23 september, iec global leadership conference berlin 2015 mariodiaz berlin15.pdf · mayonnaise...

48
Prof. Mario Díaz, Dr. Benjamín Paredes, Dr. Amanda Laca University of Oviedo http://www.unioviedo.es/TBR/ 23 September, IEC Global Leadership Conference Berlin 2015

Upload: others

Post on 06-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Prof. Mario Díaz, Dr. Benjamín Paredes, Dr. Amanda Laca

University of Oviedo http://www.unioviedo.es/TBR/

23 September, IEC Global Leadership Conference Berlin 2015

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

1. INTRODUCTION. Background

Aviculture appeared 8000 years ago.

Intensive Aviculture since 1960.Spain produces 15% of total egg production in Europe. In Spainegg total production means 2% of total farming industry and 8%of total cattle industry. Trend in the last years is to increase.

Processed egg products continuing growth along with changesin egg-processing technology.Approximately 30% of the total consumption of eggs is in theform of processed egg products.In Europe ¼ of egg productionis destined to ovoproduct industry.As future new applications of egg components are pursued, it isimportant to explore the egg products industry and theapplication of new technologies.

1. INTRODUCTION. Commercial products

LIQUID ALBUMENLIQUID YOLK

FILTRATION

HEAT TREATMENT

COOLING

DRYINGPACKING

SEPARATION

LIQUID WHOLE EGG

WHOLE EGG

BREAKING

COOKING

PEELING

PACKING COOKED EGG

PACKINGLIQUID WHOLE EGGLIQUID ALBUMENLIQUID YOLK DRIED WHOLE EGG

DRIED ALBUMENDRIED YOLK

28% (w/w)16% proteins34% lipids

62% (p/p)88% water10% proteins0.03% lipids

7% (w/w)CaCO3

3% (w/w)Collagen

1. INTRODUCTION. Structure

YOLK

EGGSHELL

EGGSHELL MEMBRANES

ALBUMEN

54% Ovoalbumin12% Ovotransferrin3.5% Lysozyme3% Ovomucin

ALBUMEN (Proteins)

Lipids

68% LDL16% HDL10% Livetins (α, β, γ)4% Phosvitin

Proteins

62% Triglycerides33% Phospholipids<5% Cholesterol

YOLK

1. INTRODUCTION. Composition

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

2.1.1. Separations of egg components: ALBUMEN

Conditioning Separation in column (IEx)

Ovoalbumin

Albumen

Conditioning: Carried out with the aim to remove ovomucin (Croguennec et al.,2000). The mucin‐free egg white supernatant obtained was then concentred at 30°Cunder vacuum.

New resins: Polymer Poly(glycidyl methacrylate‐co‐ethylene dimethacrylate)

Resin manufacturing

Waste?

2. 1. SEPARATIONS

Similar yield with commercial resins. High purity of ovoalbumin (83%).

020406080

100120140160180200

0 10 20 30 40 50 60

t (min)

Abs

at 2

80nm

0

20

40

60

80

100

120

% N

aCl 0

.5M

1

2

3

P        1     2     3 

2.1.1. Separations of egg components: ALBUMEN

2.1. SEPARATIONS

Yolk (P1)100%

Granules (P2)(pellet)

29%

Plasma (P3)(supernatant)

71%

Na alginate, homogenization,

centrifugation

Lipidic fraction (P4)62%

Watery fraction (P5)9%

2.1. SEPARATIONS

Extractionwith ethanol+ distillation

“Lecithin” (P6)(phospholipids)

55%

Proteic fraction (P7)16%

Dilute, pH adjust, homogenization,

centrifugation

2.1.2. Separations of egg components: YOLK

70% HDL 16% Phosvitin12% LDL

85% LDL15% Livetins (α, β, γ)

Yolk (P1)

Granules (P2) Plasma (P3)

Lipidic fraction (P4) Watery fraction (P5)

2.1.SEPARATIONS

“Lecithin” (P6)

Proteic fraction (P7)

2.1.2. Separations of egg components: YOLKFRACTIONS

Yolk Granules Lipidic fraction Watery fraction

Dry extract (% w/w) 51 41 37 3.1Proteins (% w/w) 16 24 7 1.9Total lipids (%w/w) 36 17 29 0.3Cholesterol (mg/100g) 1260 291 957 50

2001169766

45

31

Std Y P G LF WF

Protein profile

FRACTIONS: Composition2.1.2. Separations of egg components: YOLK

2.1. SEPARATIONS

Granules contain most yolk proteins,whereas lipidic fraction containsmost yolk lipids.

