aashto supplement, rigid pavement design v2

Upload: alexmontaje

Post on 03-Apr-2018

291 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    1/91

    Note 1: Click CTRL+j on your keyboard before using this spreadsheet in EXCEL97. Note 2: Due to different monitor, EXCEL, and fonts capabilities on different computers, the text on some of the

    sheets may be truncated. It may be necessary to unprotect the sheet and resize some of the columns. Note 3: This spreadsheet needs to be copied to the hard drive to be used. It cannot be run off a floppy drive. Note 4: Figures accompanying the text are scanned into the spreadsheet. For clarity of these figures it may be

    useful to print these pages and use the printed figures.

    I. Input Sheet - General Information

    l The general information section requests information about the agency. Thisinformation is not required for the analysis, but the information entered here

    may be displayed on the "Results" sheet.

    II. Input Sheet - Design Information

    l All design inputs are required except sensitivity analysis. No default values are used.

    l Information can be retrieved from the "Saved Data" sheet using the "Retrieve Data" button. The existing data can be replaced or saved as a new set using the

    "Save Data" button.Clicking on the "Retrieve Data" button opens the "Saved Data" sheet. Select theappropriate row to be retrieved and click on the "Export" button.If the retrieval is successful, the data are retreived. Changes can be made and savedas a new data set using a different value for the search ID. The data can also

    be overwritten using the same search ID. The search value can be text, numbers, or acombination of the two that uniquely identifies the data (example: Project Numbers).This feature can also be used to save a default set of values.Using the "Clear All" ID to retrieve the "Clear All" data set clears all the data inthe spreadsheet.

    l Design information such as initial and terminal serviceability, concrete properties, base properties, and reliability and standard deviation can be input in the appropriate cells.Table 14 provides help for estimating base property values.Climatic properties such as wind, temperature, and precipitation, which are required for

    positive temperature differential calculation, can be estimated using the table of climatic properties for major cities provided in table 15.A pavement type can be selected by clicking the option buttons provided. For JPCP andJRCP, the joint spacing needs to be entered in ft in the space provided. Thisautomatically calculates the effective joint spacing to be used in design.

    l Edge support can also be selected using the option buttons provided. Thisautomatically calculates the edge support factor to be used in design.

    l A first run MUST be performed using design inputs for all variables and using anestimated effective subgrade k-value. This determines an approximate slab thicknessfor the inputs provided. The user can then navigate to the seasonal k-value calculationsheet (and, if necessary, the "Fill/Rigid Layer" sheet) to calculate the k-value adjusted for the effects of season and presence of fill section or rigid layer beneath the pavement.(The approximate slab thickness obtained from the first run is used in calculating the damageduring different seasons of the year.)Approximately 3 to 4 iterations will be required (i.e., after a first run with a trial k-value,a trial thickness is obtained). The "Calculate seasonal k-value" button can then be used tocalculate a seasonally adjusted k-value. This is exported back to the "Input Form" sheet.The slab thickness is calculated again using the new k-value. This changes the seasonaladjusted k-value and the procedure need to be repeated again. This is done till thechange in thickness does not change the seasonally adjusted k-value.Detailed information on k-value is provided in the "k-Value Information" Sheet.

    Page 1

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    2/91

    l A traffic calculation should be performed before the first run. This will result ina more appropriate slab thickness for the seasonal k-value computation.

    l After all the design information has been entered, clicking on the "Calculate" buttondisplays the design thickness at the bottom of the Input Form.The above calculation is performed in the "Calculation Sheet" sheet. The "Calculation Sheet"also provides the design traffic for slab thicknesses varying from 7 in to 15 inches, in incrementsof 0.5 in. The next row is not locked, to enable the user to change any variable andobserve its effects on the design traffic. The last row is locked and represents the thicknessfor the traffic and other inputs provided by the user in the Input Form.

    l Sensitivity analysis can also be performed from the Input Form. A desired thicknesscan be input, or the calculated thickness for the input design variable can be imported.The sensitivity analysis produces a graph on a sheet labeled "Sensitivity (Other)."The sensitivity for thickness vs. traffic i s created automatically on the"Sensitivity (Thickness)" sheet.The actual data for the sensitivity analysis is contained in a sheet called "Sensitivity Sheet;"this sheet is hidden.

    l The Input Form also contains a link to the "Faulting Check" sheet for JRCP andJPCP. For CRCP, the "Faulting Check" sheet and the "Corner Break Check" sheetremain hidden.

    l

    Red dots or flags at the top right corners of cells indicate that a note is attached to that cell.This note can be read by moving the mouse over that cell. NOTE: This spreadsheet was created in Excel95. Due to compatibility problems with Excel97,the larger notes are partially cut off (because Excel97 displays notes with fixed sizes as default).To see the entire note, a macro is written in this spreadsheet to change the size of notesthat are bigger than the comment box (The notes in Excel97 are now called comments).

    However, the user must run this macro by pressing "ctrl+j" each time the spreadsheet isopened in Excel97. This command does not affect spreadsheets in Excel95.

    l Certain cells are locked to prevent accidental erasure. Cells can only be locked when thesheet is also protected, so some sheets are protected. To unprotect a sheet, go to Toolson the menu, select Protection and select Unprotect Sheet. This creates the potentialfor accidental erasure, so it is useful to keep the sheet protected. To reprotect thesheet, select Tools, Protection, Protect Sheet and select OK without entering a password.

    The workbook should not be protected because some of the Excel basic programs (macros)need the workbook to be unprotected to be executed.For the same reason, the "Sensitivity Sheet" (which is hidden) and the "Saved Data"sheet should not be protected. Hidden sheets can be viewed by using Format, Sheet, Unhide,or Edit, Sheet, Unhide from the menu.

    III. Faulting Check Sheet

    l For jointed pavements, the Input Form links to the "Faulting Check" sheet. All cellsneed to be input in this sheet. The cells that do not need to be input are hidden usingthe outlining ("+") at the left of the sheet. To observe the values at this location, the sheet hasto be unprotected and the "+" clicked.Each time a cell value is changed, the "Calculate" button needs to be clicked to calculatefaulting, which is displayed at the bottom of the sheet. This is then compared with the criteriaset at the bottom of the sheet to "PASS" or "FAIL" the design.The criteria can be changed by changing the values in the criteria table.

    l The doweled and nondoweled sheets are designed independent of each other to providethe user control over the individual design. For example, the user may decide to provideedgedrains for the nondoweled design, which will change the drainage coefficient, C d.

    l While making a one-on-one comparison between the faulting check for the doweled andnondoweled designs, the user needs to ensure that all values are comparable.

    l Corner break checks need to be performed only for nondoweled pavements. This sheet

    Page 2

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    3/91

    can be accessed by clicking on the "Corner Break Check" button.

    Page 3

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    4/91

    Table 14. Modulus of elasticity and coefficient of friction for various base types.

    Base Type orInterface Treatment

    Modulus of Elasticity

    (psi)

    Peak Friction Coefficientlow mean high

    Fine-grained soil 3,000 - 40,000 0.5 1.3 2.0Sand 10,000 - 25,000 0.5 0.8 1.0

    Aggregate 15,000 - 45,000 0.7 1.4 2.0

    Polyethylene sheeting NA 0.5 0.6 1.0

    Lime-stabilized clay 20,000 - 70,000 3.0 NA 5.3

    Cement-treated gravel (500 + CS) * 1000 8.0 34 63

    Asphalt-treated gravel 300,000 - 600,000 3.7 5.8 10

    Lean concrete withoutcuring compound

    (500 + CS) * 1000 > 36

    Lean concrete with singleor double wax curing

    compound

    (500 + CS) * 1000 3.5 4.5

    Notes: CS = compressive strength, psiLow, mean, and high measured peak coefficients of f riction summarized from various referencesare shown above.

    Page 4

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    5/91

    EdgeDrains

    Precip.Level

    Fine-Grained Subgrade Coarse-Grained Subgrade

    Nonperm eable

    Base

    Permeable

    Base

    Nonpermeable

    Base

    Permeable

    Base

    No Wet 0.70-0.90 0.85-0.95 0.75-0.95 0.90-1.00

    Dry 0.90-1.10 0.95-1.10 0.90-1.15 1.00-1.15

    Yes Wet 0.75-0.95 1.00-1.10 0.90-1.10 1.05-1.15

    Dry 0.95-1.15 1.10-1.20 1.10-1.20 1.15-1.20

    No tes: 1. Fine subgrade = A-1 through A-3 classes;Coarse subgrade = A-4 through A-8 classes.

    2. Permeable Base = k = 1000 ft/day (305 m/day) or uniformity coefficient (C u) 6.3 . Wet clim ate = Pr ecip itat ion > 25 in /year (6 35 m m/year );

    Dry climate = Precipitation 25 in/year (635 mm/year).4. Select midpoint of range and use other drainage features (adequacy of cross slopes, depth of ditches, presence of daylighting, relative drainability of base course, bathtub design, etc.) to adjust upwardor downward.

    Page 5

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    6/91

    Table 15. Mean annual temperature, precipitation, and wind speed for selected U.S. cities.

