advanced(quantum(field(theory(–the(fundamental(forces((( · 2017. 1. 16. ·...

29
Advanced Quantum Field Theory – the fundamental forces QED Scalar electrodynamics Spinor electrodynamics Nonabelian gauge theory QCD Electroweak Books Quantum Field Theory – Mark Srednicki IntroducEon to Quantum Field Theory – Peskin & Schroeder The Quantum Field Theory of Fields – Weinberg Field Theory: A Modern Primer – Pierre Ramond Quantum Field Theory in a nutshell – Zee } The Standard Model Quantum Field Theory and the Standard Model Schwartz

Upload: others

Post on 01-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Advanced  Quantum  Field  Theory  –  the  fundamental  forces      

    QED  • Scalar  electrodynamics  Spinor  electrodynamics  

    Nonabelian  gauge  theory  • QCD  Electroweak  

    Books   Quantum  Field  Theory  –  Mark  Srednicki  IntroducEon  to  Quantum  Field  Theory  –  Peskin  &  Schroeder  

    The  Quantum  Field  Theory  of  Fields  –  Weinberg  

    Field  Theory:  A  Modern  Primer  –  Pierre  Ramond  

    Quantum  Field  Theory  in  a  nutshell  –  Zee  

    }  The  Standard  Model  

    Quantum  Field  Theory  and  the  Standard  Model  -‐  Schwartz    

  • QED  • Scalar  electrodynamics  Spinor  electrodynamics  

    Nonabelian  gauge  theory  • QCD  Electroweak  

    Books   Quantum  Field  Theory  –  Mark  Srednicki  hOp://www.physics.ucsb.edu/~mark/qT.html  

    Web  

    Advanced  Quantum  Field  Theory  –  the  fundamental  forces      

    hOp://www2.physics.ox.ac.uk/contacts/people/ross  

  • Outline!!

    • QED!Introduction• Photon!propagator• Scalar!QED• Radiative(corrections• Fermions• Fermion(path!integral• Feynman'rules'"!Yukawa&theory• Spinor!QED• Sample&calculations• Beta$functions• Nonabelian)gauge)theory• NAGT"Feynman"rules• BRST!symmetry• Gauge&fixing• Spontaneous*symmetry*breaking• Anomalies• The$Standard$Model

    !

  • Quantum  Electrodynamics  (QED)  

  • Construction of a relativistic field theory

    Lagrangian L T V= −

    Action

    2

    1

    t

    t

    S L dt= ∫

    Classical path … minimises action

    Quantum mechanics … sum over all paths with amplitude /iSe∝ !

    Lagrangian invariant under all the symmetries of nature

    (Nonrelativistic mechanics)

    -makes it easy to construct viable theories

  • L = L∫ d 3x, L lagrangian density - D=4

    Klein Gordon field φ(x)

    ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L= } }  T V

    Manifestly Lorentz invariant

    Lagrangian formulation of the Klein Gordon equation

    Dφ = 1

    complex  scalar  field    

  • L = L∫ d 3x, L lagrangian density

    Klein Gordon field ( )xφ

    L = ∂µφ(x)( )† ∂µφ(x) − m2φ(x)†φ(x)

    δS = 0 ⇒ ∂L

    ∂φ− ∂µ

    ∂L∂(∂µφ)

    = 0

    Manifestly Lorentz invariant

    Euler Lagrange equation

    Lagrangian formulation of the Klein Gordon equation

    Classical path :

    (∂µ∂

    µ + m2 )φ = 0 Klein Gordon equation

    δL = ∂L

    ∂φδφ + ∂L

    ∂(∂µφ)δ (∂µφ)

    =

    ∂L∂φ

    − ∂µ∂L

    ∂(∂µφ)⎛⎝⎜

    ⎞⎠⎟

    ⎣⎢⎢

    ⎦⎥⎥δφ + ∂µ ∂L

    ∂(∂µφ)δφ

    ⎛⎝⎜

    ⎞⎠⎟

    surface integral in S..vanishes

    δSδφ

    = 0

  • New symmetries

    ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L=

    Is invariant under

    A symmetry implies a conserved current and charge.