The heaviest proteins of the yolk areconcentrated in lipidic fraction(>45 kDa), while the lightest onesare concentrated in watery fraction(<97 kDa).

0

20

40

60

80

100

3 5 7

F(%

)

pH

Fresh GranulesLyophilized GranulesFresh Lipidic fractionLyophilized Lipidic fraction

Properties: Emulsification

2.1.2. Separations of egg components: YOLK

2.1. SEPARATIONS

Granules and lipidic fraction, both fresh and lyophilized, havehigh emulsifying power at different pH values.

pH seems to affect more the emulsifying properties of freshsamples than those lyophilized.

FRACTIONS:Properties

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80 90 100

G',

G''

(Pa)

T (ºC)

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

G',

G''

(Pa)

T (ºC)

Gel point (ºC)Fresh Lyophilized

Granules 82 70Lipidic fraction 77 70

Granules Lipidic fraction

2.1.2. Separations of egg components: YOLK2.1. SEPARATIONS

Gel point of fresh granules was higher than the one of fresh lipidic paste. Gelation temperature of both lyophilized samples were very similar

Rheology

G’  Fresh fraction

G’  Lyophilized fraction

G’’ Fresh fraction

G’’ Lyophilized fraction

G’  Lyophilized fraction

G’’ Lyophilized fraction

G’’ Fresh fraction

G’  Fresh fraction

FRACTIONS:Properties

Yolk (P1)

Granules (P2) Plasma (P3)

Lipidic fraction (P4) Watery fraction (P5)

2.1.SEPARATIONS

“Lecithin” (P6)

Proteic fraction (P7)

2.1.2. Separations of egg components: YOLKFRACTIONS

2.1. SEPARATIONS

2.1.2. Separations of “specific components”

YOLK (IgY)

YOLK Phosvitin

ALBUMEN Ovoalbumin

Next Future:Fractions and Specific componentes

IgYPEG Method

Advantages vs. mamals antibodies (IgG). Applications in analytical methods (ELISAs RIAs).). Applications in human and veterinary medicine. Applications in biomedical research.

2.1. SEPARATIONS

Yolk (P1)

Granules (P2) Plasma (P3)

Lipidic fraction (P4) Watery fraction (P5) IgYModified

PEG Method

PEG Method: 4.8 mg IgY/mL egg yolk (50% of yolk dry extract). Modified PEG Method: 2.5 mg IgY/mL watery fraction (9% of watery fraction dry

extract).

2.1.2. Separations of “specific components”: YOLK (IgY)Watery fraction Yolk

Granules

Supernatant Washedgranules

Dissolve in NaClCentrifugation

Dissolve in NaCl(0.5-1.7 M)

pH (2-4)(Citric acid)Centrifugate

Pellet(HDL)

Phosvitin(supernatant)

Dialysis

Most phosphorylated protein(strong affinity for metal ions).

Antioxidant. Antimicrobial.

2.1. SEPARATIONS

NaCl concentration and pH determinedthe fractionation process.

Final NaCl could be removed by dialysis. The process was more effective at low

pH, but if pH was below 5 part ofphosvitin could precipitate.

The phosvitin amount (2.5‐3.5%) and itspurity depended on dialysis conditions.Purified Phosvitin

2.1.2. Separations of “specific components”: YOLK (Phosvitin)

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

EnzymaticHidrolysis

Granules

Trypsin37ºC

pH 7.5

High T (180ºC)High P (40 bar)

Atmosphere: nitrogen/oxygen

2.2. TRANSFORMATIONS

Transformations of egg components: Hidrolysis

Delipidation(ethanol)

Dispersion in water(5% w/v)

Subcritical waterHidrolysis

Biopeptides A Biopeptides B

Biopeptides A (withTrypsin)(%)

20 min 40 min  60 min 120 min 240 min 360 min

>10kDa 30 36 33 33 33 31

10‐6kDa 13 13 13 13 12 12

6‐1kDa 39 39 41 40 41 42

<1kDa 16 12 13 14 14 14

Biopeptides B(withNitrogen)(%)