    Location M e a n

    A n n u a

    l T e m

    p e r a

    t u r e ,

    F

    M e a n

    A n n u a

    l P r e c i p i

    t a t i o n ,

    i n

    M e a n

    A n n u a

    l W i n d

    S p e e

    d , m p h

    Location M e a n

    A n n u a

    l T e m

    p e r a

    t u r e ,

    F

    M e a n

    A n n u a

    l P r e c i p i

    t a t i o n ,

    i n

    M e a n

    A n n u a

    l W i n d

    S p e e

    d , m p h

    Location M e a n

    A n n u a

    l T e m

    p e r a

    t u r e ,

    F

    M e a n

    A n n u a

    l P r e c i p i

    t a t i o n ,

    i n

    M e a n

    A n n u a

    l W i n d

    S p e e

    d , m p h

    ALABAMA KANSAS OKLAHOMABirmingham 62.2 52.2 7.2 Topeka 54.1 28.6 10.1 Oklahoma City 59.9 30.9 12.5Mobile 67.5 64.6 9.0 Wichita 56.4 40.1 12.3 Tulsa 60.3 38.8 10.4Montgomery 67.5 49.2 6.7 KENTUCKY OREGON

    ALASKA Lexington 54.9 45.7 7.1 Medford 53.6 19.8 4.8Anchorage 35.3 15.2 6.9 Louisville 56.2 43.6 8.3 Portland 53.0 37.4 7.9

    Fairbanks 25.9 10.4 5.5 LOUISIANA Salem 52.0 40.4 7.0King Salmon 32.8 19.3 10.8 Baton Rouge 67.5 55.8 7.7 PENNSYLVANIA

    ARIZONA Lake Charles 68.0 53.0 8.6 Harrisburg 53.0 39.1 7.6Flagstaff 45.4 20.9 7.1 New Orleans 68.2 59.7 8.2 Philadelphia 54.3 41.4 9.5Phoenix 71.2 7.1 6.3 Shreveport 65.4 43.8 8.5 Pittsburgh 50.3 36.3 9.1Tucson 68.0 11.1 8.2 MAINE RHODE ISLAND

    ARKANSAS Caribou 38.9 36.6 11.2 Providence 50.3 45.3 10.6Little Rock 61.9 49.2 7.9 Portland 45.0 4 3.8 8.7 SOUTH CAROLINA

    CALIFORNIA MARYLAND Charleston 64.8 51.6 8.7Bakersfield 65.6 5.7 6.4 Baltimore 55.1 41.8 9.2 Columbia 63.3 49.1 6.9Fresno 62.5 10.5 6.4 MASSACHUSETTS SOUTH DAKOTALos Angeles 62.6 12.1 7.5 Boston 51.5 43.8 12.4 Huron 44.7 18.7 11.6Sacramento 60.6 17.1 8.1 Worcester 46.8 47.6 12.4 Rapid City 46.7 16.3 11.3

    San Diego 63.8 9.3 6.9 MICHIGAN TENNESSEESan Francisco 56.6 1 9.7 10.5 Detroit 48.6 4.0 10.2 Chattanooga 59.4 52.6 6.1Santa Barbara 58.9 16.2 6.1 Flint 46.8 29.2 10.6 Knoxville 58.9 47.3 7.1

    COLORADO Grand Rapids 47.5 34.4 9.7 Memphis 61.8 51.6 9.0Colorado Spring 48.9 15.4 10.1 MINNESOTA Nashville 59.2 48.5 8.0Denver 50.3 15.3 8.8 Duluth 38.2 29.7 11.2 TEXAS

    CONNECTICUT Minneapolis 44.7 26.4 10.6 Amarillo 57.2 19.1 13.6Hartford 49.8 44.4 9.2 MISSISSIPPI Brownsville 73.6 25.4 11.6

    DC Jackson 64.6 52.8 7.4 Corpus Christi 72.1 30.2 12.0Washington 57.5 39.0 9.3 MISSOURI Dallas 66.0 29.5 10.8

    DELAWARE Kansas City 56.3 35.2 10.7 El Paso 63.4 7.8 9.0Wilmington 54.0 41.4 9.2 MONTANA Galveston 69.6 40.2 11.0

    FLORIDA Great Falls 44.7 15.2 12.8 Houston 68.3 44.8 7.8Jacksonville 68.0 52.8 8.1 NEBRASKA Lubbock 59.9 17.8 12.4Miami 75.6 57.6 9.2 Omaha 49.5 29.9 10.6 Midland 63.5 13.7 11.1Orlando 72.4 47.8 8.6 NEVADA San Antonio 68.7 29.2 9.4Tallahassee 67.2 64.6 6.4 Las Vegas 66.3 4.2 9.2 Waco 67.0 31.0 11.3Tampa 72.0 46.7 8.5 Reno 49.4 7.5 6.5 Wichita Falls 63.5 26.7 11.7West Palm Beac 74.6 59.7 9.4 NEW JERSEY UTAH

    GEORGIA Atlantic City 53.1 41.9 10.1 Salt Lake City 51.7 15.3 8.8Atlanta 61.2 48.6 9.1 NEW MEXICO VERMONTAugusta 63.2 43.1 6.5 Albuquerque 56.2 8.1 9.0 Burlington 44.1 33.7 8.8Macon 64.7 44.9 7.7 NEW YORK VIRGINIA

    Page 6

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    7/91

    Savannah 65.9 49.7 7.9 Albany 47.3 35.7 8.9 Norfolk 59.5 45.2 10.6HAWAII Buffalo 47.6 37.5 12.1 Richmond 57.7 44.1 7.6

    Hilo 73.6 128.2 7.1 New York City 54.5 44.1 12.1 Roanoke 56.1 39.2 8.2Honolulu 77.0 23.5 11.5 Rochester 47.9 31.3 9.7 WASHINGTON

    IDAHO Syracuse 47.7 39.1 9.7 Olympia 49.6 51.0 6.7Boise 51.1 11.7 8.8 NORTH CAROLINA Seattle 52.7 38.8 9.0Pocatello 46.6 10.9 10.2 Charlotte 60.0 43.2 7.5 Spokane 47.2 16.7 8.8

    ILLINOIS Greensboro 57.9 42.5 7.5 WEST VIRGINIAChicago 49.2 33.3 10.2 Raleigh 59.0 41.8 7.8 Charleston 54.8 42.4 6.4Peoria 50.4 34.9 10.1 Wilmington 63.4 53.4 8.8 Huntington 55.2 40.7 6.5Springfield 52.6 33.8 11.3 NORTH DAKOTA WISCONSIN

    INDIANA Bismarck 41.3 15.4 10.3 Green Bay 43.6 28.0 10.1Evansville 55.7 41.6 8.2 Fargo 40.5 19.6 12.4 Madison 45.2 30.8 9.8Fort Wayne 49.7 34.4 10.1 OHIO Milwaukee 46.1 30.9 11.6Indianapolis 52.1 39.1 9.6 Akron-Canton 49.5 35.9 9.8 WYOMINGSouth Bend 49.4 38.2 10.4 Cleveland 49.6 35.4 10.7 Casper 45.2 11.4 13.0

    IOWA Columbus 51.7 37.0 8.7 Cheyenne 45.7 13.3 12.9Des Moines 49.7 30.8 10.9 Dayton 51.9 34.7 10.1Sioux City 48.4 25.4 11.0 Youngstown 48.3 37.3 10.0Waterloo 46.1 33.1 10.7

    C =(F - 32)/1.8, 1 in = 25.4 mm, 1 mph = 1.61 km/h Source: National Climatic Data Center, 1986

    Page 7

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    8/91

    Page 8

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    9/91

    Page 9

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    10/91

    Page 10

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    11/91

    Page 11

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    12/91

    Page 12

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    13/91

    Page 13

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    14/91

    Page 14

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    15/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    16/91

    Rigid Pavement Design - Based on AASHTO Supplemental Guide

    Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete Pavement Performance Prediction

    Results

    Project # 1-20-98LCBDescription: Lean Concrete Base, 5-in.

    Location: Champaign, IL

    Slab Thickness Design

    Pavement Type JPCP18-kip ESALs Over Initial Performance Period (million) 21.88 millionInitial Serviceability 4.5Terminal Serviceability 2.528-day Mean PCC Modulus of Rupture 700 psiElastic Modulus of Slab 4,500,000 psiElastic Modulus of Base 25,000 psiBase Thickness 6.0 in.Mean Effective k-Value 165 psi/inReliability Level 90 %Overall Standard Deviation 0.34

    Calculated Design Thickness 11.24 in

    Temperature Differential

    Mean Annual Wind Speed 10.2 mph

    Mean Annual Air Temperature 49.2 oFMean Annual Precipitation 33.3 in

    Maximum Positive Temperature Differential 8.57 oF

    Modulus of Subgrade Reaction

    Period Description Subgrade k-Value, psi

    2 Fall 1503 Winter 3003 Spring 804 Summer 120

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    17/91

    Seasonally Adjusted Modulus of Subgrade Reaction 165 psi/in

    Modulus of Subgrade Reaction Adjusted for Rigid Layer and Fill Section 175 psi/in

    Traffic

    Performance Period 20 yearsTwo-Way ADT 8,000

    Number of Lanes in Design Direction 2Percent of All Trucks in Design Lane 95%Percent Trucks in Design Direction 50%

    Vehicle Class Percent of Annual Initial Annual AccumulatedADT Growth Truck Factor Growth in 18-kip ESALs

    Truck Factor (millions)

