rama's defence - for web.ppt...

Post on 12-May-2018

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Polarization Induced 2DEG in AlGaN/GaN HEMTs: On the origin, DC and transient characterization

by

Ramakrishna Vetury

Committee

Dr. James Ibbetson Prof. Evelyn Hu

Prof. Robert YorkProf. Umesh Mishra

Acknowledgements

Professors Umesh Mishra, Robert York, Evelyn Hu, Dr. James Ibbetson

Prof. Steve DenBaars, Prof. Jim Speck

Mishra and York Groups: Lee, Peter, James, Gia, Naiqain, Dr. Wu, Ching Hui, Primit, Prashant, Rob U, Rob C, Dan, DJ, Anand, Sten, Tim, Can, Likun, Huili, Ilan, Dario..Amit, Jane, Vicki, Bruce, Paolo, PC Jia, Erich, Troy, Pete, Padmini, Thai, Jim ..

Dr. Stacia Keller, Dr.Yulia SmorchkovaNaiqain Zhang, Darron Young, Chris Elsass, Ben Heying, Hugues Marchand, Paul Fini, Dave Kapolnek

Bob Hill and Jack Whaley and everybody in the clean roomUCSB Nitride Community

Cathy and Lee

Anil, Minu, Sri, Doli, Smitha, Karthik, Shri, OttoSridevi & Rohit Joshi

ONR AFOSR

Outline

1. Non-Idealities in GaN HEMTs,traps in GaN buffer, AlGaN dislocations

2. The free surface of AlGaNSurface potential, Polarization, Origin of 2DEG

3. Current CollapseVirtual gate, Transient characterization,Passivation

Obtaining power from the device. Biasing and load line for maximum power output

VBREAKDOWN

IMAX

IDS

VDSVKNEE

Bias Point

A

B

Q

What makes a good GaN HEMT?

- - - - - - - - - - - - - - - -- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns

IMAX . (VBREAKDOWN – VKNEE)

8Max Power =

VBREAKDOWN

IMAX

IDS

VDSVKNEE

BIAS POINT

A

B

Q

What makes a good GaN HEMT?

- - - - - - - - - - - - - - - -- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns

Maximize I Maximize ns, µ

Maximize ns Maximize PSP, PPEMaximize Al mole fraction without strain relaxation

Maximize fτ Minimize effective gate length, Minimize Lg and gate length extension

Maximize µ Minimize dislocations, smooth interface

ns . µIMAX α

Choose the high power RF device..

Non –Idealities in GaN HEMTs

2V/div

Predicted Output Power (W/mm/ VDS bias)

3.15 /24 3.50 /25 1.50 /20 1.30 /2070

0 m

A/m

m

Choose the high power RF device..

Measured Output Power (W/mm/ VDS bias)

1.06 /24 0.30 /20 0.76 /203.24 /25

What limits output power?

Non –Idealities in GaN HEMTs

2V/div

Predicted Output Power (W/mm/ VDS bias)

3.15 /24 3.50 /25 1.50 /20 1.30 /2070

0 m

A/m

m

Vds (V)

I d(5

mA

/div

)

DC

AC

Load line

Dispersion

Due to the trapping effect,VKNEE @ AC increased from 5 V to 12 V.

• Maximum Output Power decreases, as voltage swing and current swing reduce

• Drain efficiency decreases as knee voltage increases

DE = (Vmax-Vknee)/(Vknee+Vmax)

• Power added efficiency

PAE=(1-1/G)DE

Non –Idealities in GaN HEMTs

• The sequence of biases used to obtain a pulsed I-V curve from theTektronix curve tracer.

• The drain current is sampled during eachgate pulse.

• This biasing sequence is used to obtain the lighter pulsed (AC) I-V curves shown previously

Non –Idealities in GaN HEMTs

TIME

VGS

VDS

Vp

+20+18

+16

Von 23

45

6

123

456

IDS

VBREAKDOWN

IMAX

IDS

VDSVK1

(a)VKNEE

Bias Point

A

B

Q

Non –Idealities in GaN HEMTs

(b)

VK2

IMAX 2

VDS

IMAX 2 < IMAX1

VK2 > VK1

IDS

VBREAKDOWN

IMAX

IDS

VDSVK1

(a)VKNEE

Bias Point

A

B

Q

The consequence of trapping effects:

• the device I-V characteristic changes from (a) (b).

Non –Idealities in GaN HEMTs

Non –Idealities in GaN HEMTs Where can the traps be?