Biopeptides B(withOxygen)(%)

120 min

180 min

240 min

300 min

420 min

480 min

60 min

90 min

120 min

150 min

180 min

240 min

>10kDa 15 15 11 10 7 5 36 22 10 4 3 1

10‐6kDa 9 10 9 8 6 6 11 16 8 4 3 1

6‐1kDa 39 42 43 44 45 42 33 43 47 47 44 36

<1kDa 37 34 37 38 43 47 20 21 36 45 50 62

2.2. TRANSFORMATIONSTransformation of egg components: Hidrolysis

Hydrolysis produces considerable increase of  solubility. 

Peptides present antiox, anticoagulant,…properties

(cracking+clustering?) 

2.2. TRANSFORMATIONS

Transformation of egg components: Hidrolysis

Maximum yield of biopeptides:360 min (Trypsin)240 min (Nitrogen)120 min (Oxygen)

50% 95% 95%

Trypsin OxygenNitrogen

High P and T hidrolysis allowed obtaining higheramount of peptides in shorter time.

Properties of peptides obtained in nitrogen atmosphereand peptides obtained by enzymatic hidrolysis werequite similar .

Hidrolysis in oxygen atmosphere decreased thehidrolysis time, however the obtained peptides showedpoor antioxidant activity.

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

3. INNOVATIVE PRODUCTS3.1. Food applications

A. Products in market

3.1.1 Dairy products (Yogurt mousse )3.1.2 Sauces (Low‐cholesterol mayonnaise)3.1.3 Bakery products (Low‐cholesterol muffins)3.1.4 Pastry products (“    “   , low‐calory sweet dessert) 

0100000020000003000000400000050000006000000700000080000009000000

0 50 100 150 200 250

[Pa]

[cP

]

hh

ControlOVA

3.1. FOOD APPLICATIONS

Yogurt Mousse (Ovalbumin as ingredient)

Development of yogurt mousse  with 1.3% w/w OVA.

Volume of product with OVA increased (7 %).

The elasticicity of final product with OVA was higher.

The use of OVA slightly affected the stability and resistance to deformationof the product.

OVA improved the texture and the foaming capacity.

A) Products in market

3.1.1 Dairy products

0.94 g salt + 1.3 g sugar + 9 mL vinegar + Emulsifying + 70 mL sunflower oil

Mayonnaise Emulsifying

A 10 g fresh yolkB 10 g fresh granulesC 6 g fresh granulesD 10 g lyophilized-reconstituted granulesE Commercial standard

Low‐cholesterol mayonnaise (Granules as ingredient)

A) Products in market

3.1.2. Sauces

3.1. FOOD APPLICATIONS

Mayonnaise with a cholesterol content of around 15% (sample C)in relation to yolk‐based mayonnaises had the closest rheologicalbehaviour to that of the commercial sample (sample E) and/or tothat of the mayonnaise prepared with raw egg yolk (sample A).

With respect to sensorial evaluation, mayonnaise C obtained highscore, the closest to that of the commercial reference.

Low‐cholesterol mayonnaise (Granules as ingredient)

A) Products in market

3.1.2. Sauces

3.1. FOOD APPLICATIONS

17 g apple pectins + 100 g corn flour + 65 g liquid albumen + 85 g sugar + 94 g sunflower oil+

37 g fresh egg yolk or35 g lyophilized-reconstituted granules or

22 g lyophilized-reconstituted granules+

Water to 400 g

Low‐cholesterol gluten‐free muffins (Granules as ingredient)

(%) 37 g egg yolk 35 g granules 22 g granulesProteins 3.5 4.3 3.6Total lipids 27.8 26.1 25.5Phospholipids 1.1 0.8 0.7Cholesterol 0.5 0.1 0.06

A) Products in market

3.1.3. Bakery products

3.1. FOOD APPLICATIONS

The rheological behaviour of the batter, made using granules,was different in relation to that made using whole egg yolk.

The low‐cholesterol muffin exhibited higher hardness and colourdifferences in comparison to the traditional recipe.