    Translation Momentum conservation

    Rotation Angular momentum conservation

    e.g.

    What conservation law does the U(1) invariance imply?

    …an Abelian (U(1)) gauge symmetry ( ) ( )ix e xαφ φ→

  • Noether current

    ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L=

    Is invariant under φ(x)→ eiαφ(x) …an Abelian (U(1)) gauge symmetry

    †0 ( ) ( )( )

    µµδ δφ δ φ φ φφ φ

    ∂ ∂= + ∂ + ↔∂ ∂ ∂L L

    L=

    iαφ i µα φ∂

    †( )( ) ( )

    i iµ µµ µα φ α φ φ φφ φ φ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂= −∂ + ∂ − ↔⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

    L L L

    0 (Euler lagrange eqs.)

    ∂µ jµ = 0, jµ = iα

    ∂L∂(∂µφ)

    φ − ∂L∂(∂µφ† )

    φ†⎛⎝⎜

    ⎞⎠⎟

    Noether current

    True  locally  

  • The Klein Gordon current

    ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L=

    Is invariant under …an Abelian (U(1)) gauge symmetry

    ∂µ jµ = 0, jµ = iα

    ∂L∂(∂µφ)

    φ − ∂L∂(∂µφ† )

    φ†⎛⎝⎜

    ⎞⎠⎟

    KG = −iα φ* ∂µφ −φ ∂µφ*( )

    φ(x)→ eiαφ(x)

    Classical electrodynamics: motion of particle of charge in EM potential Aµ = ( A0 ,A)

    given  by     pµ → pµ +QAµ , i∂µ→ i∂µ +QAµ

    ⇒ jµ

    KG ≡ jµEM

    −Q

  • The Klein Gordon current

    ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L=

    Is invariant under …an Abelian (U(1)) gauge symmetry

    ∂µ jµ = 0, jµ = iα

    ∂L∂(∂µφ)

    φ − ∂L∂(∂µφ† )

    φ†⎛⎝⎜

    ⎞⎠⎟

    KG = −iα φ* ∂µφ −φ ∂µφ*( )

    φ(x)→ eiαφ(x)

    ∂∂t

    j0(x)+∇.J(x) = 0

    3 0Q d x j= ∫ is the associated conserved charge (Gauss’ law)

  • Suppose we have two fields with different U(1) charges :

    1,21,2 1,2( ) ( )

    i Qx e xαφ φ→

    ( )( )

    † 2 †1 1 1 1

    † 2 †2 2 2 2

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    x x m x x

    x x m x x

    µµ

    µµ

    φ φ φ φ

    φ φ φ φ

    ∂ ∂ −

    + ∂ ∂ −

    L=

    ..no cross terms possible (corresponding to charge conservation)

  • ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L= not invariant due to derivatives

    ( )( ) ( )i x Qx e xαφ φ→

    ( ) ( ) ( ) ( )i x Q i x Q i x Qe e iQe xα α αµ µ µ µφ φ φ φ α∂ → ∂ = ∂ + ∂

    To obtain invariant Lagrangian look for a modified derivative transforming covariantly

    Dµφ → e

    iα ( x )Q Dµφ

    U(1)  local  gauge  invariance  and  QED    

  • ( )† 2 †( ) ( ) ( ) ( )x x m x xµµφ φ φ φ∂ ∂ −L= not invariant due to derivatives

    ( )( ) ( )i x Qx e xαφ φ→

    ∂µφ − iQAµφ → e

    iα ( x )Q (∂µφ − iQAµφ)+ iQeiα ( x )Qφ ∂µα (x)− iQe

    iα ( x )Qφ ∂µα (x)

    To obtain invariant Lagrangian look for a modified derivative transforming covariantly

    Dµφ → e

    iα ( x )Q Dµφ

    D iQAµ µ µ= ∂ −

    A Aµ µ µα→ + ∂Need to introduce a new vector field

    U(1)  local  gauge  invariance  and  QED    

    Aµ ≡ (V ,A)( )

