Вычислительная математика и математическое...

248

Upload: phamkien

Post on 08-Dec-2016

235 views

Category:

Documents


7 download

TRANSCRIPT

  • I

    2000

  • , 75- . . 20-

    ..

    I

    , 19{22 2000 .

  • 519.6 00{01{1023

    : - . I/ . ... | .: , 2000. | 256 .

    , " ", - 75- .. 20- - .

    , - .. . { , , , , - , . -, , .

    - , .

    This collection of works contains the reports presented to the Jubilee Conference "Nu-merical Mathematics and Mathematical Modeling" dedicated to the seventy fth birthdayof Academician G.I.Marchuk and to the twentieth anniversary of the Institute of NumericalMathematics.

    Themes of the reports presented are associated with the scientic directions, in whichG.I.Marchuk achieved the most outstanding results: the methods for calculating nuclearreactors, numerical mathematics, models and methods in the physics of the atmosphereand ocean, mathematical models of immune processes, problems of environment protection,parallel computations and the architecture of computers. Most of reports presented in themain, the rst volume of the conference proceedings, are of a review character.

    The conference proceedings are certainly interesting to the specialists in numerical math-ematics and mathematical modeling and also to the students and postgraduate students ofrelated specialization.

    The publication is supported by the Russian Foundation for Basic Research, project00{01{10023

    ISBN 5{201{08806{6c , 2000.

  • 75- ..

    8 2000 75 . 20 , .

    .. . .

    { . 1961 .

    , , , , - . 1979 . .

    , .. , . , . 1975 . . ..

  • 4

    ...

    { . 1981 . .. .

    .. , . 1988 . .. .

    , { , , , .. .

    . { .. , { , , , . , , .

    , " ", 75- .. 20- .

  • 1

    . . , . .

    . .. " ",

    , .. . - : , - , , - , , - . - .

    1. -

    . - , -, ., , . - , , , , -. - .

    1 ( 00{15{96073, 96{01{00141).

  • 6 . . , . .

    , .

    , , Meredes. : , - , , , "" .

    , - , . - ("" -, , , , ..), . , .. { .. { - .

    { { , . , , - 2, , , - , , , , { .

    .. - 1955 . [1]. - . 1958 " " [2], { [3]. , , . - .. .. " ", [4] (1971 .) - [4] (1981 .)

    ., 27 1954 ., .. . .. (1961 .).

    1964 . -

    2 .. , "... ".

  • 7

    "" . 1973 . . - - , . (.. ) , .

    - . , .. . , .

    2.

    - ( ) . N(x;; v; t) G S2 R+ R+ (x;; v; t) [2{4, 37]

    dN

    dt+ v(x; v)N =

    Z 10

    ZS2W (x; 0; v; v0)v0N(x;0; v0; t)d0dv0 + q (2:1)

    S G

    N jS = 0; (nx;) < 0; x 2 S; (2:2)

    S, -

    N jt=0 = N0(x;; v): (2:3) dNdt { :

    dN

    dt=@N

    @t+ v(;r)N; (2:4)

    S2 { R3, nx { x S,0(;0), q { .

    (2.1) -, , , .. , , . , - q.

  • 8 . . , . .

    (2.1) (2.4) , - x0 2 G, v

    x = x0 +vt: (2:5)

    , , (2.1) - , 7- (x;; v; t). - - . , , , (2.1), . : .

    , ( ) . . ' =vN { , (x;; v) (2.1)

    (;r)' + (x; v)' =Z 10

    ZS2W (x; 0; v; v0)'(x;0; v0)d0dv0 + q (2:6)

    (2.2) S G

    'jS = 0; (nx;) < 0; x 2 S: (2:7)

    C (2.6){(2.7)

    (;r) + (x; v) =Z 10

    ZS2W (x; 0; v0; v) (x;0; v0)dv0d0 + p; (2:6)

    jS = 0; (nx;) > 0; x 2 S: (2:7) .. -

    [2, 3, 5]. .

    { . . - ( { (3.12)) , . .

    -, . - .. , ( 1960 .).