Low‐cholesterol gluten‐free muffins (Granules as ingredient)

A) Products in market3.1. FOOD APPLICATIONS

3.1.3. Bakery products

Low‐calory low colesterol sweet egg‐based dessert (Granules as ingredient)

TRADITIONAL PRODUCTWater: 17 gSucrose: 30 gYolk: 10 g

LOW‐CALORY PRODUCTWater: 17 gSucrose: 27.5 gSunflower oil: 2 gPotato starch: 0.5 gCarragenan: 0.3 gLyophilized egg yolk granules: 6g

A) Products in market

3.1.4. Pastry products

Traditional recipe Low‐calory recipeProteins (g) 5.6 6.5Carbohydrates (g) 52.6 53.1Total lipids (g) 12.5 8.6 (1/6 of cholesterol)Nutritional value (kcal) 345.1 313.1

3.1. FOOD APPLICATIONS

Low‐calory product shows 83% less cholesteroland achieves a reduction in total energycontent of approximately 15% compared withtraditional recipe.

Rheological tests reflected different gelationpoint of both products.

Higher firmness of low‐calory dessert inrelation to traditional product.

The panellists detected significant differencesbetween samples regarding colour, as it wasalso showed by colour measurements.

Sensory evaluation demonstrated that therewere not significant differences betweensamples in texture and flavour.

Everything can beimproved by a chef (Luis A. Martínez)

A) Products in market3.1. FOOD APPLICATIONS

3.1.4. Pastry productsLow‐calory low colesterol sweet egg‐based dessert (Granules as ingredient)

3. INNOVATIVE PRODUCTS3.1. Food applications

B. New products

3.1.5 Gelatins3.1.6 Snacks3.1.7 Low-alcohol beverage3.1.8 Future products (Nutraceuticals)

Base gelatins: 1% carragenan and 4.5% lyophilized egg derivative (yolk,granules or plasma) in water.

Egg derivative improved the organoleptic and physical properties of thegelatins respect to the control.

Egg gelatins were versatile, appealing and economic products.

Egg gelatins show low‐calory content.

Control (without egg) Yolk gelatin Granule gelatin Plasma gelatin

B) New Products

3.1.5 Egg yolk and egg yolk fractions gelatins

3.1. FOOD APPLICATIONS

Sensory evaluation showedthe plasma gelatin as theproduct with the moreappreciated attributes(Balance product use).

Some examples employingplasma gelatin as baseproduct were developed bya trained chef (Lluis NelEstrada).

Gelatin flavored with vainilla sugar and orangeblossom, and covered with defatted cocoa

3.1.5 Egg yolk and egg yolk fractions gelatins

B) New Products3.1. FOOD APPLICATIONS

Per 100 g Yolkgelatin

Granulegelatin

Plasma gelatin

Energy (kcal) 36.3 25.4 36.5

Carbohydrates (g) 0.7 0.7 0.7

Proteins (g) 1.4 2.5 1.0

Total lipids (g) 3.1 1.4 3.3

Base snacks: 2.5% carragenan, 1.5% locust bean gum and 4.5% lyophilizedegg derivative (yolk, granules or plasma) in water.

Egg derivative improves the organoleptic and physical properties of thesnacks respect to the control.

Egg snacks were versatile, appealing and economic products. Egg snacks showed low‐calory content. This base product could be employed as edible container.

Control (without egg) Yolk snack Granule snack Plasma snack

3.1.6 Egg yolk and egg yolk fractions snacks

B) New Products3.1. FOOD APPLICATIONS

The sensory evaluation showed thegranule snack as the product with themore appreciated attributes.

Some examples employing granulesnack as base product were developedby a trained chef (Lluis Nel Estrada).

Per 100 g Yolksnack

Granulesnack

Plasma snack

Energy (kcal) 439.6 354.1 422.2

Carbohydrates (g) 28.5 29.3 26.8

Proteins (g) 14.0 26.2 9.9

Total fats (g) 30.0 14.6 30.6

Tartlets of mushrooms with basil.

B) New Products3.1. FOOD APPLICATIONS

3.1.6 Egg yolk and egg yolk fractions snacks

Yolk (P1)

Granules (P2) Plasma (P3)

Lipidic fraction (P4) Watery fraction (P5)

Supplementation with glucose or molassesPasteurizationFermentation (Saccharomyces cerevisiae)

Low alcohol beverage

3.1.7 Low alcohol beverage from yolk watery fraction

B) New Products3.1. FOOD APPLICATIONS

A low‐alcoholic beverage (2.5‐5.0% v/v) wasobtained.