ϕS

1. S.I. Substrate (if SiC)

2. Substrate-GaN buffer interface

3. S.I. GaN buffer

4. AlGaN bulk

5. Free surface of AlGaN

AlxGa1-xN

GaN

Sapphire/ S.I.SiC

~ 200 Å

2-3 µµµµm

Possible trapping sites Deep levelFermi level

EC

2DEG

Source of the Buffer Traps

NOMINALLY UNDOPED GaN IS n-TYPE (~1x1016cm-3)

- - - - - - - - - - - - - - - -- - -

SG

D

GaN

Substrate

n Buffer

AlGaN

ns

BufferConduction

For a 1 µm Thick Buffer

nBuffer ~ 1016 cm-3 x 10-4cm = 1012cm-2

IBuffer

IChannel~ 10% (Unacceptable)

SOURCE OF TRAPS

GaN

Sapphire/SiC/Si…

HIGH RESISTIVITY BUFFER IS ACHIEVED THROUGH COMPENSATION

~ nS ~ 1013cm-2nChannel

Fermi Level (eV)

0.5

1

1.5

2

2.5

33.4

0

Electron ConcentrationConduction Band (cm-3)

1015 1016 1017 1018 1019

NAA Deep Acceptor Concentration1018

100

1015

1012

109

106

103

Non –Idealities in GaN HEMTs Making a S.I.Buffer - Compensation

NAA

ND

EV

ECND = 1017 cm-3

Non –Idealities in GaN HEMTs Making a S.I.Buffer - Compensation

NAA

ND

EV

EC

0.5

1

1.5

2

2.5

3

Fermi Level (eV)

0

3.4

0

0.2

0.4

0.6

0.8

1#of Empty Acceptors(fraction)

NAA

NAA

0

1015 1016 1017 1018 1019

NAA Deep Acceptor Concentration

ND = 1017 cm-3

Strategy

Minimize Background Donors

Background donorsVN, O

Compensating centersCarbon, Dislocation related deep levels

Non –Idealities in GaN HEMTs Making a S.I.Buffer

- - - - - - - - -- - -

SG

D

SubstrateGaN Buffer

AlGaN

nsMinimize background donors

Minimum necessary concentration of compensating centers

Fine tune growth conditions to

Optimize

From: water vapor, Ambient (loading, leaks)impurities in gases used, NH3, precursorsSapphire substrate

Non –Idealities in GaN HEMTs High quality AlGaN

- - - - - - - - - - - - - - - -- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns

Maximize I Maximize ns, µ

Maximize ns Maximize PSP, PPEMaximize Al mole fraction without strain relaxation

Maximize fτ Minimize effective gate length, Minimize Lg and gate length extension

Maximize µ Minimize dislocations, smooth interface

Optimized AlGaN growth

• high Al %

• high structural quality

• minimum unintentional defectincorporation

Optimize

- - - - - - - - - - - - - - - -- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns

Vds (V)

I d(5

mA

/div

)

DC

AC

Load line

Dispersion

Question :Are dislocations the dominant source of deep levels causing current collapse ?

Non –Idealities in GaN HEMTs Impact of Dislocations on Current Collapse

Optimized : GaN buffer, AlGaN layer

Non –Idealities in GaN HEMTs Impact of Dislocations on Current Collapse

LEO FETs Growth technique

(d)

HFET on regular GaN

HFET onLEO GaN

LEO is dislocation free

(b)

Dislocations propagate vertically in seed GaN

(e)

(c)

AlGaN

SiO2

(a)

(c)3 nm

• Dislocation mediated structural defects on Al0.3Ga0.7N on regular GaN

Non –Idealities in GaN HEMTs

2 µm

• Dislocation density reduced from 108-109 to < 106 in LEO GaN

• Dislocation mediated structural defects absent in Al0.3Ga0.7N on LEO GaN

Non –Idealities in GaN HEMTs

(c)3 nm2 µm

• HFETs on LEO and regular GaN showed similar DC I-V characteristics Typical max IDS ~ 250 mA/mm, max gm ~ 60 mS/mm.

• Pulsed measurement on HFETs on LEO GaN showed significantcurrent collapse

• Dislocations are not the primary source of current collapse

Non –Idealities in GaN HEMTs HFETs on LEO and regular GaN

DC

AC

Pulsed Measurement on LEO device

Non –Idealities in GaN HEMTs The story so far …

Is AlGaN surface important ?