  • 9

    , : - . (2.1){(2.2), c , - :

    @Nk@t

    + vk((;r)Nn + kNk) =Xi

    vi

    ZS2

    W k;i(x; 0)viNi(x;0) d0 + q; (2:8)

    1vk

    @'k@t

    + (;r)'k + k'k =Xi

    vi

    ZS2

    W k;i(x; 0)'i(x;0) d0 + q; (2:9)

    k = 1; 2; : : : ;m, (2.3) (2.2), (2.7). -. (2.9) .

    : k W

    k;il .

    (W k;il ; l = 0; 1; : : : { viWk;i(x; 0)

    .)

    - - - . - { "", "" "", - , .

    . - , [15, 16].

    L' = (;r)'+ (x)'; (2:10)

    '0 = S' =14

    ZS2'(x;0)d0: (2:11)

    (2.6)

    L' = (x)S'+ q: (2:12)

    x = x0 +; x0 2 G -,

    d'

    d+ (x)' = (x)S' + q: (2:13)

  • 10 . . , . .

    u(x;) =12['(x;) + '(x;)]; (2:14)

    (x) 6= 0 q(x;) = q(x;) [16]

    [l(x)(;r)]2u+ u = c(x)Su+ q

    (2:15)

    S:u l(;r)ujS = 0; (2:16)

    l(x) = 1(x), c(x) = (x)=(x) 1. (2.15){(2.16) x0 +

    ld

    d

    2u+ u = c(x)Su+

    q

    ; (2:17)

    u l dudj=1 = 0; x1 = x0 +1 2 S; (nx1 ;) < 0; (2:18)

    u+ ldu

    dj=2 = 0; x2 = x0 +2 2 S; (nx2 ;) > 0: (2:19)

    < u; v >=ZG

    ZS2uvdxd;

    [u; v] =ZS

    ZS2j(; n)juvdds+ < l(;r)u; (;r)v > + < u; v > (2:20)

    [u] = [u; u]1=2;

    u,

    G(v) = [v]2 < cSv; v > 2 < v; q= >; (2:21) (2.15)-(2.16) [16].

    , , Q

    q = fS': (2:22)

    (2.7) 1 -

    L'+ (x)S' + fS' = ': (2:23) 1 = 0. - kef ,

    L'+ (x)S' + 1kef

    ' = 0: (2:24)

  • 11

    -

    1v

    @'

    @t+ L' = (x)S' + C + (1 )fS';

    (2.25)

    dC

    dt= C + fS';

    C = C(x; t), > 0. -

    L'+ (x)S' + C + (1 )fS' = 1v

    ';

    (2.26)

    C + fS' = C:

    C, . (2.23), (2.24), (2.26) (2.7). (2.26), (2.7) - : -, , = , Re C0 C0 > 0 - [40].

    "-" . , - , - '0 = S', , , (2.12), (2.7),

    divDr'0 + (x)'0 = q0; (2:27)

    '0 + 2D@'0@n

    jS = 0; (2:28)

    D = 1=3(x); (x) = (x) (x); q0 = Sq: . -

    , . - -, ,.. -.

    Ip('k) =< 'k; p > (2:29)

  • 12 . . , . .

    'k (2.6)-(2.7) q = qk, - p 'k . C p (2:6) (2:7)3 - [5]

    Ip('k) =< qk; p >; k = 1; 2; : : : ;m; (2:30)

    qk p -

    Ip('k) = < (L)'k; p >; k = 1; 2; : : : ;m (2:31)( { (3.7) (3.10)). - p, . , p, , Ip('k) - (2.30), (2.6)-(2.7).

    - . :

    @'

    @t= a2'+ V (x)' + f(x; t) (2:32)

    { ( = 1), ( =i)( ),

    @2'

    @t2= a2'+ b(x)' + f(x; t) (2:33)

    { ( ),

    '+ (x)' = f(x) (2:34)

    { ( ) { {

    1v

    @'

    @t+ (;r)'+ (x)' =

    4(x)

    ZS2'(x;0)d0 + f(x; t;) (2:35)

    G (0; T ) S2 R4 S2 (x; t;). (2.35) G - S (.(2.2))

    'jS = 0; (; nx) < 0; x 2 S: (2:36)

    3 .

