ce 481 aashto rigid

Upload: piyush-sharma

Post on 07-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Ce 481 Aashto Rigid

    1/14

    1993 AASHTO Rigid Pavement Design

    CE481A

    LECTURE 10

    AASHTO Rigid Pavement Design GuideDevelopment

    Based on AASHTO road test - Data collected onrigid pavement sections

    Interim guide published in 1972

    Revised in 1986 & 1993

    Equations are in the same form as for flexiblepavements, with different values for regressionconstants

    Design Parameters

    Traffic expressed in ESAL’s oStructural number (flexible) replaced with Slab thickness

    in rigid pavements

    Reliability of design accounted for

    Performance measured in terms of PresentServiceability Index (PSI)oTerminal serviceability 2.5 (1.5 for flexible pavement)

  • 8/18/2019 Ce 481 Aashto Rigid

    2/14

    Serviceability

    Present Serviceability Index (PSI)oMeasuring physical attributes and relating them to driver

    ratings (PSR)

    oPhysical attributes

    Surface deterioration (Slope variance)

    Surface deformation (Cracking, Patching)

    Result is usually a numerical scale

    Present Serviceability Index (PSI)

    Initial serviceability◦ Fn (pavement type, construction quality)

    ◦ Flexible pavements – 4.2

    ◦ Rigid pavements – 4.5

    Terminal serviceability◦ Lowest index that will be

    tolerated before rehabilitation,resurfacing and reconstruction

    0 “Road

    closed” 

    5.0 Just constructed PSI

    4.5 Initial PSI ( pi)

    Terminal PSI ( pt )PSI

    Performance

    Where

    wt  – Axle load application at time t

    ρ  – Expected number of load repetitions to terminal serviceability (pt)

    β  – function of design and load variables that influencesthe shape of ρ vs wt curve

  • 8/18/2019 Ce 481 Aashto Rigid

    3/14

    Modified AASHTO Design Equation forRigid Pavements

    Where

    oW18  – Number of 18 kip single axle load applications (from traffic projections)

    oZR   – Standard normal deviate (user defined reliability)

    oS0   – Combined standard error of traffic and performance predictions (0.35 – 0.4  assumed)

    25.075.0

    75.0

    46.8718

    )//(42.1863.215

    )132.1(log)32.022.4(

    )1/(10624.11

    )5.15.4/(log06.0)1(log35.7log

    k  E  D J 

     DC S  p

     D X 

     PSI  DS  Z W 

    c

    d ct 

    o R

    Design Equation Cont’d… 

    D  – Slab thickens in inches

    ΔPSI – Allowable drop in Present Serviceability Index (user defined)

    k  – Effective modulus of subgrade reaction (known)

    Pt  – Terminal serviceability index

    Sc  – Modulus of rupture of concrete

    Cd  – Drainage coefficient

    J  – Load transfer coefficient

    Ec  – Modulus of elasticity of concrete

    Drainage Coefficients (Cd)

  • 8/18/2019 Ce 481 Aashto Rigid

    4/14

    Load Transfer Coefficients

    Modulus of Concrete

    Elastic modulus of concrete

    Concrete modulus of rupture

    oThree point bending test (28 days)

    concreteof   strengthecompressiv f  Where

     f   E 

    c

    cc

    '

    5.0')(000,57

    Modulus of Subgrade Reaction

    Without sub-baseoFrom plate load test[OR]

    oInferred from resilient modulus valuesk = MR/19.4

    With sub-base layeroComposite modulus of subgrade reaction can be estimated

    based on AASHTO chartsFunction of subgrade k value, sub-base layer tk., quality of sub-base

    oAssumption - subgrade extends to infinite depth

  • 8/18/2019 Ce 481 Aashto Rigid

    5/14

    Example Problem

    Determine composite modulus of subgradereaction using AASHTO Charts

    oD = 6 inches

    oSub-base resilient modulus Esb =20,000 psi

    oSubgrade resilient modulus = 7,000 psi

    SHTO chart for composite modulus

    Rigid Foundation at Shallow Depth

    Rigid foundation at depth (Dsg) less than 10 feet(3m)