    1 65.0% 5.0% 0.0 3.0% 0.162 25.0% 6.0% 0.4 2.0% 5.913 10.0% 8.0% 1.6 5.0% 15.81

    Total Calculated Cumulative ESALs million

    Faulting

    Doweled

    Dowel Diameter 1.5 inDrainage Coefficient 1.00

    Average Fault for Design Years with Design Inputs inCriteria Check

    Nondoweled

    Drainage Coefficient 1.1

    Average Fault for Design Years with Design Inputs inCriteria Check

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    18/91

    Calculation Sheet

    D Design Traffic L E l F Term1 Term2 Term3 Term4(in) MESALs in in

    7.0 1.32 180 1.00 29.88 1.10 -1.94 0.53 0.55 -0.167.5 1.92 180 1.00 31.47 1.10 -1.94 0.54 0.52 -0.15

    8.0 2.76 180 1.00 33.03 1.09 -1.94 0.55 0.50 -0.14

    8.5 3.92 180 1.00 34.57 1.08 -1.94 0.56 0.48 -0.139.0 5.51 180 1.00 36.08 1.08 -1.94 0.57 0.46 -0.139.5 7.65 180 1.00 37.58 1.07 -1.94 0.58 0.44 -0.12

    10.0 10.50 180 1.00 39.05 1.07 -1.94 0.58 0.42 -0.1110.5 14.25 180 1.00 40.50 1.06 -1.94 0.59 0.41 -0.1111.0 19.11 180 1.00 41.94 1.05 -1.94 0.60 0.39 -0.1011.5 25.35 180 1.00 43.36 1.05 -1.94 0.60 0.38 -0.1012.0 33.29 180 1.00 44.77 1.04 -1.94 0.61 0.37 -0.0912.5 43.30 180 1.00 46.16 1.03 -1.94 0.62 0.36 -0.0913.0 55.83 180 1.00 47.54 1.03 -1.94 0.62 0.35 -0.0913.5 71.37 180 1.00 48.91 1.02 -1.94 0.63 0.34 -0.0814.0 90.51 180 1.00 50.26 1.02 -1.94 0.63 0.33 -0.0814.5 113.94 180 1.00 51.60 1.01 -1.94 0.64 0.32 -0.0815.0 142.42 180 1.00 52.93 1.00 -1.94 0.65 0.31 -0.08

    11.00 19.11 180 1.00 41.94 1.05 -1.94 0.60 0.39 -0.10

    11.24 21.91 180 1.00 42.63 1.05 -1.94 0.60 0.39 -0.10

    Page 18

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    19/91

    Calculation Sheet

    Term5 Term6 Term7 log b b TD s l s t' L EF psi psi in

    0.08 -0.15 -0.26 -1.34 0.0452 5.76 266.3 370.4 180 1.000.08 -0.15 -0.24 -1.34 0.0461 6.26 243.2 343.9 180 1.00

    0.07 -0.16 -0.21 -1.33 0.0468 6.69 222.9 319.4 180 1.00

    0.07 -0.16 -0.20 -1.32 0.0474 7.08 205.0 296.9 180 1.000.07 -0.17 -0.18 -1.32 0.0478 7.42 189.1 276.3 180 1.000.07 -0.17 -0.17 -1.32 0.0481 7.72 175.0 257.4 180 1.000.06 -0.17 -0.15 -1.32 0.0484 8.00 162.4 240.1 180 1.000.06 -0.18 -0.14 -1.31 0.0485 8.24 151.2 224.3 180 1.000.06 -0.18 -0.13 -1.31 0.0487 8.47 141.1 209.9 180 1.000.06 -0.19 -0.12 -1.31 0.0488 8.68 132.0 196.6 180 1.000.05 -0.19 -0.12 -1.31 0.0488 8.87 123.7 184.5 180 1.000.05 -0.19 -0.11 -1.31 0.0488 9.04 116.2 173.3 180 1.000.05 -0.20 -0.10 -1.31 0.0488 9.20 109.4 163.0 180 1.000.05 -0.20 -0.10 -1.31 0.0488 9.35 103.2 153.6 180 1.000.05 -0.21 -0.09 -1.31 0.0488 9.49 97.5 144.8 180 1.000.05 -0.21 -0.09 -1.31 0.0488 9.62 92.3 136.8 180 1.000.05 -0.21 -0.08 -1.31 0.0487 9.74 87.5 129.3 180 1.00

    0.06 -0.18 -0.13 -1.31 0.0487 8.47 141.1 209.9 180 1.00

    0.06 -0.18 -0.13 -1.31 0.0487 8.57 136.6 203.4 180 1.00

    Page 19

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    20/91

    Calculation Sheet

    l F Term1 Term2 Term3 Term4 Term5 Term6 Term7 log bin

    32.65 1.10 -1.94 0.49 0.51 -0.17 0.09 -0.18 -0.23 -1.4434.39 1.10 -1.94 0.50 0.48 -0.16 0.09 -0.19 -0.21 -1.44

    36.09 1.09 -1.94 0.51 0.46 -0.15 0.08 -0.20 -0.19 -1.43

    37.77 1.08 -1.94 0.51 0.44 -0.14 0.08 -0.20 -0.17 -1.4339.43 1.08 -1.94 0.52 0.42 -0.13 0.08 -0.21 -0.16 -1.4341.06 1.07 -1.94 0.53 0.40 -0.13 0.07 -0.21 -0.15 -1.4342.67 1.07 -1.94 0.53 0.39 -0.12 0.07 -0.22 -0.14 -1.4344.26 1.06 -1.94 0.54 0.37 -0.11 0.07 -0.22 -0.13 -1.4345.83 1.05 -1.94 0.55 0.36 -0.11 0.07 -0.23 -0.12 -1.4347.38 1.05 -1.94 0.55 0.35 -0.10 0.06 -0.23 -0.11 -1.4348.92 1.04 -1.94 0.56 0.34 -0.10 0.06 -0.24 -0.10 -1.4350.44 1.03 -1.94 0.56 0.33 -0.10 0.06 -0.24 -0.10 -1.4351.95 1.03 -1.94 0.57 0.32 -0.09 0.06 -0.25 -0.09 -1.4353.44 1.02 -1.94 0.58 0.31 -0.09 0.06 -0.25 -0.09 -1.4354.92 1.02 -1.94 0.58 0.30 -0.08 0.05 -0.26 -0.08 -1.4356.38 1.01 -1.94 0.59 0.29 -0.08 0.05 -0.26 -0.08 -1.4357.83 1.00 -1.94 0.59 0.29 -0.08 0.05 -0.27 -0.07 -1.44

    45.83 1.05 -1.94 0.55 0.36 -0.11 0.07 -0.23 -0.12 -1.43

    46.58 1.05 -1.94 0.55 0.35 -0.11 0.06 -0.23 -0.11 -1.43

    Page 20

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    21/91

    Calculation Sheet

    b TD s l s t L1 L2 log R G Y log WF psi psi kips

    0.0362 6.16 284.6 384.1 18 1 6.58 -0.176 1.37 6.450.0367 6.69 258.9 353.9 18 1 6.77 -0.176 1.22 6.63

    0.0370 7.15 236.6 326.4 18 1 6.96 -0.176 1.14 6.80

    0.0373 7.56 217.0 301.6 18 1 7.13 -0.176 1.09 6.970.0374 7.92 199.7 279.2 18 1 7.29 -0.176 1.06 7.130.0375 8.24 184.4 258.8 18 1 7.45 -0.176 1.04 7.280.0375 8.53 170.9 240.4 18 1 7.60 -0.176 1.03 7.420.0375 8.79 158.8 223.7 18 1 7.74 -0.176 1.02 7.570.0375 9.03 147.9 208.5 18 1 7.87 -0.176 1.01 7.700.0374 9.25 138.2 194.7 18 1 8.00 -0.176 1.01 7.830.0373 9.45 129.4 182.1 18 1 8.13 -0.176 1.01 7.950.0372 9.64 121.4 170.6 18 1 8.25 -0.176 1.00 8.070.0371 9.81 114.2 160.1 18 1 8.37 -0.176 1.00 8.190.0370 9.96 107.6 150.4 18 1 8.48 -0.176 1.00 8.300.0369 10.11 101.5 141.5 18 1 8.59 -0.176 1.00 8.410.0367 10.25 96.0 133.3 18 1 8.69 -0.176 1.00 8.520.0366 10.37 90.9 125.8 18 1 8.79 -0.176 1.00 8.62

    0.0375 9.03 147.9 208.5 18 1 7.87 -0.176 1.01 7.70

    0.0374 9.14 143.1 201.8 18 1 7.94 -0.176 1.01 7.76

    Page 21

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    22/91

    Calculation Sheet

    log W' W'(50%) Z W 18 R log W 18 R D = A 0 + A 1 log W 18 R MESALs MESALS

    6.56 3.60 1.282 1.32 6.126.72 5.23 1.282 1.92 6.28

    6.88 7.51 1.282 2.76 6.44 A0 = -17.387

    7.03 10.69 1.282 3.92 6.59 A1 = 3.9287.18 15.03 1.282 5.51 6.747.32 20.87 1.282 7.65 6.88 R = 0.9947.46 28.65 1.282 10.50 7.02 Stand Err of X = 0.2037.59 38.86 1.282 14.25 7.157.72 52.11 1.282 19.11 7.287.84 69.13 1.282 25.35 7.407.96 90.79 1.282 33.29 7.528.07 118.10 1.282 43.30 7.648.18 152.26 1.282 55.83 7.758.29 194.64 1.282 71.37 7.858.39 246.85 1.282 90.51 7.968.49 310.74 1.282 113.94 8.068.59 388.42 1.282 142.42 8.15