  • 13

    (2.35) (2.32), (2.33),

    (;r)'+ (x)' = 4(x)

    ZS2'(x;0)d0 + f(x;) (2:37)

    { (2.34). , - (2.37) (2.36) [4, 37]

    '0(x) = ZG(y) exp

    Z xy(s)ds

    '0(y)jx yj2 dy (2:38)

    '0 = S'. (2.38)Z xy(s)ds =

    Z 10[ty + (1 t)x]dt:

    (2.38), jx yj2 x = y, jx yj1. - (2.38).

    . (2.37)

    @'

    @r+1 2r

    @'

    @+ (r)' = Q(r) (2:39)

    (2.36)

    '(;R) = 0; 1 0 (2:40)

    r = r0 , r20 r2(1 2) = 0, r = r0 .

    . r < r0, jj 1:@'

    @r= rM(r0)p

    r20 r2(1 2)+O(j ln jjj); (2:41)

    @'

    @=

    r2M(r0)pr20 r2(1 2)

    +O(1); (2:42)

    r > r0; r0; >p1 (r0=r)2:

    @'

    @r= 2rM(r0)p

    r20 r2(1 2)+O(j ln jjj); (2:45)

    @'

    @=

    2r2M(r0)pr20 r2(1 2)

    +O(1); (2:46)

    M(r0) = '(r0; 0)[](r0) [Q](r0); [f ](r0) = f(r0 + 0) f(r0 0). (2.41){(2.46) '0(r) -

    :'0(r) 12M(r0) ln jr r0j+O(1); r ! r0: (2:47)

    1952 [17] (1968). - . .. [39]. (2.47) .. 1949 .

    - .. [16], { [15].

    3. -

    , , .. - [2-5].

    H { e - < '; > k'k =< ';' >1=2. L 4 D(L), H.

    L' = q; ' 2 D(L) (3:1) q 2 H.

    L L

    < L'; >=< ';L >; ' 2 D(L); 2 D(L): (3:2)

    (3.2) . 2 H, ' 2< L'; > H. ( ) g 2 H ,

    < L'; >=< '; g >; ' 2 H: (3:3)

    4 , -, , - -, G X = (x1; x2; : : : ; xn) , D(L). H L2(G).

  • 15

    g L , L =g, D(L) L, (3.3) , (3.2).

    L , f(';L'); ' 2 D(L)g HH, .. 'k ! ' L'k ! ; k !1 H , ' 2 D(L) L' = .

    L L L.

    L . L , D(L) H. D(L) H, -

    L = L; L = L: (3:4)

    ' (3.1)

    Ip(') =< '; p >; p 2 H: (3:5) , (3.1)

    L p = p; 2 D(L): (3:6)

    , p D(L); . (3.6), (3.5) (3.2) - Ip(')

    Ip(') =< q; p > : (3:7)

    , L () ' H

    L' = (X X0); (3:8) (XX0) { - , X0. X0. (3.7)

    Ip(') = p(X0): (3:9)

    . L L, Ip(')

    p

    Ip(') = < p; (L)' > : (3:10)

    5 ,

    L = ; 2 D(L): (3:11)

    5 .

  • 16 . . , . .

    =< (L)'; >< '; >

    : (3:12)

    - , .. (. [6{10]) .. ([38]) () - , [18] .. .. .

    D { , H, ' 2 D H,

    f ! A' ; 2 D(A')g (3:13) D(A'), D. , , D(A') - D, D(A') D(A') H. ()

    '! A'' = A' j ='; ' 2 D; (3:14) D.

    1 [18]. fA'; ' 2 Dg fB'; ' 2 Dg , A' B',

    A'' = B''; ' 2 D: (3:15)

    : A' A', B' A', A' B', A' C', A' B' B' C'. (4.1) .

    1.

    f ! '0 ; ' 2 Dg; f ! (' )0; ' 2 Dg; f ! '2 0; ' 2 Dg

    ,'0 (' )0 '

    2 0:

    L(') { () D(L), H. - L' L(').

    2 [18]. L' L(') - f ! L' ; ' 2 D(L)g , D(L') L' D(L) - (.(3.2))

    < L('); >=< ';L' >; 2 D(L'); ' 2 D(L): (3:16) .

    L { , - L L, '.

  • 17

    L' L(') ( , fL'; ' 2 D(L)g).