    oBed rock

    Modification charts for (k) developed by AASHTO

    Applicable to slabs with or without sub-base

  • 8/18/2019 Ce 481 Aashto Rigid

    6/14

    Sample Problem

    Determine the modulus of subgrade reactionusing AASHTO charts if

    oSoil Resilient Modulus Mr = 4,000 psi

    oDsg = 5 feet

    oSoil composite modulus K∞ = 230 psi 

    Climatic Effects on Subgrade Modulus

    Effective modulus of subgrade reactionoEquivalent modulus that will result in the same amount of

    damage if seasonal modulus for the entire year wereused

    oWhereD = slab thickness

    ki = seasonal moduli of subgrade reaction

    k = effective modulus of subgrade reaction

    n

    i

    ik  Dn

    k  D1

    42.325.075.042.325.075.0)39.0(

    1)39.0(

  • 8/18/2019 Ce 481 Aashto Rigid

    7/14

    Climatic Effects Cont’d… Estimating relative damageto rigid pavements

    AASHTO charts are alsoavailable

    42.325.075.0 )39.0(   k  Dur   

    Sample Problem

    Determine the effectivemodulus of subgradereaction for the givenseasonal modulus values

    oD = 9 inch

    Sample Problem

    Determine k valuefor each month

    k = MR/19.4

    Calculate therelative damage Urusing equation orfrom chart

    42.325.075.0 )39.0(   k  Dur   

  • 8/18/2019 Ce 481 Aashto Rigid

    8/14

    Loss of Subgrade Support

    Loss of foundation support (LS)

    oErosion

    oDifferential vertical soil movement

    Effective modulus of subgrade reaction reduced by factor LS

    Loss of Subgrade Support

    Joints in PCC Pavements

  • 8/18/2019 Ce 481 Aashto Rigid

    9/14

    Effect of Volume Change on Concrete

    Caused by variation in temperature or moisture

    oInduces tensile stresses and causes concrete to crack

    oCauses joints to open and decreases LTE

    Joint spacing in JPCPoFriction-induced stresses does not induce wide enough cracks

    in PCC causing reduction in LTE to intolerable levels

    JRCPoReinforcing steel or wire keeps cracks that form between joints

    small enough to effect good LTE

    Reinforcements in Rigid Pavement

    Frictional force on the slab balanced by tensile force in theconcrete which is ultimately carried by steel

    Area of steel,

    hhLf  

    cac

       

    2

     steel in stresses Allowable f  

    inthickness slabh

     subgradeand  slabbetween frictionof  coeff   f  

    in slabof  length L

    concretein stressesWhere

     s

    a

    c

    )(

    .

    )(

     s

    ac s

     f  

    hLf   A

    2

      

  • 8/18/2019 Ce 481 Aashto Rigid

    10/141

    Design of Tie Bars

    Placed along longitudinal joint to tie slabs together

     steel in stresses Allowable f  

    thickness slabh

     subgradeand  slabbetween frictionof  coeff   f  

    exist barstienowhereend  freetheto joal longitudinthe fromlength L

    Where

     s

    a

    .

    int'

    ,  s

    ac s

     f   f  hL Arequired  steel of   Area   ',

        

     

      

     

     

    d  f  t bar tieof  length   s

    2

    1,

     stressbond allowable

    bar theof  diameter d 

     steel in stressallowable f  Where  s

     

    ,

    Increase length ‘t’ by 3” to account for misalignment

    Sample Problem

    Design reinforcements and tie bars for a

    o2 lane concrete pavement (8”) thick 

    oLength – 60’ – 720 in

    oWidth - 24’ – 288 in

    oγc  –  0.0868 psi (23.6 KN/m3)

    ofs –  43,000 psi

    ofa –  1.5 

    Sample Problem

    Longitudinal steel

    Transverse steel

    For four lane pavement with all four slabs tied together,the transverse reinforcement for the inside 2 lanes shouldbe doubled, length L = 48’ instead of 24’ 