Final products showed an appealing appearenceand aroma (acetic, lactic, citric).

BIOPEPTIDES Some food peptides can exert different biological activities:antioxidant, antiinflammatory, anticoagulant and antimicrobialactivities.

Prevention and/or treatment of hypertension.Antidiabetic effects.

NUTRACEUTICALSProduct isolated or purified from foods, sold in formulas o pharmaceuticalforms, providing health and medical benefits, including the prevention andtreatment of disease.

PHOSVITINPhosvitin shows different functionalities such as metal chelating,antioxidant, emulsifying capacities...

B) New Products3.1. FOOD APPLICATIONS

3.1.8 Future products (Nutraceuticals)

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

3. INNOVATIVE PRODUCTS

A) Cosmetic industry

B) Bioplastics industry

C) Tissue engineering

3.2. Non-food applications

3. INNOVATIVE PRODUCTS

Ingredients (%) Control Cream A Cream B

Oil phase

Wheat germ oil 3 2 6

Vaseline oil 5 5 -

Lanolin 4 3 -

Stearic acid 50 4 4 -

Cethyl alcohol 4 4 8

Lyophilized plasma (P3) - - 10

Lyophilized lipidic fraction (P4) - 2 -

Water

phase

Water 71.5 71.5 71.5

1,2-Propanediol 8 8 8

CMC sodium salt 0.5 0.5 0.5

A) Cosmetic creams (Plasma or lipidic fraction as ingredient)3.2. Non-food applications

3. INNOVATIVE PRODUCTS

Egg yolk plasma and lipidic fraction could be suitable ingredients in creamformulation without causing any drawback on cream properties.

Moreover, they improved cream consistency, stability, thixotropic propertiesand resistance to temperature stress.

These yolk fractions supplies cream with A and E vitamins and also a minoramount of selenium.

Creams developed with plasma and lipidic fraction as ingredients werefavorably evaluated by the panel.

A) Cosmetic creams (Plasma or lipidic fraction as ingredient)3.2. Non-food applications

3. INNOVATIVE PRODUCTS

B) Bioplastics from plasma or plasma protein fraction

Gelatin (E441)(7% in water)

Plasma (P3) or plasma protein fraction (P7)(7% in water)

Mix (30 min, 55 ºC) Adjust pH 6.7Mix

Heat 5 min 85 ºC

Mix 25:75Adjust pH 7.2Add glycerol

Mix (15 min, 50 ºC)Dried at room T

Biofilms

Plasma biofilmProtein fraction

biofilm

3.2. Non-food applications

3. INNOVATIVE PRODUCTS

Plasma and plasma protein fraction biofilms showed suitable characteristicsto be employed as package for food (and non‐food) products.

They are edible, colourable, thermally sealeable and biodegradable andshowed interesting mechanical properties.

B) Bioplastics from plasma or plasma protein fraction3.2. Non-food applications

3. INNOVATIVE PRODUCTS

C) Tissue Engineering

Dispersed in distilled Add transglutaminase (enzymatic activity: 9 U/g)

Heat 50 ºC, 90 min

Granules (P2)

Granule gel

Fibroblasts culture Gels exhibited accurate physical

characteristics to be employed asscaffolds in tissue engineering.

Adhesion and growth of fibroblastwere observed on the surface of thegels.

3.2. Non-food applications

Outline

1. INTRODUCTION2. SEPARATIONS AND TRANSFORMATIONS

2.1. Separations of egg components2.2. Tranformations of egg components: Hidrolysis

3. INNOVATIVE PRODUCTS3.1. Food applications3.2. Non-food applications

4. FUTURE PROSPECTS

4. FUTURE PROSPECTS

The egg industry has made tremendous progress since the 1960s andthe next 50 years should provide even more breakthroughs.

The egg industry has a strong base to expand into new applications, asresearch is providing new knowledge related to the egg’s components.

These components have a tremendous potential for food applications.And also applications in pharmaceutical or biomaterial industries.

TBR

TBR Research Group (Prof. Mario Díaz)[email protected] of Oviedo (Spain)(Technology of Bioprocesses and Reactors)https://iqtma.uniovi.es/investigacion/tbrhttp://www.unioviedo.es/TBR/

Thank you!Danke!Gracias