    7.72 52.11 1.282 19.11 7.28

    7.78 59.75 1.282 21.91 7.34 11.23981818 11.2398192

    Page 22

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    23/91

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    40.0

    45.0

    0 100 200 300 400 500 600 700 800

    D e s

    i g n

    T r a

    f f i c

    , M E S A L s

    k-value, psi

    Sensitivity Analysis (Effective Subgrade Support)

    Modulus of Rupture =650 psi

    Elastic Modulus of Concrete = 4,200,000psi

    Elastic Modulus of Base = 25,000 psi

    Base Thickness = 6in

    k-Value of subgrade= 50 to 800 psi

    Joint Spacing = 15 ft

    Reliability = 90 %

    Standard Deviation =0.34

    Slab Thickness =11.74 in

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    24/91

    1

    10

    100

    1000

    7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

    D e s

    i g n

    T r a

    f f i c

    , M E S A L s

    Slab Thickness, in

    Sensitivity Analysis (Thickness)

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    25/91

    Faulting

    DOWELED PAVEMENT NONDOWELED PAVEMENT

    Dowel Diameter: 1.50 inK d: 1,500,000 psi/in

    Es: 29,000,000 psi

    ALPHA: 0.000006 /oF

    TRANGE: 65.0 oF Days90: 20 days

    e: 0.00015 strain

    D: 11.24 in D: 11.24 in

    P: 9,000 lbf

    T: 0.45

    FI: 500 oF-days FI: 500 oF-days

    CESAL: 21.88 million CESAL: 21.88 millionAge: 20.0 years Age: 20.0 years

    Cd: 1.00 Cd: 1.10

    Faulting (doweled) Faulting (nondoweled)

    in in

    Faulting Check - Faulting Check -

    Recommended critical mean joint faulting levels for design (Table 28)

    Joint Spacing Critical Mean Joint Faulting< 25 ft 0.06 in> 25 ft 0.13 in

    Base /Slab Frictional Restraint

    Stabilized Base

    Aggregate Base or LCB w/ bond breaker

    Base Type

    Stabilized Base

    Unstabilized Base

    Base Type

    Stabilized Base

    Unstabilized Base

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    26/91

    Note: Joint load position stress checks need to be performed only for nondoweled pavements

    Only two numbers need to be entered in this sheet:Temperature gradient

    Tensile stress at top of slab

    Step 1:

    Total Negative Temperature Differential

    Slab Thickness: 11.24 in

    Total Negative Temperature Differential: -5.9 oF

    Construction Curling and Moisture Gradient Temperature Differential

    Enter temperature gradient: 1.0 oF/in (enter positive value from below)

    For temperature gradient use:

    Wet Climate: 0 to 2 oF/in (Annual Precipitation >= 30 in or Thornthwaite Moisture Index > 0)

    Dry Climate: 1 to 3 oF/in (Annual Precipitation < 30 in or

    Thornthwaite Moisture Index < 0)

    Total Effective Negative Temp. Differential: -17.2 oF

    Step 2:

    Use one or more of the following charts to estimate the tensile stress at top of slab. Note that the charts show the variation of tensile stress with negative temperature differentialfor slab thicknesses ranging from 7 to 13 in. These are plotted for a base course thicknessof 6 in. The six charts represent three k-values (100, 250 and 500 psi/in) and two values for theelastic modulus of the base (25,000 psi and 1,000,000 psi). Use judgment toextrapolate the value of the tensile stress at the top of the slab from these charts.

    Enter Tensile Stress at Top of Slab: 120 psi (use charts below)

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    27/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    28/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    29/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    30/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    31/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    32/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    33/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    34/91

    NOTE: The k-value used in this design procedure is not a composite k, as in the original AASHTO

    design procedure. The k-value to be input in the "Input Form" and in the "Seasonal k-Value" sheet

    is the actual subgrade soil modulus of subgrade reaction.

    The k-value input required for this design method is determined using the following steps:

    Step 1. Select a subgrade soil k-value for each season, using any of the three following methods:(a) Correlations with soil type and other soil properties or tests.(b) Deflection testing and backcalculation (recommended).(c) Plate bearing tests.

    Detailed information for Step 1 is included below.

    Step 2. The "Seasonal k-Value" Sheet can then be used to determine a seasonally adjustedeffective k-value.

    Step 3. This seasonally adjusted effective k-value can then be adjusted for the effects of a shallow rigid layer, if present, or an embankment above the natural subgrade using the"Fill/Rigid Adjustment" sheet.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    35/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    36/91

    Figure 40. The k-value versus degree of saturation for cohesive soils

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    37/91

    Table 11. Recommended k-value ranges for various soil types.

    AASHTOClass

    Description UnifiedClass

    DryDensity(lb/ft 3)

    CBR(perce

    nt)

    k Value(psi/in)

    Coarse-grained Soils:

    A-1-a, well gradedgravel GW, GP

    125 - 140 60 - 80 300 - 450

    A-1-a, poorly graded 120 - 130 35 - 60 300 - 400

    A-1-b coarse sand SW 110 - 130 20 - 40 200 - 400

    A-3 fine sand SP 105 - 120 15 - 25 150 - 300

    A-2 Soils (gran ular materials with high fines):

    A-2-4, gravelly silty gravel GM 130 - 145 40 - 80 300 - 500

    A-2-5, gravelly silty sandy gravel

    A-2-4, sandy silty sand SM 120 - 135 20 - 40 300 - 400

    A-2-5, sandy silty gravelly sand

    A-2-6, gravelly clayey gravel GC 120 - 140 20 - 40 200 - 450

    A-2-7, gravelly clayey sandy gravel

    A-2-6, sandy clayey sandSC 105 - 130 10 - 20 150 - 350

    A-2-7, sandy clayey gravellysand

    Fine-grained Soils:

    A-4silt

    ML, OL90 - 105 4 - 8 25 - 165 *

    silt/sand/ gravel mixture

    100 - 125 5 - 15 40 - 220 *

    A-5 poorly gradedsilt

    MH 80 - 100 4 - 8 25 - 190 *

    A-6 plastic c lay CL 100 - 125 5 - 15 25 - 255 *

    A-7-5 moderately plasticelastic clay

    CL, OL 90 - 125 4 - 15 25 - 215 *

    A-7-6 highly plasticelastic clay CH, OH 80 - 110 3 - 5 40 - 220 *

    * k-value of fine-grained soil is highly dependent on d egree of saturation. See Figure 40.

    These recommended k-value ranges apply to a homogeneous soil layer at least 10 ft [3 m] thick . If anembankment layer less than 10 ft [3 m] thick exists over a softer subgrade, the k-value for the underlyingsoil should be estimated from this table and adjusted for the type and thickness of embankment materialusing Step 3. If a layer of bedrock exists within 10 ft [3 m] of the top of the soil, the k should be adjustedusing Step 3. 1 lb/ft 3 =16.018 kg/m 3 , 1 psi/in = 0.271 kPa/mm

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    38/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    39/91

    The k-values and correlations for A-2 soils: Soils in the A-2 class are all granular materials

    falling between A-1 and A-3. Although it is difficult to predict the behavior of such a wide variety of

    materials, the available data indicate that in terms of bearing capacity, A-2 materials behave

    similarly to cohesionless materials of comparable density. Recommended k-value ranges for A-2

    soils, along with typical ranges of dry density and CBR for each soil type, are summarized in

    Table 11.

    Correlation of k -value to California Bearing Ratio: Figure 41 illustrates the approximate range

    of k-values that might be expected for a soil with a given CBR.

    Correlation of k-values to penetration rate by Dynamic Cone Penetrometer: Figure 4 2

    illustrates the range of k-values that might be expected for a soil with a g iven penetration rate

    (inches per blow) measured with a Dynamic Cone Penetrometer. This is a rapid hand-held testing

    device that can be used to quickly test dozens of locations along an alignment. The DCP can also

    penetrate AC surfaces and surface treatments to test the foundation below.

    Assignment of k-values to seasons. Among the factors that should be considered in selecting

    seasonal k-values are the seasonal movement of the water table, seasonal precipitation levels,

    winter frost depths, number of freeze-thaw cycles, and the extent to which the subgrade will be

    protected from frost by embankment material. A "frozen" k may not be appropriate for winter,

    even in a cold climate, if the frost will not reach and remain in a substantial thickness of the

    subgrade throughout the winter. If it is anticipated that a substantial depth (e.g., three feet or

    more) of the subgrade will be frozen, a k-value of 500 psi/in [135 kPa/mm] would be an

    appropriate "frozen" k.