    )/222(/105.043000*2

    5.1*720*8*0868.0   22 mmm ft in A s  

    )/9.88(/00349.043000*2

    5.1*288*8*0868.0   22 mmm ft in A s  

  • 8/18/2019 Ce 481 Aashto Rigid

    11/141

    Sample Problem

    For the same pavement determine diameter,spacing and length of tie bar

    Fs = 27,000psi, µ = 350 psi 

    L’ – 12’ (144’’) 

    Using 0.5in bars (Area – 0.2in2)

    Spacing = 0.2/0.00556 = 36 in. (3’) 

     s

    ac s

     f  

     f  hL Arequired  steel of   Area

      ',

        

    inin   /00556.0000,27

    5.1*144*8*0868.0   2

    Sample Problem

    t = (27000*0.5)/(2*350) = 19.3” 

    Correction for misalignment = 19.3 + 3 = 23.3 ≈ 24” 

    2 feet long, 0.5 inch diameter tie bars to be providedat a spacing of 3 feet

    Design of Dowels

    Size of dowels to be used depends on slabthickness

    oTypically 1/8th of slab thickness

    oPCA recommendation

    1.25 in dia dowel for slab tk. below 10”  

    1.25 to 1.5 in dia dowel for slab tk. above10”  

  • 8/18/2019 Ce 481 Aashto Rigid

    12/141

    Design of Dowels

    Size and spacing determined by bearing stress between dowel andconcreteoAllowable bearing stress

    f b = [(4 – d)/3]f’cwhere, d – dowel diameter (in)

    f’c – compressive strength of concrete

    oBearing stress inducedb = Kyo = [KPt (2 + z)]/(4

    3EdId)

     = [(Kd/4EdId)]0.25

    Where, K – modulus of dowel support (3x105 to 1.5x106 psi/81.5 to 409GN/m3)

    Pt  – load on one dowel bar

    Design of Dowels

    Id – moment of inertia of dowel

    β –  relative stiffness of dowel embedded in concrete

    Ed  –  young’s modulus of dowel 

    yo  –  maximum deformation of concrete under the dowel

    Z –  Joint width

    4

    64

    1d  

    4

    4d d 

     I  E 

     Kd 

    Design of Dowels

    Based on westergaards analysiso maximum negative moment for interior and edge loading

    occurs at “1.8 l” from load,

    where,

    reaction subgradeof  ulusk 

    ratio poissonsv

    thickness slabh

    concreteof  elasticityof  ulus E Where

    k v

     Ehl  stiffnessrelativeof  radius

    mod

    mod

    )1(12,

    25.0

    2

    3

  • 8/18/2019 Ce 481 Aashto Rigid

    13/141

    Sample Problem

    Figure below shows a 9.5”slab resting on afoundation with k=50 psi. 12 dowels at 12 in

    spacing are placed at the joint on the 12 feet lane.Two 9000 lb loads are applied at points A & B.Determine maximum load on one dowel

    Assume a load factor of 1 for dowel A

    Determine load factors of other dowels using similar triangles

    Sum of these factors = 4.18 effective dowels

    Load carried by dowel at A = 4500/4.18 = 1077 lb

    Determine load carried by others by proportions

    Sample Problem

    inl 

    inl  stiffnessrelativeof  radius

    888.1

    17.4950)15.01(12

    )5.9(10*4,

    25.0

    2

    36

    Similarly find load carried by dowels due to load at point B

    Sum of load factors = 7.08

    Determine load carried by dowel at B = 636 lb

    Now, determine load carried by other dowels due to load B(proportions)

    Combined effect on dowels due to both loads is given below

  • 8/18/2019 Ce 481 Aashto Rigid

    14/14

    Sample Problem

    Load carried by edge dowel is most critical andshould be used for design purposes

    Direct determination of load carried by the dowel

    )3.5(119118.0/4500*18.018.4/4500   kN lb Pt