)]+∇ · (u · τ ∗sgs)

+ ρu · (g + fext) −Λ + Γ︸ ︷︷ ︸radiative

−Σ + ρε︸ ︷︷ ︸turbulent

∂tρK + ∇ · (ρuK ) =D + Σ− ρε (Schmidt et al. 2006)

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 9: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Closures for the Compressible Turbulent Cascade

I Production rate of SGS turbulence energy Σ = τijSij , where(Woodward et al. 2006, WS & Federrath 2011)

τij = C1∆ρK 1/2S∗ij︸ ︷︷ ︸linear eddy-viscosity part

− 2C2ρK2ui ,kuj ,k|∇⊗ u|2︸ ︷︷ ︸

non-linear part

−2

3(1− C2)ρKδij

I ∀C1,C2: turbulent pressure given by

Pturb =2

3ρK = −1

3τii

I Closure coefficients C1 ≈ 0.02 and C2 ≈ 0.7 depend only littleon the Mach number in the supersonic regime

I Turbulent dissipation rate ε = CεK3/2/∆

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 10: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

LES of Supersonic Turbulence on Nested Grids

Vorticity modulus ω SGS turbulence energy ρK

I Forced turbulence in a periodic box (1283 root grid)

I Cooling L = χρ(e − e0) keeps int. energy roughly constant

I Statistically stationary state after ∼ 2 integral time scales

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 11: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

LES of Supersonic Turbulence on Nested GridsMrms ≈ 5

Mrms

Msgs

0 2 4 6 8

0.05

0.10

0.50

1.00

5.00

t

Mean SGS turbulence energy

0 2 4 6 80.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

t

ΡK

I Turbulent Mach numbers: ratio of resolved/unresolved kineticto thermal energies

I SGS turbulence energy scales down with refinement level

I Variables from higher levels are averaged down to coarser cellsand energy correction is applied!

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 12: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

The Role of Subgrid Scale Turbulence

Mc,turb =√

3σc,turb/cc, where 3σ2c,turb = 2K (λJ,c/∆)2η

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 13: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

SGS Turbulence Energy Equation for Galaxy Simulations

∂tρK + ∇ · (ρuK ) =D + εSNeSNρs,fb + (1− fth)εttΛeffρw︸ ︷︷ ︸

internal

+ (τ∗ij )sgsSij︸ ︷︷ ︸external

−2

3ρKd − ρCε

K 3/2

Internal driving:

I Production by supernovafeedback ∝ eSNρs,fb

I Production by thermalinstability ∝ ρwΛeff , whereΛeff = Λrad−ΓPAH−ΓLyc−εis the effective cooling rate

External driving:

I Production throughturbulent cascade fromlength sales L� `

I Coupling to resolvedturbulence driven by gravityand shear of the disk

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 14: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

The Cosmological Fluid Dynamics Code Nyx

Initiators: Jens Niemeyer (IAG), Peter Nugent (LBNL)Code paper: Almgren et al. (ApJ submitted)

I Boxlib framework for block-structured AMR

I Hybrid OMP/MPI parallelization for up to∼ 100000 cores

I Unsplit-PPM hydro solver

I Multi-grid Poisson solver for self-gravity

I PM treatment of dark matter/star particles

I CLOUDY cooling

I SGS model for turbulent multiphase ISM

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 15: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Initialization: Stable Adiabatic diskInititalization: Collapse into a thin disk after 100 Myr:

I IC: stable rotating disk with (r , θ)-profile of Wang et al. 2010 and initialtemperature 4× 104 K

I Static DM halo, 1010 M� baryons (Z/Z� = 0.1) in a 1 Mpc3 box

I Development runs: 1283 root grid, 8 refinement levels (30 pc resolution)

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 16: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Evolution of Star Formation and Feedback

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 17: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Star Formation (300 Myr)

Local star formation rate ρs vs. ρ Local star formation rate ρs vs. ρH2

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 18: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Cold gas and Turbulence (300 Myr)

Fraction of cold gas ρc/ρ vs. ρTypical star formation efficiencyεff ∼ 0.01 for 1 <Msgs < 10

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 19: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Warm-Gas Fraction and Stars (300 Myr)

Fraction of warm gas ρw/ρ Stellar mass in M�/pc3

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations

Page 20: Subgrid Scale Physics in Galaxy Simulations › starformation_2012 › talks › ... · Subgrid Scale Physics in Galaxy Simulations Wolfram Schmidt CRC 963 Astrophysical Turbulence

Multiphase structure, star formation and feedbackSubgrid scale turbulence energyIsolated disk galaxy simulations

Conclusions

I Cooling and gravity initially form large massive clumps in agas-dominated adiabatically stable disk

I cannot be prevented by feedback, although feedbacksubsequently strips off gas

I clumps may merge and migrate toward the center to form abulge or be torn apart and further fragment

I Turbulence-regulated star formation saturates quickly at a fewsolar masses per year

I Thermal and turbulent feedback pressurizes disk and drivesgalactic outflows

Wolfram Schmidt Subgrid Scale Physics in Galaxy Simulations