- - - - - - - - -- - -

SG

D

SubstrateGaN Buffer

AlGaN

ns

AlxGa1-xN

GaN

Sapphire/ S.I.SiC

~ 200 Å

2-3 µµµµm

• Optimized GaN buffer

• Optimized AlGaN layer

• Dislocations are not the primarysource

• Substrate interface too far away

Trapping effects still present…

After..

Non –Idealities in GaN HEMTs The story so far …

• AlGaN surface is important !

time1996 1997 1998 1999 2000 2001

0

2

4

6

8

10

X

improved AlGaN

xAl > 0.3

thick S.I. GaN buffer

UCSB on Al 2O3

- - - - - - - - -- - -

SG

D

SubstrateGaN Buffer

AlGaN

ns

AlxGa1-xN

GaN

Sapphire/ S.I.SiC

~ 200 Å

2-3 µµµµmHitherto undiscussed

improvement to surface

PowerW/mm

• Measurement of surface potential - indicates existence of surface states

• Why should surface states exist?

• Polarization effects

• Surface states give rise to 2DEG

• Surface states also give current collapse - passivation

The free AlGaN surface

Experiment

Device Layer Structure Device Layout

Sapphire Substrate

undoped 2 µm

undoped 200 ÅAlxGa1-xN

i-GaN

LG LFG

L1 L2

AlxGa1-xN

GaN

S G FG D

The free AlGaN surface Measurement of surface potential

Floating gate voltage scan

DVFG

SG

VGD

VT

VFG

VGD

The free AlGaN surface Measurement of surface potential

Regime 1[ |VGD| < |VT| ]

EX|y=0

0

-80

-40

0 -80-40

VGD

Regime 1[ |VGD| < |VT| ]

Regime 2[ |VGD| > |VT| ]

+ ++

S FG DG

VT

Regime 2[ |VGD| > |VT| ]

S FG DG

EX|y=0

+ ++

++

Clamping of Peak Electric Field

0

200

400

600

800

1000

0

20

40

60

80

100

0.0 20.0 40.0 60.0 80.0

D1025v fg

VFG

IG

VDG

Peak Electric Field at gate edge is clampedIG limited

The free AlGaN surface Measurement of surface potential

VT

EX|y=0

Regime 2[ |VGD| > |VT| ]

S FG DG

+ ++

++

L1

VT dependence on L1 tells us the how the depletion region extends with gate-drain reverse bias

VT increases with L1

The free AlGaN surface Measurement of surface potential

-25

-20

-15

-10

-5

0

VGD (V)

V FG

(V)

a b

c

-80-60-40-200 -100

Floating gate voltage scan L1a< L1b< L1c

a) 0.5 µm b)1.5 µm c) 1.7 µm

VT

EX|y=0

Regime 2[ |VGD| > |VT| ]

S FG DG

+ ++

++

L1

The free AlGaN surface Measurement of surface potential

• Average E limited

• Large extension ofdepletion region

Measurements show that

-400

-300

-200

-100

0

0 1 2 3 4 5 6 7

V T (V

)

L1 (µm)

Lateral extent of depletion region

Simulated

Measured

S DG+ +++

++

++

S DG+ ++ +

+

+++

Negative charge on surface

extends depletion region

Negative charge on surface

The free AlGaN surface

What can the free AlGaN surface look like?

EV

EC

Density of States

Energy

EV

EC

DOS

E

EV

EC

DOS

E

EV

EC

DOS

E

Donor

AcceptorDonor

Donor

BUT …

• Strongly ionic semiconductors should not have surface states..(Kurtin et. al.)

• Ga-N and Al-N bonds have strong ionic character

(Ga, Al – strongly electro +ve, N - strongly electro –ve)

(000

1)

Wurtzite lattice group

Presence of polarization dipole and electric field in an unstrained crystal

The free AlGaN surface Influence of Polarization

Wurtzite group lacks inversion symmetry in c plane (0001 )

Spontaneous polarizationcoefficient is large

Presence of piezoelectric polarization dipole and electric field in a strained crystal

Large lattice mismatch between GaN, AlN, InN

Piezo-electric polarizationcoefficient is large

The free AlGaN surface Influence of Polarization

Crystal structure of GaN

Difference in spontaneous polarization coefficients

Built in Sheet Charge and Electric fields in

an AlGaN/GaN heterostructure

Lattice mismatch

Between GaN and AlGaN

Spontaneous Polarization

Induced Charge Sheet in AlGaN

Piezolectric Polarization

InducedCharge Sheets in

AlGaN

+ + + + + + + + +

- - - - - - - - - - - - -

GaN

AlGaNFor Ga-face crystal the two sheets add up

Ga-face crystal

The free AlGaN surface Influence of Polarization

+σPol

-σPol

GaN

AlxGa1-xN

S G D

- - - - - - - - - - - - - - - - - - - - -+ + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - - -

-σchannel

The free AlGaN surface Influence of Polarization – Origin of Charge

Hall measurements on undoped AlGaN/GaN structures show that there exists a 2DEG at the AlGaN/GaN interface

EF

+σPol

-σPol

GaN

AlxGa1-xN

S G D

d

- - - - - - - - - - - - - - - - - - - - -+ + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - - -

-σchannel

The free AlGaN surface Influence of Polarization – Origin of Charge

A metal (gate) can provide positive charge to satisfy charge neutrality.What happens when the surface is free? As in the access regions…

EF?+σMetal

•In the absence of any donors, 2DEG electrons must come from the VB

•Critical thickness depends on bandgap

•Polarization is not directly responsible for the 2DEG at AlGaN/GaN interface

2DEG formation - (1) Ideal Surface

d < dCR

Built-in field due to Unscreened dipole

Presence of polarization charge is not sufficient for 2DEG to form

d > dCR

2DEG

Reduced fieldE=(σPZ – qns)/ε

The free AlGaN surface

+ σPol

- σPol

+ σPol

- σPol

- σ2DEG

+ σHoles

• No 2DEG until the surface donors can empty into the GaN

• Critical thickness depends on donor level, fermi level in notch

• ns depends on the AlGaN thickness, surface donor level, polarization dipole

2DEG formation - (2) Surface Donors

Presence of polarization charge is not sufficient for 2DEG to form

d < dCR

Built-in field due to Unscreened dipole

The free AlGaN surface

+ σPol

- σPol

d > dCR

2DEG

Reduced fieldE=(σPZ – qns)/ε

Partially filled surface donors

+ σPol

- σPol

- σ2DEG

+ σSurface donor

d

ϕS∆Ec

EfodCR

Simulated 2DEG charge density

50

100

150

2000.5

1

1.5

5 ×1012

1 ×1013

1.5 × 1013

2 × 1013

50

100

150

200

5 ×1012

1 ×1013

1.5 × 1013

2 × 1013

Surface Barrier( eV)

AlGaN thickness(Angstroms)

Sheet charge(#/cm2)

q.ns = σPol.(1-dCR/d) - ε Efo/d + Ndd/2

q.ns = σPol.(1-dCR/d)

dCR = ε.(q.ϕS-∆Ec)/σPol

The free AlGaN surface

0

5

10

15

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Shee

t car

rier d

ensi

ty N

S (1

012 c

m -2

)

Alloy composition x

d = 31 nmT = 13 K0

5

10

15

0 10 20 30 40 50 60

Shee

t car

rier d

ensi

ty N

S (1

0 12

cm -2

)

AlGaN thickness d (nm)

x = 0.27T = 13 K

AlGaN/GaN Heterostructures by MBE

(a) vs AlGaN barrier width (b) vs Al content

theoretically calculatedNS assuming eΦB = 1.42 eV for all x

least square linear fit, dNS/dx = 5.45x1013 cm-2

theoretically calculatedNS assuming surface barrier

height qΦB = 1.42 eV

The free AlGaN surface

The free AlGaN surface

• Measurement of surface potential - indicates existence of surface states

• Why should surface states exist?

• Polarization effects

• Surface states give rise to 2DEG

• Surface states also give current collapse - passivation

Current Collapse Concept of Virtual Gate

Q. How can traps affect device characteristics?

• Directly trapping electrons in the channel i.e depleting the 2DEG density(collapse should not be affected by surface treatment)

OR

• Trapping charge elsewhere, creating a potential barrier to current flow(a virtual gate, spatially distinct from the metal gate)

OR

• Trapping charge underneath the metal gate, effectively changing the gate bias.

(pinch-off voltage changes, collapse should not depend on surface treatment)(∆∆∆∆VP = q. ∆∆∆∆ns / CAlGaN)

Effect of Surface Traps

Surface Donors+++++++++

+++++++++

- - - - - - - - -PolarizationDipole is

Charge Neutral 2 DEG

- - - - - - - - - - - - - - - - - - -

++++++++

SG

DElectrons can be injected from the gate into the very donor states that provide channel electrons.

- - - - - - - - -

EF

Current Collapse

Source

Drain

VG

VVG

Current Collapse Concept of Virtual Gate

Source

Drain

VGX

R

• VVG controls the drain current

• What is VVG , the potential on the virtual gate ?