  • = ∂µφ( )† ∂µφ − m2φ†φ − iα Aµ (φ ∂µφ* −φ* ∂µφ)+α 2 Aµ Aµ

    J µ ≡ (ρ,J)( )

    ( )( ) ( )iQ xx e xαφ φ→

    Dµφ → e

    iα ( x )Q Dµφ

    A Aµ µ µα→ + ∂

    ( )† 2 †( ) ( ) ( ) ( )D x D x m x xµµφ φ φ φ−L= is invariant under local U(1)

    Dµ → eiαQ Dµe

    − iαQ

    jµ = iα

    ∂L∂(∂µφ)

    φ − ∂L∂(∂µφ† )

    φ†⎛⎝⎜

    ⎞⎠⎟

    = iα (φ ∂µφ

    * −φ* ∂µφ)− 2α2 Aµφ

    *φNoether  current  in  free  theory  

  • Note : D iQAµ µ µ µ∂ → = ∂ − is equivalent to p p eAµ µ µ→ +

    universal coupling of electromagnetism follows from local gauge invariance

    i.e. L = LKG = ∂µφ(x)( )† ∂µφ(x)− m2φ(x)†φ(x)− jµKG Aµ +O(Q2 )

    J µ ≡ (ρ,J)( )

    ( )( ) ( )iQ xx e xαφ φ→

    Dµφ → e

    iα ( x )Q Dµφ

    A Aµ µ µα→ + ∂

    ( )† 2 †( ) ( ) ( ) ( )D x D x m x xµµφ φ φ φ−L= is invariant under local U(1)

    Dµ → eiαQ Dµe

    − iαQ

  • ( )( ) ( )iQ xx e xαφ φ→

    Dµφ → e

    iα ( x )Q Dµφ

    A Aµ µ µα→ + ∂

    ( )† 2 †( ) ( ) ( ) ( )D x D x m x xµµφ φ φ φ−L= is invariant under local U(1)

    Note : D iQAµ µ µ µ∂ → = ∂ − is equivalent to pµ → pµ +QAµ

    universal coupling of electromagnetism follows from local gauge invariance

    (∂µ∂

    µ + m2 )φ = −Vφ where V = −iQ(∂µ Aµ + Aµ ∂µ )−Q

    2 A2

    The Euler lagrange equation give the KG equation:

    Dµ → eiαQ Dµe

    − iαQ

  • The electromagnetic Lagrangian

    F A Aµν µ ν ν µ= ∂ − ∂

    , F F A Aµν µν µ µ µα→ → + ∂

    − 14 Fµν F

    µν

    1 2 3

    1 3 2

    2 3 1

    3 2 1

    00

    00

    E E EE B BE B BE B B

    − − −⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

    2M A Aµ µ Forbidden by gauge invariance

    F µν = i

    QDµ , Dν⎡⎣ ⎤⎦

    ⎛⎝⎜

    ⎞⎠⎟

    Invariant:  

  • Scalar  QED  Lagrangian  

    L = (Dµφ)† Dµφ − m

    2φ†φ − 14

    F µν Fµν

    Euler  Lagrange  equaEon  

    DµD

    µφ − m2φ = 0

    Noether  current  

    jµ = −iQ[φ†Dµφ − (Dµφ)†φ]

    L = − 14 Fµν F

    µν + jµ Aµ + ∂µφ* ∂µφ − m

    2φ*φ

  • The electromagnetic Lagrangian

    F A Aµν µ ν ν µ= ∂ − ∂

    , F F A Aµν µν µ µ µα→ → + ∂

    LEM = − 14 Fµν F

    µν + jµ Aµ

    1 2 3

    1 3 2

    2 3 1

    3 2 1

    00

    00

    E E EE B BE B BE B B

    − − −⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

    2M A Aµ µ Forbidden by gauge invariance

    F µν = i

    QDµ , Dν⎡⎣ ⎤⎦

    ⎛⎝⎜

    ⎞⎠⎟

  • The electromagnetic Lagrangian

    F A Aµν µ ν ν µ= ∂ − ∂

    , F F A Aµν µν µ µ µα→ → + ∂

    LEM = − 14 Fµν F

    µν + jµ Aµ

    The Euler-Lagrange equations give Maxwell equations !