    The seasonal variation in degree of saturation is difficult to predict, but in locations where a water

    table is constantly present at a depth of less than about 10 ft [3 m], it is reasonable to expect that

    fine-grained subgrades will remain at least 70 to 90 percent saturated, and may be completely

    saturated for substantial periods in the spring. County soil reports can provide data on the

    position of the high-water table (i.e., the typical depth to the water tab le at the time of the ye ar that

    it is at its highest). Unfortunately, county soil reports do not provide data on the variation in depth

    to the water table throughout the year.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    40/91

    Figure 41. Approximate relationship of k-value range to CBR.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    41/91

    Figure 42. Approximate relationship of k-value range to DCP penetration rate.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    42/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    43/91

    Compute AREA. For a bare concrete pavement, compute the AREA 7 of each deflection basin

    using the following equation:

    where d 0 = deflection in center of loading plate, inches

    d i = deflections at 0, 8, 12, 18, 24, 36, and 60 in [0, 203, 305, 457, 610, 915, and 1524

    mm] from plate center, inches

    For a composite pavement, compute the AREA 5 of each deflection basin using the following

    equation:

    d

    d 12+d

    d 18+d

    d 9+d

    d 6 +d

    d 5+d

    d 6 +4 = AREA0

    60

    0

    36

    0

    24

    0

    18

    0

    12

    0

    87

    d d

    12+d d

    18+d d

    9+d d

    6 +3 = AREA 1260

    12

    36

    12

    24

    12

    18

    5

    Estimate l assuming an infinite slab size. The radius of relative stiffness for a bare

    concrete pavement (assuming an infinite slab) may be estimated using the following equation:

    The radius of relative stiffness for a composite pavement (assuming an infinite slab) may be

    estimated using the following equation:

    Estimate k assuming an infinite slab size. For a bare concrete pavement, compute an

    0.698-289.708

    AREA 60

    =

    7 2.566

    est

    ln

    l

    0.476 -158.40

    AREA 48 =

    5

    2.220

    est

    lnl

    ( )l est 20

    *0

    est d

    d P = k

    [26]

    [27]

    [28]

    [30]

    [29]

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    44/91

    initial estimate of the k-value using the following equation:

    where k = backcalculated dynamic k-value, psi/in

    P = load, lb

    d 0 = deflection measured at center of load plate, inch

    lest = estimated radius of relative stiffness, inches, from previous step

    d 0* = nondimensional coefficient of deflection at center of load plate:

    ( )[ ]e0.1245 = d e0.14707 -*0 est -0 .0 7 5 6 5 l

    For a composite pavement, compute an initial estimate of the k-value using the following equation:

    d 12 = deflection measured 12 in [305 mm] from center of load plate, inch

    lest = estimated radius of relative stiffness, in, from previous step

    d 12* = nondimensional coefficient of deflection 12 in [305 mm] from center of load plate:

    Compute adjustment factors for d 0 and l for finite slab size. For both bare concrete and

    composite pavements, the initial estimate of l is used to compute the following adjustment factors

    to d 0 and l to account for the finite size of the slabs tested:

    ( )l est 212

    *12

    est d

    d P = k

    ( )[ ]e0.12188 = d e0.79432-*12 est -0 .07074l

    e1.15085-1 = AF L

    0.71878-d est

    0 . 8 0 1 5 1

    0

    l

    e0.89434-1 = AF L

    0.61662-est

    1 . 0 4 8 3 1

    ll

    where, if the s lab length is less than or equal to tw ice the slab w idth, L is the square root of the

    product of the slab length and width, both in inches, or if the slab length is greater than twice the

    = *

    [32]

    [33]

    [31]

    [34]

    [35]

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    45/91

    width, L is the product of the square root of two and the slab length in inches:

    Adjust k for finite slab size. For both bare concrete and composite pavements, adjust the

    initially estimated k-value using the following equation:

    Compute mean dynamic k-value. Exclude from the calculation of the mean k-value any

    unrealistic values (i.e., less than 50 psi/in [14 kPa/mm] or greater than 1500 psi/in [407 kPa/mm]),

    as well as any individual values that appear to be significantly out of line with the rest of the

    values.

    L*2= L , L*2> Lif

    ,

    l wl

    wl wl

    AF AF k =k

    d 2

    est

    0l

    Compute the es timated mean static k-value for design. Divide the mean dynamic k-value by

    two to est imate the mean static k-value for design.

    A blank worksheet for computation o f k from deflection data and example computations of k from

    deflection basins measured on two pavements, one bare concrete and the other composite, are

    given in Table 12.

    Seasonal variation in backcalculated k -values. The design k-value determined from

    backca lculation as described above represents the k-value for the season in which the deflectiontesting was conducted. An agency may wish to conduct deflection testing on selected projects in

    different seasons o f the year to assess the seasonal variation in backcalculated k-values for

    different types of subgrades.

    [36]

    [37]

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    46/91

    Table A2. Determination of design subgrade k-value from deflection measurements.

    BARE CONCRETE PAVEMENT

    Step Equation Calculated Value Example

    d 0d 8d 12d 18d 24d 36d 60

    ______________ ______________

    ______________

    ______________

    ______________

    ______________

    ______________

    0.004180.00398

    0.00384

    0.00361

    0.00336

    0.00288

    0.00205

    AREA 7 [26] 45.0

    Initial estimate of l [28] 40.79

    Nondimensional d 0*and initial estimate of k

    [31][30]

    0.1237160

    Afd 0AF l

    [34]

    [35]

    0.867

    0.934

    Adjusted k [37] 212

    Mean dynamic k 212

    Mean static k for design 106

    Table 12.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    47/91

    COMPOSITE PAVEMENT

    Step Equation Calculated Value Example

    d 12

    d 18d 24d 36d 60

    ____ ______ ____

    ____ ______ ____ ____ ______ ____

    ____ ______ ____

    ____ ______ ____

    0.00349

    0.003320.00313

    0.00273

    0.00202

    AREA 5 [27] 37.8

    Initial estimate of l [29] 48.83

    Nondimensional d 12*

    and initial estimate of k

    [33]

    [32]

    0.1189

    128

    Afd 0AF l

    [34]

    [35]

    0.823

    0.896

    Adjusted k [37] 195

    Mean dynamic k 195

    Mean static k for design 97

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    48/91

    Method C -- Plate Bearing Test Methods. The subgrade or embankment elastic k-value may

    be determined from either of two types of plate bearing tests: repetitive static plate loading

    (AASHTO T221, ASTM D1195) or nonrepetitive static plate loading (AASHTO T222, ASTM

    D1196). These test methods were developed for a variety of purposes, and do not provide explicit

    guidance on the determination of the required k-value input to the design procedure describedhere.

    For the purpose of concrete pavement design, the recommended subgrade input parameter is

    the static elastic k-value. This may be determined from either a repetitive or nonrepetitive test on

    the prepared subgrade or on a prepared test embankment, provided that the embankment is at

    least 10 ft [3 m] thick. Otherwise, the tests should be conducted on the subgrade, and the k-value

    obtained should be adjusted to account for the thickness and density of the embankment, using

    the nomograph provided in Step 3.

    In a repetitive test, the elastic k-value is determined from the ratio of load to elastic

    deformation (the recoverable portion of the total deformation measured). In a nonrepetitive test,

    the load-deformation ratio at a deformation of 0.05 in [1.25 mm] is considered to represent the

    elastic k-value, according to extensive research by the U.S. Army Corps of Engineers.

    Note also that a 30-in-diameter [762-mm-diameter] plate should be used to determine the

    elastic static k-value for use in design. Smaller diameter plates will yield substantially higher k-

    values, which are not appropriate for use in this design procedure. An adequate number of tests

    should be run to ensure coverage over the projec t length. The mean of the tests becomes the

    static elastic k-value for the season of testing. This value is then used to determine the effective

    seasonally adjusted elastic k-value considering the factors discussed above.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    49/91

    Season Number of Months Subgrade k-Value, W 18, Relative Damage

    psi/in millions in the Season

    Fall 2 150 21.72 0.0921Winter 3 300 19.19 0.1563

    Spring 3 80 23.12 0.1298

    Summer 4 120 22.31 0.1793

    Total: 12 Mean Damage: 0.0465

    W18: 21.52

    Seasonally Adjusted Subgrade k-Value (psi/in): 165

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    50/91

    Adjustment for the Effects of Embankment and/or Shallow Rigid Layer:

    The seasonally adjusted subgrade k-value is to be adjusted using the following nomograph if:(a) fill material will be placed above the natural subgrade, and/or (b) a rigid layer (e.g., bedrock or hardpan clay) is present at a depth of 10 ft or less beneath

    the existing subgrade surface.

    Note: The rigid layer adjustment should only be applied if the subgrade k was determinedon the basis of soil type or similar correlations. If the k-value was determined fromnondestructive deflection testing or from plate bearing tests, the effect of a rigid layer,if present at a depth of less than 10 ft, is already represented in the k-value obtained.

    Seasonally Adjusted Subgrade k-Value: psi/in

    If required, use the nomograph below to adjust the above subgrade k-value for fill and/or rigid layer and enter the adjusted value here:

    175 psi/in

    Size image for better resolution.

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    51/91

    Traffic Worksheet

    Performance Period: 20 yearsTwo-Way Daily Traffic (ADT): 8,000

    Number of Lanes in Design Direction: 2Percent of All Trucks in Design Lane: 95%

    Percent Trucks in Design Direction: 50%

    VehicleClass

    Percent of ADT(Total = 100%)

    Annual %Growth

    Average InitialTruck Factor

    (ESALs/truck)

    Annual %Growth in

    Truck Factor

    AccumulatedESALs

    (millions)

    1 65.0% 5.0% 0.004 3.0% 0.162 25.0% 6.0% 0.390 2.0% 5.913 10.0% 8.0% 1.620 5.0% 15.81456

    789

    10111213

    Sum of % ADT: 100.0 Calculated ESALs: million(Should be 100)

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    52/91

    Saved Data

    Select row to be exported and click the "Export" button.