• Time constants to charge/discharge the virtual gate

+ + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - -AlGaN

GaN

+ + +

- - - -

Virtual Gate

Extended depletion region

e

IDS

VDS

A

B

Increasing trap occupancy,VVG more reverse biasedQ

• Trend of increasing reverse bias or increasing trap occupancy on the I-V plane of the device

• On the load line, VVG is most negative at B and least negative at A.

• Metal gate can decrease IDS , but not increase IDS

Source

Drain

VG

VVG

Current Collapse Potential of Virtual Gate

Current Collapse Time constants of Virtual Gate

Occupancy ofsurface traps

ORReverse bias on VVG

Channel does not fully open.

Drain Current

time

f3 > f2 > f1

time average (DC) drain current

Pinch Off

Fully Open Channel

f1 f2 f3

timeNo virtual gate

Negative virtual gate

TDETRAPTime constant of interest

IMAX

DC (low frequency) High frequencyDC (low frequency) High frequency

Dispersive device

11ff ff0 ff2

?Ideal deviceDispersive deviceIDS

VDS

Expected plot of maximum drain current as a function of frequency

: TDETRAP longff2

: TDETRAP short 11ff

Current Collapse Frequency dependence of Maximum drain current

IMAX

Experimental set up – Max drain current Current Collapse

Zin = 50 ohmZin = 50 ohm

SIGNAL SOURCE

DRAIN BIASGATE BIAS

MICROWAVE TRANSITIONANALYZER(sampling oscilloscope)

BIAS TEE BIAS TEE

RDC

DUT

AMPLIFIER

SIGNAL SOURCE

DRAIN BIASGATE BIAS

ANALYZER

BIAS TEE BIAS TEE

RDC

DUT

AMPLIFIER

Vpp (V)Vpp (V)Vpp (V)Vpp (V)

-8000

0

8000

0 100 200 300 400 500Vpp (V)

Measure waveform here

50 ohm load

IDS

VDS

VPP/ 50 = IPP = IMAX

140.0

145.0

150.0

155.0

160.0

165.0

170.0

175.0

180.0

1.E+02 1.E+03 1.E+04 1.E+05

Frequency (Hz)

Max

imum

Dra

in C

urre

nt (m

A) 1st iteration

2nd iteration

140.0

145.0

150.0

155.0

160.0

165.0

170.0

175.0

180.0

1.E+02 1.E+03 1.E+04 1.E+05

Frequency (Hz)

Max

imum

Dra

in C

urre

nt (m

A) 1st iteration

2nd iteration

Frequency (Hz)

Max

imum

Dra

in C

urre

nt (m

A) 1st iteration

2nd iteration

1st iteration

2nd iteration

Current Collapse Measure Max IDRAIN

IDS

VDS

VPP/ 50 = IPP = IMAX

Measure waveform here

50 ohm load

• Transient response is being measured

50Ω

VDD

VGS

Current Collapse Trapping Transient

• Bias and drive conditions cause formation of the virtual gate

• Transient response not a true frequency dependence

VDD

IDS

VDS

VGS

Formation of virtual gate

time

VDD

IDS

VDS

VGS

Formation of virtual gate

time

f1 f2 f3

• Drain current recovers when UV light is incident

50Ω

VDD

VGS

Effect of UV light

UV Light

VDD

VGS

IDS

Trapping Transient

time

OFF ON OFF

Current Collapse

+ σPOL

- σPOL

+ σSURFACE DONOR

- σ2DEG

EC

(1)

+ σPol

- σTRAPPED SURFACECHARGE

+ σSURFACE DONOR

- σPol

EC

(2)

Gate

Drain

e-

Net Positive Charge

Arrow indicates the transition from a non-existent virtual gate to negatively charged virtual gate.

Ec when virtual gate is non-existent

Ec, when surface states are charged

1 2

• The surface negative charge compensates the surface donor

• 2DEG channel is depleted

After virtual gate formed,

Current Collapse How does collapse occur ?

- σTRAPPED SURFACECHARGE

+ σPol+ σSURFACE DONOR

- σPol

EC

EC

Incident photonshν > EG

+

+ σPOL

- σPOL

+ σSURFACE DONOR

- σ2DEG

- σTRAPPED SURFACE CHARGE

+ σHOLES

• The effect of incident photons.

• Holes generated in the GaN channel are swept to the surface.

• The positive charge due to the holes neutralizes the virtual gate

Current Collapse What does UV light do?