    L' - L(')

    L(') = (L')'; ' 2 D(L); (3:17)

    .. L(') () ' ! L' ' - ! L' ' 2 D(L).

    , L(')

    L(') = A(')'; ' 2 D(L); (3:18) '! A(') { () D(L), H, ' 2 D(L) ! A(') , D(A(')) D(A(')) D(L). - L' A

    ('),

    L' A('): (3:19), . [18]. L(') -

    L', , (3.18); (3.19).

    [6{10, 38] - L(') L(').

    A0('); A0(') =Z 10L0(t')dt; ' 2 D(L) (3:20)

    , L(') L(0) = 0. [38]

    L(') =Z 10L0(t')t'dt = A0(')'; ' 2 D(L);

    L(') (3.18) , (.(3.19)), - A0(') fL'; ' 2 D(L)g,

    L' A0('): (3:21) 2(. 1). L(') = ''0 (3.19) (3.20)

    L' = '

    2 0:

    3. L(') = 'k(@')m,

    L' =k

    k +m'k1(@)m +

    m

    k +m(1)jj@'k@'m1:

  • 18 . . , . .

    (3.18) [11{13]

    L(') =Xjjm

    A(x; ')@'(x); (3:22)

    '! A(x; ') { () - D(L), H.

    A(x; ') =

    Xjjm

    A(x; ')@;

    (3.22) (3.18)

    L(') = A(x; ')':

    ' 2 D(L) ( )

    ~A(x; ') =Xjjm

    (1)jj@[A(x; ') ]; ' 2 D(L); 2 D(A(')): (3:23)

    A(')' = 0; ' 2 D(L); (3:24)

    ~A(x; ') = 0; 2 D(A(')); (3:25)

    ' (3.24). J('; ;x); = 1; 2; : : : ; n, (3.24) m 1

    J('; ;x) =m1Xq+k=0

    Xi;j

    (1)k@1 : : : @kA1:::k1:::q (x; ') @1 : : : @q'

    ; (3:26)

    { (3.25). 4. m = 1. (3.24) (3.25)

    A0(x; ')' +nX=1

    A(x; ')@'

    @x= 0;

    A0(x; ') nX=1

    @

    @x

    A(x; ')

    = 0;

    (3.26) {J('; ;x) = A(x; ') '; = 1; 2; : : : ; n: (3:27)

  • 19

    ~A(x; ') fA(x; '); ' 2 D(L)g. ~A(x; ') [10{12] A(x; '), L(').

    [10{12] (3.24), A; '(x) (x) q s, s r r q-. (3.26) r r- .

    3 [18]. L('), ' 2 D(L) (3.18) - (-, ), - (--, ) .

    5.

    @nA(x; ')@

    'o; ' 2 C2jj( G)

    , A(x; ') G C , G{ Rn.

    6. ZGK'(x); '(y);x; y

    '(y)dy

    L2(G), G { K { -

    K(X;Y ;x; y) = K(Y;X ; y; x); jK(X;Y ;x; y)j M:

    7 [10].

    L(') = sin' =sin''

    '

    , ' 2 L2(a; b) ! sin'' L2(a; b).

    8. - z- [44]

    i@

    @t= H(x; ) ; (x) = 1(x1) 2(x2) : : : z(xz);

    H(x; ) { L2(R3z),

    H(x; ) =zXk=1

    hh2

    2mk ze

    2

    jxkj + e2Xj 6=k

    Z j j(xj)j2jxk xj jdxj

    i:

    k; k = 1; 2; : : : ; z R3, H(x; ) { -

    , , H( ; x) = H( ; x).

  • 20 . . , . .

    - ( , , ..), - : , , , -, , , - , , . .. (. [6{10]).

    4.

    50 , , , - (2.1) , , , , - . , (2.1). , - - [4, 37]. , -. - , (2.12), (2.13), (2.15),(2.17).

    (2.27){(2.29) ( jxj = r < R)

    [14]. - m(r) = r'0(r)

    (Dm0)0 + m = q(r); 0 < r < R; (4:1)

    m(0) = 0; m(R) + hm0(R) = 0; (4:2)

    D > 0; 0 h 0.

