lesson 11: implicit differentiation

Post on 07-May-2015

182 Views

Category:

Education

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

Implicit differentiation allows us to find slopes of lines tangent to curves that are not graphs of functions. Almost all of the time (yes, that is a mathematical term!) we can assume the curve comprises the graph of a function and differentiate using the chain rule.

TRANSCRIPT

. . . . . .

Section2.6ImplicitDifferentiation

V63.0121.034, CalculusI

October7, 2009

Announcements

I Midtermnext, covering§§1.1–2.4.

..Imagecredit: TelstarLogistics

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.

Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

MotivatingExample

ProblemFindtheslopeofthelinewhichistangenttothecurve

x2 + y2 = 1

atthepoint (3/5,−4/5).

. .x

.y

.Solution(Explicit)

I Isolate: y2 = 1− x2 =⇒ y = −√1− x2. (Whythe −?)

I Differentiate:dydx

= − −2x2√1− x2

=x√

1− x2

I Evaluate:dydx

∣∣∣∣x=3/5

=3/5√

1− (3/5)2=

3/54/5

=34.

. . . . . .

Weknowthat x2 + y2 = 1 doesnotdefine y asafunctionof x,butsupposeitdid.

I Supposewehad y = f(x), sothat

x2 + (f(x))2 = 1

I Wecoulddifferentiatethisequationtoget

2x + 2f(x) · f′(x) = 0

I Wecouldthensolvetoget

f′(x) = − xf(x)

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.lookslikeafunction

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

.lookslikeafunction

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

. . . . . .

Thebeautifulfact(i.e., deeptheorem)isthatthisworks!

I “Near”mostpointsonthecurve x2 + y2 = 1,thecurveresemblesthegraphofafunction.

I So f(x) is defined“locally”andisdifferentiable

I Thechainrulethenappliesforthislocalchoice.

. .x

.y

.

.

.does not look like afunction, but that’sOK—there are onlytwo points like this

.

. . . . . .

ProblemFindtheslopeofthelinewhichistangenttothecurvex2 + y2 = 1 atthepoint (3/5,−4/5).

Solution(Implicit, withLeibniznotation)

I Differentiate. Remember y isassumedtobeafunctionof x:

2x + 2ydydx

= 0,

I Isolatedydx

:

dydx

= − xy.

I Evaluate:dydx

∣∣∣∣( 35 ,− 4

5)=

3/54/5

=34.

. . . . . .

Summary

Ifarelationisgivenbetween xand y,

I “Mostofthetime”, i.e., “atmostplaces” y canbeassumedtobeafunctionofx

I wemaydifferentiatetherelationasis

I Solvingfordydx

doesgivethe

slopeofthetangentlinetothecurveatapointonthecurve.

. .x

.y

.

. . . . . .

Mnemonic

Explicit Implicit

y = f(x) F(x, y) = k

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.

SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

. . . . . .

ExampleFindtheequationofthelinetangenttothecurve

y2 = x2(x + 1) = x3 + x2

atthepoint (3,−6).

.

.SolutionDifferentiatingtheexpressionimplicitlywithrespectto x gives

2ydydx

= 3x2 + 2x, sodydx

=3x2 + 2x

2y, and

dydx

∣∣∣∣(3,−6)

=3 · 32 + 2 · 3

2(−6)= −11

4.

Thustheequationofthetangentlineis y + 6 = −114

(x− 3).

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

Solution

I Wesolvefor dy/dx = 0:

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

I Thepossiblesolution x = 0 leadsto y = 0, whichisnotasmoothpointofthefunction(thedenominatorin dy/dxbecomes 0).

I Thepossiblesolution x = −23 yields y = ± 2

3√3.

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

Solution

I Wesolvefor dy/dx = 0:

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

I Thepossiblesolution x = 0 leadsto y = 0, whichisnotasmoothpointofthefunction(thedenominatorin dy/dxbecomes 0).

I Thepossiblesolution x = −23 yields y = ± 2

3√3.

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

Solution

I Wesolvefor dy/dx = 0:

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

I Thepossiblesolution x = 0 leadsto y = 0, whichisnotasmoothpointofthefunction(thedenominatorin dy/dxbecomes 0).