    ID Agency: Street Address: City: State: Project Number: Description:

    Clear Example ERES 505 W. University Ave. Champaign IL 1-20-98LCB Lean Concrete Base, 5-in.

    carrera15 ASOCR CRA 15 SANTAFE CUN 101-99 CRUCES CARRERA 15

    Page 52

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    53/91

    Saved Data

    Location: Initial Serviceability, P1: Terminal Serviceability, P2: 28-day Mean Modulus of Rupture, (S' c)':

    Champaign, IL 4.5 2.5 700

    ZONA ROSA 4.5 2.5 714

    Page 53

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    54/91

    Saved Data

    Elastic Modulus of Slab, E c: Poisson's Ratio for Concrete, m: Elastic Modulus of Base, E b: Design Thickness of Base, H b:

    0.154500000 0.15 25000 6

    4819500 0.15 1000000 6

    Page 54

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    55/91

    Saved Data

    Slab-Base Friction Factor, f: Reliability Level (R): Overall Standard Deviation, S 0: Mean Annual Wind Speed, WIND:

    1.4 90 0.34 10.2

    4.5 95 0.35 10.2

    Page 55

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    56/91

    Saved Data

    Mean Annual Air Temperature, TEMP: Mean Annual Precipitation, PRECIP: Subgrade k-Value ESALs

    49.2 33.3 165 21.88065817

    90 33.3 70 17

    Page 56

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    57/91

    Saved Data

    Faulting Check Sheet (dowe

    Edge Support Factor: Pavement Type Joint Spacing: Dowel Base/Slab Friction Restriant TRANGE Slab Thickness

    1 JPCP1 JPCP 15 1.5 0.8 65 11.23981818

    1 JPCP 12 1.5 0.8 65 11.3286215

    Page 57

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    58/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    59/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    60/91

    Saved Data

    lue Sheet

    Season4 Months4 k4 Season5 Months5 k5 Season6 Months6 Seasons6 Performance Period:

    Summer 4 120 20

    Summer 4 120 20

    Page 60

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    61/91

    Saved Data

    Two-Way Daily Traffic (ADT): Number of lanes in Design Direction: Percent of All Trucks in Design Lane:

    8000 2 0.95

    8000 2 0.95

    Page 61

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    62/91

    Saved Data

    Percent Trucks in Design Direction: ADT1 GADT1 TF1 GTF1 ADT2 GADT2 TF2 GTF2 ADT3 GADT3 TF3

    0.5 0.65 0.05 0.004 0.03 0.25 0.06 0.39 0.02 0.1 0.08 1.62

    0.5 0.65 0.05 0.004 0.03 0.25 0.06 0.39 0.02 0.1 0.08 1.62

    Page 62

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    63/91

    Saved Data

    Traffic Sheet

    GTF3 ADT4 GADT4 TF4 GTF4 ADT5 GADT5 TF5 GTF5 ADT6 GADT6 TF6 GTF6 ADT7 GADT7 TF7 GTF7

    0.05

    0.05

    Page 63

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    64/91

    Saved Data

    ADT8 GADT8 TF8 GTF8 ADT9 GADT9 TF9 GTF9 ADT10 GADT10 TF10 GTF10 ADT11 GADT11 TF11

    Page 64

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    65/91

    Saved Data

    GTF11 ADT12 GADT12 TF12 GTF12 ADT13 GADT13 TF13 GTF13

    Page 65

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    66/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    67/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    68/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    69/91

    FI&DAYS90

    3019 13 Georgia HALL 60 53.773016 13 Georgia HARALSON 67 51.941005 13 Georgia HOUSTON 11 41.344111 13 Georgia OCONEE 39 46.263007 13 Georgia PICKENS 103 57.561004 13 Georgia SPALDING 47 44.643017 13 Georgia TALIAFERRO 32 47.514093 13 Georgia THOMAS 4 45.324092 13 Georgia THOMAS 5 49.913011 13 Georgia TREUTLEN 12 44.891001 13 Georgia WALTON 26 44.443018 13 Georgia WARREN 37 48.951008 15 Hawaii HAWAII 0 44.237080 15 Hawaii HAWAII 0 28.401003 15 Hawaii MAUI 0 28.091006 15 Hawaii MAUI 0 21.921005 16 Idaho ADAMS 923 19.425025 16 Idaho BANNOCK 977 14.576027 16 Idaho BEAR LAKE 1604 15.509034 16 Idaho BONNER 548 31.671009 16 Idaho CASSIA 701 10.191010 16 Idaho JEFFERSON 1278 11.921021 16 Idaho JEFFERSON 1347 10.911020 16 Idaho JEROME 568 9.421001 16 Idaho KOOTENAI 399 26.419032 16 Idaho KOOTENAI 461 27.943023 16 Idaho PAYETTE 706 9.483017 16 Idaho POWER 629 10.295849 17 Illinois CHAMPAIGN 843 39.391003 17 Illinois CLINTON 336 40.305020 17 Illinois CLINTON 353 40.784082 17 Illinois CLINTON 377 41.837937 17 Illinois HENRY 1041 36.585453 17 Illinois JEFFERSON 486 42.425217 17 Illinois MC LEAN 792 37.469327 17 Illinois MC LEAN 792 37.465843 17 Illinois OGLE 1095 35.855854 17 Illinois PEORIA 856 38.115869 17 Illinois PEORIA 878 37.199267 17 Illinois ROCK ISLAND 1000 35.936050 17 Illinois ST CLAIR 461 38.361002 17 Illinois STEPHENSON 1065 30.194074 17 Illinois STEPHENSON 1065 30.185908 17 Illinois WILLIAMSON 459 45.722008 18 Indiana ALLEN 773 37.513002 18 Indiana BENTON 892 37.013030 18 Indiana DELAWARE 742 39.689020 18 Indiana GRANT 842 37.874021 18 Indiana HAMILTON 788 41.435538 18 Indiana LA PORTE 847 39.50

    Page 69

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    70/91

    FI&DAYS90

    5528 18 Indiana LA PORTE 847 39.605022 18 Indiana MARION 708 41.423003 18 Indiana MARSHALL 867 39.734042 18 Indiana POSEY 375 45.963031 18 Indiana POSEY 404 45.431037 18 Indiana SPENCER 300 47.601028 18 Indiana SPENCER 442 48.695518 18 Indiana TIPPECANOE 796 36.825043 18 Indiana VANDERBURGH 358 45.826049 19 Iowa CEDAR 1101 37.083006 19 Iowa CLINTON 1037 33.415046 19 Iowa FRANKLIN 1466 32.303055 19 Iowa HAMILTON 1400 32.623033 19 Iowa JOHNSON 845 35.533028 19 Iowa JOHNSON 849 35.883009 19 Iowa LINN 1198 32.469126 19 Iowa SCOTT 973 34.349116 19 Iowa WORTH 1680 32.325042 19 Iowa WRIGHT 1458 32.104054 20 Kansas DICKINSON 495 29.447073 20 Kansas DICKINSON 577 30.223015 20 Kansas FINNEY 554 17.731010 20 Kansas FORD 436 22.701005 20 Kansas FRANKLIN 530 39.333013 20 Kansas JOHNSON 469 41.074053 20 Kansas LINCOLN 448 35.417085 20 Kansas MARSHALL 787 31.046026 20 Kansas RENO 439 29.199037 20 Kansas SHAWNEE 598 35.221009 20 Kansas STAFFORD 378 26.064063 20 Kansas WYANDOTTE 507 39.921034 21 Kentucky BARREN 287 54.673016 21 Kentucky BULLITT 254 48.106043 21 Kentucky CLAY 279 50.274025 21 Kentucky FAYETTE 384 44.706040 21 Kentucky FAYETTE 394 45.181010 21 Kentucky OWSLEY 307 48.901014 21 Kentucky PIKE 225 45.494001 22 Louisiana LIVINGSTON 13 67.933056 22 Louisiana RAPIDES 31 56.161012 23 Maine CUMBERLAND 981 44.373013 23 Maine CUMBERLAND 1027 47.657023 23 Maine CUMBERLAND 1037 45.451026 23 Maine FRANKLIN 1522 45.481009 23 Maine LINCOLN 1023 47.091028 23 Maine OXFORD 1585 44.771001 23 Maine PENOBSCOT 1534 44.193014 23 Maine SAGADAHOC 1028 47.675807 24 Maryland ANNE ARUNDEL 236 42.321632 24 Maryland CALVERT 152 42.51