    (Dm0)0 + m = ( ddx

    + g=D)(Dd

    dx g)m; (4:3)

    g0 + g2=D = (4:4)

    g, (4.1)

    m01 + g=Dm1 = q(r); (4:5)

  • 21

    Dm0 gm = m1(r): (4:6) (4.2),

    g(0) = 0; m1(0) = 0; m(R) =hm1(R)

    D(R) + hg(R): (4:7)

    (4.4) g(0) = 0 (0; R]. (4.5) m1(0) = 0 r = 0 r = R, (4.6) (4.7) (m(R) ) r = R r = 0. (4.1), (4.2)c : (4.4) (4.5) (4.6) (4.7).

    1953{1955 . - (, , ) - ({16, {37 .. ).

    -, : --.

    . , - ,

    nXk=0

    akgk(x)hk(): (4:8)

    (4.8) hk() { , - , Pn- { - . (2.15) n - [16]; , (2.21).

    gk(x) -, gk(x); hk(x) { ; (2.16) - (2.21) [4].

    - . - - . - , - , - ( ) .

    , - , [15] - (. 1) [15] .

  • 22 . . , . . y

    y1

    y2

    y3

    y4

    0

    a

    r1

    a

    r2

    a

    r3

    a

    r4

    a

    r5

    a

    r6

    x

    . 1.

    -, - , -. - , - . (2.17). 1; 2; 3, - x() = x0+ G. 32 = 21 = h > 0, l(x) 1 3 .

    2#2 = #1 2#2 + #3; !#2 = 56#2 +112(#1 + #3)

    , #i #i xi =x0 +i .

    l2 2u2h2

    = !(u+ Su+ q=)2 (4:9)

    (2.17) 0(h4) [4].

    . , - , - , , [21, 22, 27, 28]. - 131- , . -, { -

  • 23

    . . 2 131- -; 5810 17424 .

    . 2. 131-

    - - : Q ( Dn) c Dn Q '(xi;k), - (. 1).

    . -. - , , .. - 'k(x;). 60- - - , x [4]. 1963 . - - . S'k. (2.12) (2.27). S'k S'k+1 : K-

  • 24 . . , . .

    L'k+1=2 = (x)S'k + q; (4:10)

    S'k+1=2, P - wk+1=2 - (2.27)

    gkdivDrwk+1=2 + 1(x)wk+1=2 = (x)S('k+1=2 S'k); (4:11)

    S'k+1=2 = S'k+1 + wk+1=2; k = 0; N 1: (4:12)

    (4.11) gk { - . - [4]: gk = (1 + yk)=2, yk { P (1=2;2N)N (y).

    . . . . .. - .. [29, 30] , - , - , . kef (2.24) (2.27), (2.28) T- [4, 25, 29], .

    (). -, , . , - , . [25, 26] - - - . , ,{. , - . , - , . - - x .

  • 25

    , , . 3- 4- ( ) - . , - - .

    . . - - . " ", , .

    . - S' - (2.27) (.. 5). . - , ( , -).

    [19] , , , . ui 2 Vi -

    ai(ui; vi) = fi(vi); 8vi 2 Vi; i = 1; 2; (4:13)

    ai(ui; vi) { , - ui; vi Vi, fi(vi) { Vi . u = (u1; u2) - V 2 V1 V2,

    a1(u1; v1) + a2(u2; v2) = f1(v1) + f2(v2); 8v = (v1; v2) 2 V ; (4:14)

    U11u1 = U22u2;

    (4.15)

    J11u+ J22u2 = ;

    i; i = 1; 2; { , , i { - , ai(ui; vi). Ui; Ji; i = 1; 2; V , - (4.14), (4.15) .

  • 26 . . , . .

    , -.

    Siiui = iui; i = 1; 2; (4:16)

    ui { ( ) (4.13),i = 1; 2. "" "" .

    , - { . - {

    Sie = e; i = 1; 2; (4:17)

    . - [31, 32].

    5. , .

    . : , - - - , -.

    (2.1), (2.4), (2.8), (2.9),(2.25) x , - t (- ).