I Thepossiblesolution x = −23 yields y = ± 2

3√3.

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

Solution

I Wesolvefor dy/dx = 0:

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

I Thepossiblesolution x = 0 leadsto y = 0, whichisnotasmoothpointofthefunction(thedenominatorin dy/dxbecomes 0).

I Thepossiblesolution x = −23 yields y = ± 2

3√3.

. . . . . .

ExampleFindthehorizontaltangentlinestothesamecurve: y2 = x3 + x2

Solution

I Wesolvefor dy/dx = 0:

3x2 + 2x2y

= 0 =⇒ 3x2 + 2x = 0 =⇒ x(3x + 2) = 0

I Thepossiblesolution x = 0 leadsto y = 0, whichisnotasmoothpointofthefunction(thedenominatorin dy/dxbecomes 0).

I Thepossiblesolution x = −23 yields y = ± 2

3√3.

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, so

dxdy

=2y

3x2 + 2x

I Thisis 0 onlywhen y = 0.I Wegetthefalsesolution x = 0 andtherealsolution x = −1.

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, so

dxdy

=2y

3x2 + 2x

I Thisis 0 onlywhen y = 0.I Wegetthefalsesolution x = 0 andtherealsolution x = −1.

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, so

dxdy

=2y

3x2 + 2x

I Thisis 0 onlywhen y = 0.

I Wegetthefalsesolution x = 0 andtherealsolution x = −1.

. . . . . .

ExampleFindthe vertical tangentlinestothesamecurve: y2 = x3 + x2

Solution

I Tangentlinesareverticalwhendxdy

= 0.

I Differentiating x implicitlyasafunctionof y gives

2y = 3x2dxdy

+ 2xdxdy

, so

dxdy

=2y

3x2 + 2x

I Thisis 0 onlywhen y = 0.I Wegetthefalsesolution x = 0 andtherealsolution x = −1.

. . . . . .

ExampleFind y′ if y5 + x2y3 = 1 + y sin(x2).

SolutionDifferentiatingimplicitly:

5y4y′ + (2x)y3 + x2(3y2y′) = y′ sin(x2) + y cos(x2)(2x)

Collectalltermswith y′ ononesideandalltermswithout y′ ontheother:

5y4y′ + 3x2y2y′ − sin(x2)y′ = 2xy3 + 2x cos(x2)

Nowfactoranddivide:

y′ =2x(y3 + cos x2)5y4 + 3x2y2

. . . . . .

ExampleFind y′ if y5 + x2y3 = 1 + y sin(x2).

SolutionDifferentiatingimplicitly:

5y4y′ + (2x)y3 + x2(3y2y′) = y′ sin(x2) + y cos(x2)(2x)

Collectalltermswith y′ ononesideandalltermswithout y′ ontheother:

5y4y′ + 3x2y2y′ − sin(x2)y′ = 2xy3 + 2x cos(x2)

Nowfactoranddivide:

y′ =2x(y3 + cos x2)5y4 + 3x2y2

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

. . . . . .

ExamplesExampleShowthatthefamiliesofcurves

xy = c x2 − y2 = k

areorthogonal, thatis, theyintersectatrightangles.

SolutionInthefirstcurve,

y + xy′ = 0 =⇒ y′ = −yx

Inthesecondcurve,

2x− 2yy′ = 0 = =⇒ y′ =xy

Theproductis −1, sothetangentlinesareperpendicularwherevertheyintersect.

. . . . . .

Idealgases

The idealgaslaw relatestemperature, pressure, andvolumeofagas:

PV = nRT

(R isaconstant, n istheamountofgasinmoles)

.

.Imagecredit: ScottBeale/LaughingSquid

. . . . . .

.

.Imagecredit: NeilBetter

DefinitionThe isothermiccompressibility ofafluidisdefinedby

β = −dVdP

1V

withtemperatureheldconstant.

Thesmallerthe β, the“harder”thefluid.

. . . . . .

.