0 2 4 6 8 10 12 14 16 18 20 220

10

20

30

40

50

60

70

Ids

(mA)

Vds (V)

VDD1, VDD2 …

Scan across the IV plane by choosing different VDD, the drain supply voltage, to observe the effect of drain bias on the extent and potential of the virtual gate.

Current Collapse Bias Dependence of Virtual Gate

VDD

IDS

VDD1

VGS

Formation of virtual gate

time

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Fit to 5V decay.0.69+0.31exp(-t/150)^0.47Fit to 10V decay0.58+0.42exp(-t/30)^0.45Fit to 18V decay0.50+0.50exp(-t/5)^0.40 (K)2nd Fit to 18V decay (J)0.48+0.52exp(-t/8)^0.43

Initial value

10kHz signalunpassivated NQZ HP wafern_100_1 - n#1100,1.5,0.5

Peak

to P

eak

curre

nt (n

orm

aliz

ed u

nits

)

time after bias applied (s)

5V 10V 18V fit to 5V decay fit to 10V decay (J) fit to 18V decay (K) 2nd fit to 18V decay

Current Collapse Trapping Transient

0 2 4 6 8 10 12 14 16 18 20 220

10

20

30

40

50

60

70

Ids

(mA)

Vds (V)

VDD1, VDD2 …

VDD

IDS

VDD1

VGS

time

I = I0 + I1. e-(t/τ)β

• Collapse depends on bias

• Trapping transient fits stretched exponential

Trapping TransientCurrent Collapse

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Fit to 5V decay.0.69+0.31exp(-t/150) 0.47Fit to 10V decay0.58+0.42exp(-t/30) 0.45Fit to 18V decay0.50+0.50exp(-t/5) 0.40 (K)2nd Fit to 18V decay (J)0.48+0.52exp(-t/8) 0.43

Initial value

10kHz signalunpassivated NQZ HP wafern_100_1 - n#1100,1.5,0.5

Peak

to P

eak

curre

nt (n

orm

aliz

ed u

nits

)

time after bias applied (s)

5V 10V 18V fit to 5V decay fit to 10V decay (J) fit to 18V decay (K) 2nd fit to 18V decay

I = I0 + I1. e-(t/τ)β

Trapping transient fits stretched exponential

e-

GATE

DRAIN

• Electric field that induces leakage reduces

• Active traps located continuously further away from gate

Virtual Gate

+ + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - -AlGaN

GaN

+ + +

- - - -

e

Virtual gate formsEC

Current Collapse Surface Passivation

- - - - - - - - - - - - - - - -- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns- - - - - - - - - - - - - - - -

- - -

SG

D

Substrate

GaN Buffer

AlGaN

ns

SiN

• Surface passivation to prevent formation of virtual gate

Current Collapse Effect of Passivation

0 2 4 6 8 10 12 14 16 18 20 220

10

20

30

40

50

60

70

Ids

(mA)

Vds (V)

VDD1, VDD2 …

VDD

IDS

VDD1

VGS

time

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1 - Passivated (10V) 2 - Passivated (14V) 3 - Passivated (18V) 4 - Unpassivated (5V) 5 - Unpassivated (10V) 6 - Unpassivated (18V)

Initial value

Peak

Dra

in C

urre

nt (n

orm

aliz

ed u

nits

)

Time (seconds)

123

45

6

Current Collapse Effect of Passivation on Microwave Power

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1 - Passivated (10V) 2 - Passivated (14V) 3 - Passivated (18V) 4 - Unpassivated (5V) 5 - Unpassivated (10V) 6 - Unpassivated (18V)

Initial value

Peak

Dra

in C

urre

nt (n

orm

aliz

ed u

nits

)

Time (seconds)

123

45

6

0

5

10

15

20

25

30

0 5 10 15 20Input Power (dBm)

Out

put P

ower

(dBm

) /

Gai

n(dB

)

0

10

20

30

40

50

PAE

(%)

Pout (dBm)Gain (dB)PAE (%)

6.59W/mm

• Extent of current collapse dramatically reduced on passivated devices

• Measured output power close to maximum available at that bias point

• Existence of a polarization dipole induces surface donor-like states

• Surface donors give rise to the 2DEG

• Surface donor states accept electrons making surface potential negative

• Accumulation of negative charge in gate drain region creates a virtual gate

• The spatial extent and potential of the virtual gate depends on bias and drive conditions

• Current collapse is due to inability to modulate the virtual gate

• Passivating the surface prevents formation of virtual gate, hence reducing current collapse

Conclusions

top related