    , @u@t (2.9), (2.25) (2.1), (2.8) 0 t T n-

    du

    dt= Au+ q; ujt=0 = u0; (5:1)

    u = (u1; : : : ; un), u0 = (u01; : : : ; u0n), q = (q1; : : : ; qn), A { (n n)-. (i; 'i) { A, Sp(A) = fig, f'ig Rn, - z fig B, Kr r > 0

    Kr = fz : jz + rj rg: (5:2)

  • 27

    (5.2) ,

    rT 1: (5:3) h , ,

    h cou = r1; (5:4) . k+1

    uk+1 = uk + k(Auk + qk); k = 0; 1; : : : ; N 1; (5:5) -

    [23, 24]. lN =NPi=1

    i = P 0N (0), PN (z)

    PN (z) =NYi=1

    (1 + iz): (5:6)

    -

    maxz2B

    jPN (z)j 1 (5:7)

    PN (z) = arg supRN

    (R0N (0)); (5:8)

    lN = supRN

    (R0N (0)) (5.6),

    (5.7). zi; i = 1; ; N , (5.8), (5.5) - : z1i ; i = 1; ; N . , B = [M; 0]; M 1, (5.8) , N (5.5)

    lN = N2cou: (5:9)

    , (5.8) . . N = 2n. PN (z) (5.8) - , (5.1):

    yk+1=2 = uk + hk+1f(uk; tk);tk+1=2 = tk + hk+1;yk+1 = yk+1=2 + hk+1f(yk+1=2; tk+1=2);tk+1 = tk+1=2 + hk+1;uk+1 = yk+1 + k+1hk+1(f(uk; tk) f(yk+1=2; tk+1=2));

    (5:10)

  • 28 . . , . .

    k = 0; 1; : : : ; n 1; f(u; t) = Au+ q; . hi; i PN (z). (5.10), - , DUMKA; 2 N 216 36 [23, 24]. - .

    . (- ) (2.1), (2.8), (2.25) - . -: , , 1, . . [35, 36] - . - , [42], : - , . - , .

    . 3.

    . 3, 4 , , , (2.26) -

  • 29

    , 1986 . - (. 4 "" . 3). , .

    . 4. ""

    ? (2.1),(2.8), (2.25), ,

    du

    dt= f(u; v; t); (5:11)

    u N ', ' = vN; (5:12)

    v . (5.11) [0; T ] ujt=0 = u0.

    , - - x ( ) . , (5.11) { - . ., [43] - ,

    u(t) = u0 +

    tZ0

    f(u(s); v; s) ds: (5:13)

  • 30 . . , . .

    - (5.11).

    . 5. 1-2-

    . 6. 1-

    { 1- { 1- { 2- { 2-

  • 31

    (2.8), (2.9) v - x . . , , N :

    [N ] = 0; (5:14)

    ( [f ] f ), (5.12), '. :

    ['] = 0; (5:15)

    N .

    = S' N0 = SN ,

    = vN0: (5:16)

    , (5.14)

    [N0] = 0;D@N0@n

    = 0; (5:17)

    (5.15):

    [] = 0;D@@n

    = 0; (5:18)

    n { . . 5

    (2.25), (2.26) - ; (5.15) (5.18) ( - (5.14), (5.17)) . . 6 N0, (5.16).

    : ? kef (2.25), . , (5.17)

    [N0] = 0;vD

    @N0@n

    = 0;

    , ( 3) [33, 34].

    -, , - , - .

  • 32 . . , . .

    1. .. // - ,1{5 1955 {.: - , 1955. . 371{374.

    2. .. . {.: -, 1958.

    3. .. . {.: ,1961.

    4. .., .. -. {.: , 1971; 1981.

    5. .., .. // . {.: , 1961. . 30{45.

    6. .. .{.: , 1974.

    7. Marchuk G.I. Adjoint Equations and analysis of Complex Systems. {KluverAcad. Publ. 1995.

    8. Marchuk G.I., Agoshkov V.I. Conjugate operators and algorithms of perturba-tion in non-linear problems // Soviet J. Numer. Anal. and Math. Modell.1988. 1. P. 21{46; 2. P. 115{136.

    9. .., .., .. - . {.: -, 1993.

    10. .. - // - . .. -, 1994. . 203. . 126{134.

    11. .., .. - // . 1984. . 279, 4. . 843{847.

    12. .., .. - // . 1985. . 62, 1. . 3{29.

    13. .., .. -// - . { : , 1985, 1. . 147{162.

  • 33

    14. .. - // . 1955. . 19, . 3. . 315{324.