    F jµν νµ∂ =. , 0

    . 0,

    tEt

    ρ ∂∇ = ∇× + =∂∂∇ = ∇× − =∂

    BE E

    B B j≡

    1 2 3

    1 3 2

    2 3 1

    3 2 1

    00

    00

    E E EE B BE B BE B B

    − − −⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

    0)A A

    µν µ ν

    ∂ ∂− ∂ =∂ ∂ ∂L L

    (

    2M A Aµ µ Forbidden by gauge invariance

    EM dynamics follows from a local gauge symmetry!!

    N.B. εµνρσ∂µFρσ = 0( )

  • Degrees  of  freedom  

    Aµ (x) : 4  degrees  of  freedom?  

    Lorentz  transformaEon:  can  remove  one  more  degree  of  freedom  

    No  Eme  derivaEve  of    A0 …no  conjugate  momentum  and  no  dynamics  

    Originates  from  gauge  invariance  …too  many  degrees  of  freedom  

    LEM = − 14 Fµν Fµν + jµ Aµ

    = − 12 ∂µ Aν ∂µ Aν + 12 ∂

    µ Aν ∂ν Aµ + jµ Aµ

    (c.f.  Chapter  8  Schwartz)  

  • No  Eme  derivaEve  of    A0 …no  conjugate  momentum  and  no  dynamics  

    Originates  from  gauge  invariance  …too  many  degrees  of  freedom  

    Gauge  fixing:  

    nµAµ = 0n2 > 0, axial gaugen2 = 0, lightcone gaugen2 < 0, temporal gauge{  •

    ∂µAµ = 0, Lorentz gauge•

    A Aµ µ µα→ + ∂ 2A Aµ µµ µ α∂ → ∂ + ∂ Rξ − gauge: ∂

    2α = − 1ξ∂µ Aµ•

    Coulomb  (radiaEon,  transverse)  gauge:    

    k.A k( ) = 0•

  • e.g.  Coulomb  gauge   L = − 14 Fµν F

    µν

    Gauge  invariance:  

    can  choose  α  to  give      

    αα  

     Coulomb  gauge  preserved  by  gauge  transformaEons  with    

    i.e.  have  residual  gauge  symmetry  to  set  A0  =  0  

    Other  equs  of  moEon  give    

  • Free  photon  field  

    ∂2Aµ − ∂µ ∂ν Aν( ) = jµ

    For a free field in Coulomb gauge ∂2A(x) = 0In analogy with the scalar case:

    aλ (k) and aλ† (k) are annihilation and creation operators after canonical quantisation

    See  Srednicki  chapter  3    and  chapters  5,  55  (LSZ  reducEon)  

    polarisaEon  vectors  

  • i.e k.A k( ) = 0

    PolarisaEon  vectors  -‐  Coulomb  gauge  

    right-‐polarizaEon  

    leT-‐polarizaEon  

    = (0,1)

    4-‐vector  form  

    0 | Aµ | p,εj = εµ

    je− ip.x

  • Ward  idenEty  

    Sample  basis:  

    Lorentz  transformaEon:  

    physical  polarisaEon  states  

    Unphysical  ?  

    e.g.  

    Λνµ =

    32 1 0 − 121 1 0 −10 0 1 012 1 0 12

    ⎜⎜⎜⎜

    ⎟⎟⎟⎟

    , Λνµε1

    ν = ε1µ + 1

    Epµ , Λν

    µ pν = pµ

    Λ  in  liOle  group,  SO(3)  

  • Ward  idenEty  

    Sample  basis:  

    Lorentz  transformaEon:  

    QED  matrix  elements:  

    M = ε µ Mµ → ε

    µ +pµE

    ⎝⎜⎞

    ⎠⎟Mµ '

    Unphysical  polarisaEon  must  not  contribute   ⇒ pµ Mµ

    ' = 0

    i.e. pµ Mµ ' = p '

    µ Mµ ' = pµ Mµ = 0 Ward  idenEty  

    physical  polarisaEon  states  

    Unphysical  ?  

    (also  required  by  gauge  invariance)