    Page 70

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    71/91

    FI&DAYS90

    2805 24 Maryland FREDERICK 217 38.042401 24 Maryland HARFORD 229 52.771004 25 Massachusetts BRISTOL 395 49.991002 25 Massachusetts HAMPDEN 633 46.311003 25 Massachusetts NORFOLK 625 47.423069 26 Michigan CLARE 1211 32.543068 26 Michigan CLARE 1215 32.381001 26 Michigan CLARE 1392 30.971010 26 Michigan GENESEE 978 32.371004 26 Michigan HOUGHTON 1709 36.229029 26 Michigan IONIA 1009 33.629030 26 Michigan MONROE 831 33.145363 26 Michigan WAYNE 870 33.891023 27 Minnesota BELTRAMI 2624 25.906251 27 Minnesota BELTRAMI 2624 25.901016 27 Minnesota BELTRAMI 2731 24.534082 27 Minnesota BLUE EARTH 1681 27.524033 27 Minnesota DAKOTA 1593 31.924037 27 Minnesota DAKOTA 1596 31.901087 27 Minnesota DAKOTA 1639 31.133013 27 Minnesota HENNEPIN 1602 29.754034 27 Minnesota HENNEPIN 1657 30.181029 27 Minnesota ISANTI 2108 28.734040 27 Minnesota ITASCA 2361 27.751019 27 Minnesota MILLE LACS 1919 30.331018 27 Minnesota MORRISON 2000 26.761085 27 Minnesota MOWER 1727 31.063003 27 Minnesota NICOLLET 1388 27.236300 27 Minnesota NOBLES 1810 27.181028 27 Minnesota OTTER TAIL 2517 25.364050 27 Minnesota POLK 2710 22.019075 27 Minnesota RENVILLE 1918 27.457090 27 Minnesota SCOTT 1806 30.716064 27 Minnesota STEARNS 2114 27.745076 27 Minnesota W ASHINGTON 1698 31.424054 27 Minnesota WINONA 1546 33.334055 27 Minnesota WRIGHT 2071 28.703097 28 Mississippi DE SOTO 114 52.555805 28 Mississippi HARRISON 7 65.163081 28 Mississippi ITAWAMBA 79 55.353093 28 Mississippi JACKSON 11 63.553094 28 Mississippi JACKSON 13 63.293089 28 Mississippi LAFAYETTE 129 58.883087 28 Mississippi LAFAYETTE 134 57.002807 28 Mississippi LAFAYETTE 138 59.163091 28 Mississippi LAUDERDALE 35 57.715006 28 Mississippi LEE 102 54.625025 28 Mississippi LINCOLN 43 61.473085 28 Mississippi MARSHALL 148 56.643083 28 Mississippi MARSHALL 150 56.24

    Page 71

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    72/91

    FI&DAYS90

    5803 28 Mississippi MARSHALL 174 56.753082 28 Mississippi MONTGOMERY 94 67.883090 28 Mississippi PANOLA 126 56.093099 28 Mississippi SCOTT 32 61.813019 28 Mississippi TISHOMINGO 148 54.743018 28 Mississippi TISHOMINGO 150 54.849030 28 Mississippi WARREN 28 56.697012 28 Mississippi WARREN 37 55.334024 28 Mississippi WASHINGTON 62 55.636067 29 Missouri CARTER 342 47.174036 29 Missouri CLAY 568 37.195483 29 Missouri CLAY 569 37.591002 29 Missouri COLE 382 39.565473 29 Missouri COOPER 543 39.545091 29 Missouri DAVIESS 874 36.245081 29 Missouri DAVIESS 874 36.225058 29 Missouri DAVIESS 876 36.235000 29 Missouri DAVIESS 876 36.225413 29 Missouri DUNKLIN 188 50.005403 29 Missouri DUNKLIN 207 50.971008 29 Missouri JASPER 66 55.077073 29 Missouri LIVINGSTON 640 38.227054 29 Missouri NEWTON 309 43.231010 29 Missouri PULASKI 396 45.695393 29 Missouri ST CHARLES 542 37.985047 29 Missouri ST LOUIS 549 37.727076 30 Montana BIG HORN 1160 16.078129 30 Montana GOLDEN VALLEY 1121 11.841001 30 Montana JUDITH BASIN 1094 17.287088 30 Montana SWEET GRASS 840 15.357066 30 Montana SWEET GRASS 841 15.357075 30 Montana YELLOWSTONE 1092 15.093018 31 Nebraska BUFFALO 844 24.407017 31 Nebraska CEDAR 1253 25.016702 31 Nebraska CHEYENNE 853 17.064019 31 Nebraska DAKOTA 1256 25.595052 31 Nebraska DOUGLAS 1040 28.901030 31 Nebraska FURNAS 716 22.243023 31 Nebraska HALL 779 26.706701 31 Nebraska HALL 965 25.283028 31 Nebraska LANCASTER 788 31.466700 31 Nebraska PHELPS 741 22.953033 31 Nebraska PIERCE 885 24.741030 32 Nevada CLARK 5 5.183013 32 Nevada ELKO 626 5.957000 32 Nevada ELKO 655 6.482027 32 Nevada ELKO 860 8.563010 32 Nevada ELKO 1070 11.271020 32 Nevada MINERAL 200 3.841021 32 Nevada WASHOE 230 8.31

    Page 72

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    73/91

    FI&DAYS90

    1001 33 New Hampshire MERRIMACK 1027 39.744042 34 New Jersey BURLINGTON 310 47.891034 34 New Jersey GLOUCESTER 231 44.231638 34 New Jersey GLOUCESTER 235 44.331033 34 New Jersey HUNTERDON 395 48.376057 34 New Jersey MERCER 348 44.871030 34 New Jersey PASSAIC 698 54.191003 35 New Mexico CHAVES 107 14.586401 35 New Mexico CIBOLA 215 12.556035 35 New Mexico CIBOLA 277 10.511112 35 New Mexico LEA 93 16.793010 35 New Mexico LEA 93 16.791002 35 New Mexico LINCOLN 108 16.382118 35 New Mexico QUAY 195 18.271022 35 New Mexico SAN JUAN 465 11.071005 35 New Mexico SANTA FE 245 15.836033 35 New Mexico SOCORRO 113 9.464017 36 New York ALLEGANY 1028 36.991008 36 New York ONEIDA 1051 43.621011 36 New York ONONDAGA 830 38.694018 36 New York OTSEGO 1065 42.571644 36 New York ST LAWRENCE 1757 43.875037 37 North Carolina BUNCOMBE 150 46.251801 37 North Carolina BUNCOMBE 164 41.271992 37 North Carolina CHATHAM 9 48.572824 37 North Carolina CHATHAM 103 48.923008 37 North Carolina CLEVELAND 52 45.181645 37 North Carolina COLUMBUS 39 43.583807 37 North Carolina DAVIDSON 95 44.423816 37 North Carolina DURHAM 82 44.303044 37 North Carolina DURHAM 97 45.881817 37 North Carolina FORSYTH 86 44.531802 37 North Carolina GRANVILLE 85 43.962819 37 North Carolina GUILFORD 86 44.911024 37 North Carolina JACKSON 120 49.461803 37 North Carolina JACKSON 171 51.581814 37 North Carolina MACON 127 53.882825 37 North Carolina MECKLENBURG 42 44.771040 37 North Carolina MITCHELL 289 56.063011 37 North Carolina NASH 101 44.435827 37 North Carolina ROCKINGHAM 160 45.781352 37 North Carolina STANLY 68 48.565826 37 North Carolina SURRY 171 45.281006 37 North Carolina WAKE 76 45.115002 38 North Dakota CASS 2339 20.092001 38 North Dakota GRAND FORKS 2623 19.353005 38 North Dakota NELSON 2481 19.053006 38 North Dakota PIERCE 2675 15.713801 39 Ohio BELMONT 458 40.093013 39 Ohio BROWN 478 44.62

    Page 73

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    74/91

    FI&DAYS90

    9006 39 Ohio CLINTON 621 41.464031 39 Ohio FRANKLIN 562 38.214018 39 Ohio GREENE 650 39.365003 39 Ohio LORAIN 656 37.475010 39 Ohio MAHONING 772 38.577021 39 Ohio WOOD 735 34.654163 40 Oklahoma BLAINE 212 33.134162 40 Oklahoma COMANCHE 163 42.924086 40 Oklahoma GRADY 168 33.604154 40 Oklahoma GRADY 212 40.404087 40 Oklahoma JACKSON 150 31.724088 40 Oklahoma KAY 321 33.136010 40 Oklahoma LE FLORE 124 46.674164 40 Oklahoma MAJOR 291 28.794165 40 Oklahoma MAJOR 311 31.624157 40 Oklahoma MAYES 65 47.725021 40 Oklahoma MAYES 253 41.933018 40 Oklahoma OKLAHOMA 198 37.424166 40 Oklahoma PITTSBURG 99 66.364160 40 Oklahoma PONTOTOC 157 40.624158 40 Oklahoma WASHINGTON 144 42.204155 40 Oklahoma WASHINGTON 252 39.157025 41 Oregon DOUGLAS 27 48.387019 41 Oregon JACKSON 45 20.465022 41 Oregon LANE 47 44.405021 41 Oregon LANE 49 43.986011 41 Oregon LINN 39 49.217018 41 Oregon LINN 49 45.255005 41 Oregon LINN 60 39.617081 41 Oregon UMATILLA 223 6.965006 41 Oregon UNION 379 16.765008 41 Oregon UNION 382 16.866012 41 Oregon WASCO 155 25.052002 41 Oregon WASHINGTON 58 40.281691 42 Pennsylvania BEAVER 547 37.481608 42 Pennsylvania BEDFORD 592 36.451606 42 Pennsylvania BEDFORD 703 37.243044 42 Pennsylvania BERKS 428 45.549027 42 Pennsylvania BERKS 587 47.327025 42 Pennsylvania CAMBRIA 594 47.841614 42 Pennsylvania CENTRE 898 38.911627 42 Pennsylvania CLEARFIELD 930 41.791598 42 Pennsylvania CUMBERLAND 432 40.661613 42 Pennsylvania DELAWARE 327 44.261599 42 Pennsylvania ELK 903 43.417037 42 Pennsylvania JEFFERSON 776 44.871623 42 Pennsylvania LYCOMING 541 40.141690 42 Pennsylvania LYCOMING 633 41.381617 42 Pennsylvania MONTGOMERY 364 44.565020 42 Pennsylvania MONTGOMERY 389 43.95