    15. .. // . 1958. . 3. . 3{33.

    16. .., // - . .. . 1961. . 61.

    17. .. // .1968. . 8, 4. . 842{852.

    18. .., .. // ( ).

    19. .. . {.: , 1986.

    20. Lebedev V.I. The composition method and unconventional problems // Sov. J.Num. An. and Math. Mod. 1991. V. 6, 6. P. 485{496,

    21. .. // . 1976. . 16, 2.. 293{306.

    22. .. - // . 1976. . 231, 1. . 32{34.

    23. Lebedev V.I. How to solve sti systems of dierential equations by explicitmethod // Numerical Method and Applications. CRC Press, Boca Raton, 1994.P. 45{80.

    24. Lebedev V.I. Explicit Dierence Schemes with Variable Time Steps for SolvingSti Systems of Equation // Numerical Analysis and its Applications: Proc.Lecture Notes in Computer Science 1196. {Springer, 1997. P. 274{283.

    25. Lebedev V.I. An Introduction to Functional Analysis and Computational Math-ematics. {Birkhauser, Boston, Basel, Berlin, 1996.

    26. Lebedev V.I. Extremal polynomials with restrictions and optimal algorithms //Advanced Mathematics: Computation and Applications / A.S. Alekseev andN.S. Bakhvalov (Editors). NCC Publisher. 1995. P. 491{502.

    27. Kazakov A.., Lebedev V.I. Gauss-type Quadrature Formulas for the Sphere,invariant with respect to the Dihedral Group // Proc. of the Steklov Inst. ofMath. 1995. Issue 3. P. 89{99,

  • 34 . . , . .

    28. .., .. 131- // . . 1999. . 366, 6.

    29. Lebedev V.I., Finogenov S.A. On the Order of Parameter Specication inChebyshev Cyclic Iterative Method // Zh. Vychisl. Mat. Mat. Phys. 1971.Vol. 11, . 2. P. 425{439 (in Russian).

    30. Lebedev V.I., Finogenov S.A. On the utilization of ordered Chebyshev parame-ters in iterative methods // Zh. Vychisl. Mat. Mat. Phys. 1976. Vol. 16, 4.P. 895{907 (in Russian).

    31. .., .. { - . {. , 1983.

    32. Agoshkov V.I., Lebedev V.I. Generalized Schartz algorithm with variable pa-rameters // Sov. J. Num. An. and Math. Mod. 1990. V. 5, 1. P. 1{26.

    33. .., .., .. // . . . . . 1999. . 1.. 3{15.

    34. .., .., .. - // - . -98. . 1999.. 135{142.

    35. .., .., .. - // - - -. -98. . 1999. . 143{150.

    36. Dementiev V.G., Kosarev A.I., Lebedev V.I., Nechepurenko Yu.M., ShishkovL.K. Spectral Analysis of VVER-1000 Reactor Model at high negative Reactiv-ities // Proceding of the ninth Symposium of AER, 1999. P. 453{468.

    37. ., . . {.: , 1974.

    38. .. . { .: , 1979.

    39. .. . {.:. 1986.

    40. .., .. . 2-. {.: , 1985.

  • 35

    41. .-. , - . { .: , 1972.

    42. Nechepurenko Yu.M. A new spectral analysis technology based on the Schurdecomposition // Russ. J. Num. An. and Math. Mod. 1999. V. 14. 3.

    43. .. .{.: , 1985.

    44. . . { .: , 1950.

  • ..

    E-mail: [email protected]

    - -. , - - , - . -.

    - . , - , , [5{14].

    -, , . -, ( , ..) - . - ( [12, 17], [4], [13] .).

    .. , - [2, 5{8,

  • 37

    13, 14]. , [14] - 'p ( )

    A' = f:

    Ip(') = ('; p);

    p { , . - 'p

    A'p = p;

    p, Ip('). - A A0 = A+ A, {

    Ip = ('p; A') = ('; A'p); . , - [7, 9].

    [2,10], - fkg; fkg

    A =mXk=1

    (kAk +Bk(kCk))

    (Ak ; Bk; Ck { ) - () Ipi ; i = 1; : : : ; n. ..

    mXk=1

    [('pi ; kAk') + (Bk'

    pi ; kCk')] = Ipi ;

    'pi { A'pi = pi, '

    { A' = q. fkg; fkg - fkg; fkg . 0k = k + k;

    0k = k + k; k = 1; : : : ;m,

    . , - . - [13] - , (- ) , - .