.Imagecredit: NeilBetter

DefinitionThe isothermiccompressibility ofafluidisdefinedby

β = −dVdP

1V

withtemperatureheldconstant.

Thesmallerthe β, the“harder”thefluid.

. . . . . .

ExampleFindtheisothermiccompressibilityofanidealgas.

SolutionIf PV = k (n isconstantforourpurposes, T isconstantbecauseoftheword isothermic, and R reallyisconstant), then

dPdP

· V + PdVdP

= 0 =⇒ dVdP

= −VP

So

β = −1V· dVdP

=1P

Compressibilityandpressureareinverselyrelated.

. . . . . .

ExampleFindtheisothermiccompressibilityofanidealgas.

SolutionIf PV = k (n isconstantforourpurposes, T isconstantbecauseoftheword isothermic, and R reallyisconstant), then

dPdP

· V + PdVdP

= 0 =⇒ dVdP

= −VP

So

β = −1V· dVdP

=1P

Compressibilityandpressureareinverselyrelated.

. . . . . .

NonidealgassesNotthatthere’sanythingwrongwiththat

ExampleThe vanderWaalsequationmakesfewersimplifications:(P + a

n2

V2

)(V− nb) = nRT,

where P isthepressure, V thevolume, T thetemperature, nthenumberofmolesofthegas, R aconstant, a isameasureofattractionbetweenparticlesofthegas,and b ameasureofparticlesize.

...Oxygen

..H

..H

..Oxygen

..H

..H

..Oxygen ..H

..H

.

.

.Hydrogenbonds

. . . . . .

NonidealgassesNotthatthere’sanythingwrongwiththat

ExampleThe vanderWaalsequationmakesfewersimplifications:(P + a

n2

V2

)(V− nb) = nRT,

where P isthepressure, V thevolume, T thetemperature, nthenumberofmolesofthegas, R aconstant, a isameasureofattractionbetweenparticlesofthegas,and b ameasureofparticlesize. .

.Imagecredit: WikimediaCommons

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

. . . . . .

Let’sfindthecompressibilityofavanderWaalsgas.DifferentiatingthevanderWaalsequationbytreating V asafunctionof P gives(

P +an2

V2

)dVdP

+ (V− bn)

(1− 2an2

V3dVdP

)= 0,

so

β = −1VdVdP

=V2(V− nb)

2abn3 − an2V + PV3

I Whatif a = b = 0?

I Withouttakingthederivative, whatisthesignofdβ

db?

I Withouttakingthederivative, whatisthesignofdβ

da?

. . . . . .

Nastyderivatives

I

db= −(2abn3 − an2V + PV3)(nV2) − (nbV2 − V3)(2an3)

(2abn3 − an2V + PV3)2

= −nV3

(an2 + PV2

)(PV3 + an2(2bn− V)

)2 < 0

Idβ

da=

n2(bn− V)(2bn− V)V2(PV3 + an2(2bn− V)

)2 > 0

(aslongas V > 2nb, andit’sprobablytruethat V ≫ 2nb).

. . . . . .

Outline

Thebigidea, byexample

ExamplesVerticalandHorizontalTangentsOrthogonalTrajectoriesChemistry

Thepowerruleforrationalpowers

. . . . . .

Usingimplicitdifferentiationtofindderivatives

Example

Finddydx

if y =√x.

SolutionIf y =

√x, then

y2 = x,

so

2ydydx

= 1 =⇒ dydx

=12y

=1

2√x.

. . . . . .

Usingimplicitdifferentiationtofindderivatives

Example

Finddydx

if y =√x.

SolutionIf y =

√x, then

y2 = x,

so

2ydydx

= 1 =⇒ dydx

=12y

=1

2√x.

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

. . . . . .

Thepowerruleforrationalpowers

TheoremIf y = xp/q, where p and q areintegers, then y′ =

pqxp/q−1.

Proof.Wehave

yq = xp =⇒ qyq−1dydx

= pxp−1 =⇒ dydx

=pq· x

p−1

yq−1

Now yq−1 = x(p/q)(q−1) = xp−p/q so

xp−1

yq−1 = xp−1−(p−p/q) = xp/q−1

top related