    Page 74

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    75/91

    FI&DAYS90

    1605 42 Pennsylvania NORTHUMBERLAND 609 43.101618 42 Pennsylvania SOMERSET 492 38.991597 42 Pennsylvania TIOGA 1015 31.551610 42 Pennsylvania YORK 407 40.687401 44 Rhode Island PROVIDENCE 681 45.331011 45 South Carolina CHARLESTON 9 49.355034 45 South Carolina DARLINGTON 29 45.153012 45 South Carolina FAIRFIELD 48 43.455035 45 South Carolina FLORENCE 26 44.801025 45 South Carolina GREENWOOD 59 44.711024 45 South Carolina LEXINGTON 15 45.721008 45 South Carolina OCONEE 61 59.915017 45 South Carolina RICHLAND 36 46.267019 45 South Carolina SPARTANBURG 49 52.843009 46 South Dakota CODINGTON 1953 23.265025 46 South Dakota JACKSON 1036 15.759197 46 South Dakota JERAULD 1527 21.223052 46 South Dakota KINGSBURY 1720 21.093013 46 South Dakota LAWRENCE 1089 21.695020 46 South Dakota LAWRENCE 1115 17.743012 46 South Dakota MEADE 1061 25.999187 46 South Dakota MEADE 1605 14.255040 46 South Dakota MINNEHAHA 1651 23.743053 46 South Dakota PENNINGTON 1135 17.299106 46 South Dakota PERKINS 1750 16.263010 46 South Dakota ROBERTS 1736 21.587049 46 South Dakota YANKTON 1400 23.443108 47 Tennessee ANDERSON 187 54.063101 47 Tennessee CANNON 174 52.529025 47 Tennessee CANNON 174 52.503075 47 Tennessee DE KALB 236 56.822001 47 Tennessee DYER 256 53.502008 47 Tennessee GIBSON 226 55.711028 47 Tennessee HAWKINS 194 42.533109 47 Tennessee MAURY 241 53.896015 47 Tennessee MC MINN 176 55.733110 47 Tennessee MC MINN 178 54.336022 47 Tennessee PUTNAM 277 57.539024 47 Tennessee RUTHERFORD 233 53.363104 47 Tennessee UNION 161 47.963669 48 Texas ANGELINA 29 44.073679 48 Texas ANGELINA 41 45.351093 48 Texas ATASCOSA 11 25.492133 48 Texas BELL 44 33.679005 48 Texas BEXAR 13 29.581094 48 Texas BEXAR 16 31.995026 48 Texas BRAZORIA 16 44.201178 48 Texas BURLESON 54 33.413729 48 Texas CAMERON 4 26.495323 48 Texas CARSON 250 22.27

    Page 75

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    76/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    77/91

    FI&DAYS90

    1169 48 Texas RUSK 54 47.423875 48 Texas SHERMAN 368 19.221087 48 Texas SMITH 65 45.205287 48 Texas TARRANT 67 34.025317 48 Texas TARRANT 68 34.955274 48 Texas TARRANT 68 33.895284 48 Texas TARRANT 86 38.165283 48 Texas TARRANT 86 37.985301 48 Texas TARRANT 93 32.981076 48 Texas TERRY 145 18.75

    1 48 Texas TRAVIS 47 27.773579 48 Texas VAN ZANDT 80 43.403559 48 Texas WALKER 27 45.845334 48 Texas WHEELER 240 22.633589 48 Texas WILBARGER 106 25.915310 48 Texas WISE 80 37.261168 48 Texas WOOD 73 47.807082 49 Utah BOX ELDER 759 12.471007 49 Utah CARBON 537 8.731005 49 Utah DAVIS 466 22.411004 49 Utah GARFIELD 655 9.263010 49 Utah IRON 566 13.453011 49 Utah JUAB 513 13.923015 49 Utah SALT LAKE 415 17.501001 49 Utah SAN JUAN 249 8.671006 49 Utah SANPETE 607 10.221017 49 Utah SEVIER 499 9.451008 49 Utah SEVIER 612 9.907083 49 Utah SEVIER 924 6.311002 50 Vermont ADDISON 1379 41.071683 50 Vermont CHITTENDEN 1567 39.541681 50 Vermont CHITTENDEN 1571 39.761004 50 Vermont GRAND ISLE 1185 30.572021 51 Virginia CARROLL 164 51.782564 51 Virginia CHESAPEAKE CITY 79 46.521417 51 Virginia FAUQUIER 268 44.271002 51 Virginia FLOYD 305 42.425010 51 Virginia HENRICO 128 43.005009 51 Virginia HENRICO 136 42.425008 51 Virginia NORFOLK CITY 86 45.622004 51 Virginia PITTSYLVANIA 121 44.701023 51 Virginia PRINCE GEORGE 146 46.291419 51 Virginia RUSSELL 274 44.491423 51 Virginia WISE 259 45.381464 51 Virginia YORK 170 43.961005 53 Washington ADAMS 532 11.613019 53 Washington BENTON 215 6.731007 53 Washington BENTON 307 7.266020 53 Washington CHELAN 404 10.183813 53 Washington CLARK 52 41.29

    Page 77

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    78/91

    FI&DAYS90

    1801 53 Washington CLARK 76 84.161002 53 Washington COLUMBIA 401 17.953014 53 Washington FRANKLIN 325 6.613812 53 Washington KING 29 37.446049 53 Washington KING 49 39.591006 53 Washington OKANOGAN 617 12.076048 53 Washington SNOHOMISH 58 47.943013 53 Washington SPOKANE 624 16.591008 53 Washington SPOKANE 632 16.623011 53 Washington WHATCOM 97 35.856056 53 Washington WHITMAN 380 19.707322 53 Washington WHITMAN 483 20.877409 53 Washington YAKIMA 321 6.324003 54 West Virginia BOONE 286 46.404004 54 West Virginia FAYETTE 350 43.005007 54 West Virginia HARRISON 523 44.581640 54 West Virginia KANAWHA 251 43.477008 54 West Virginia KANAWHA 354 41.595037 55 Wisconsin BARRON 1954 31.946355 55 Wisconsin DANE 1352 28.426352 55 Wisconsin IOWA 1363 28.496354 55 Wisconsin IOWA 1411 29.096353 55 Wisconsin IOWA 1447 29.473015 55 Wisconsin MARQUETTE 1346 33.513012 55 Wisconsin PIERCE 1718 31.983019 55 Wisconsin SAWYER 2278 32.635040 55 Wisconsin SHEBOYGAN 941 33.273010 55 Wisconsin SHEBOYGAN 976 32.963009 55 Wisconsin SHEBOYGAN 996 36.913014 55 Wisconsin WALWORTH 1165 35.333016 55 Wisconsin WAUSHARA 1316 31.042017 56 Wyoming CAMPBELL 1167 11.932019 56 Wyoming CAMPBELL 1276 13.846031 56 Wyoming FREMONT 1625 8.357772 56 Wyoming HOT SPRINGS 1083 10.572015 56 Wyoming LARAMIE 810 16.056029 56 Wyoming LINCOLN 1720 18.652018 56 Wyoming NATRONA 1142 10.547773 56 Wyoming NATRONA 1163 9.441007 56 Wyoming PARK 1066 9.192020 56 Wyoming SHERIDAN 1155 14.273027 56 Wyoming SWEETWATER 1317 7.932037 56 Wyoming SWEETWATER 1540 6.367775 56 Wyoming SWEETWATER 1888 7.086032 56 Wyoming TETON 1885 16.44

    Page 78

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    79/91

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    80/91

    FI&DAYS90

    5773010

    16716711395696022332

    8710510610194

    15914958207

    61706070703

    221190322974692530297878450

    33331741509

    Page 80

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    81/91

    FI&DAYS90

    5640279814

    23262516157147415553638299

    105769750508472876266

    1141141146065555267717234735256547296179427

    Page 81

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    82/91

    FI&DAYS90

    2038684816344799877947514511

    412966

    2515194514174846203230301532161614191815311717281215119

    139

    Page 82

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    83/91

    FI&DAYS90

    1012143334382312341514131230261511111350555161462837416234643328409

    14122835718333221123

    2422

    Page 83

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    84/91

    FI&DAYS90

    31355

    10655562899444

    17121212121174

    101010161467

    1310899

    1049575738365458545958574949

    Page 84

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    85/91

    FI&DAYS90

    423653605556676477433738384225252525525868374036303423247

    2828243528362324523134375929

    129464545146436

    Page 85

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    86/91

    FI&DAYS90

    719181816154

    723017757536656

    21581452056

    3330374732302930432986

    11410

    38234420271489

    141112

    Page 86

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    87/91

    FI&DAYS90

    81111125

    205971816392696976737152646668696914439

    101010132822231712884

    12101311

    121531

    116

    1415

    Page 87

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    88/91

    FI&DAYS90

    691

    165

    4455495549742354311453272120317

    36218

    241928194342214242143927282139178585

    12491

    105926199

    11359

    Page 88

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    89/91

    FI&DAYS90

    5655757476

    10211180929462

    122989495881575

    1006190

    10358857672776471

    1177885

    1101131039285857987

    116735053568952967271

    Page 89

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    90/91

    FI&DAYS90

    69517589938789908578

    120728974

    10181695133401416574475433043281114

    2121203

    353928485386

    33253534298

    Page 90

  • 7/28/2019 AASHTO Supplement, Rigid Pavement Design v2

    91/91