  • 38 ..

    [10] , [11].

    .. - A(') A1(')', -

    (A('); ) = (';A1(') );

    A1(') { ' A(') = f . 'p ( p) A1(')'

    p = p.

    - , [6].

    ( -) [7].

    , (" "," ", " "). , . - . { - - { , - , .

    , "-" , - . . , , -, . - - ( ).

    1. 1.1. D R3 - -

    @D C(2), x = (x1; x2; x3) 2 D = D[@D, t { -, t 2 [0; T ]; T < 1. U(x; t) = (u1(x; t); u2(x; t); u3(x; t)) -, div U = 0 QT D (0; T ), '(x; t)

  • 39

    L' @'@t +A' @'@t + div(

    eU') 3Pi=1

    @@xi

    (i@'@xi

    ) + a' = f QT ;

    @'@N +

    eU ()n (' '(s)) + ' = 0 @D (0; T );' = '(0)(x); x 2 D; t = 0:

    (1)

    : eU = (u1; u2; u3 ug), ug(x; t) { -; n = (n1; n2; n3) { @D; eU ()n =(j(eU; n)j (eU; n))=2; eU (+)n = (j(eU; n)j + (eU; n))=2; (eU; n) = 3P

    i=1uini; a = a(x; t)

    0; 1 = 2 > 0; 3 > 0; (x; t) 0 ; f = f(x; t){ , '(s) = '(s)(x; t) { , -

    @D (0; T ); @'=@N 3Pi=1

    i cos (n; xi)@'@xi

    . ,

    , a; ; U; eU; 1; 2; 3; '(s) . , , , .

    1.2. (1). W 2;12 (QT ) L2(0; T ;W 22 (D)) \ W 12 (0; T ;L2(D)), H L2(QT ) - (u; v)H (u; v)

    RQT

    uvdxdt; kukH kuk (u; u)1=2. - LT :

    LT @ @t

    +AT @ @t

    (eU;r) 3Xi=1

    @

    @xi(i

    @

    @xi) + a ; 8 2W 2;12 (QT ):

    LT = g QT (g 2 L2(QT ));

    @ @N + (

    eU (+)n + ) = 0 @D (0; T ); = 0; x 2 D; t = T:

    (2)

    (LT )1g 2 W 2;12 (QT )(c. [14]), k kW 2;1

    2(QT )

    Ckgk.

    Y = f 2 W 2;12 (QT ) : = (LT )1g 8g 2 H; k kY k kW 2;12

    (QT )g:

    Y W 2;12 (QT ). (1) : f 2 Y ; '(0) 2 L2(D) ' 2 H ,

  • 40 ..

    ,

    (';LT ) (f; )ZD

    '(0) (x; 0)dx TZ0

    dt

    Z

    eU ()n '(s) d = 0 8 2 Y; (3) '(x; t) (1).

    1. f 2 Y ; '(0) 2 L2(D); '(s) 2 L2( (0; T )), (1) ' 2 H,

    k'k C(kfkY + k'(0)kL2(D) + k'(s)kL2((0;T )));

    C =const. ' 2W 2;12 (QT ), ' (1).

    ( (3), LT - g 2 H . , ' { " "(, W 2;12 (QT )), - Y QT ( H),, ' (1).)

    . , - ' 2 H (1) '(0); '(s). 2

    1.3. (1), f(x; t) Q(t) (t 2 (0; T )), X(t) = (X1(t); X2(t); X3(t)), , ..

    f(x; t) = Q(t)(x X(t)); (4)

    (x) = (x1)(x2)(x3), () { "- ". , X(t) D X(1) X0(t1); X(2) X0(t2), (t1; t2) [0; T ] (0 t1 < t2 T ), X0(t) = (X0;1; X0;2; X0;3)(t) 2 D 8t 2 (0; T ) (W 12 (0; T ))

    3. t1 > 0 (t2 < T ), X(t) X0(t) t 2 [0; t1) (t 2 (t2; T ]). Q(t) [0; T ] ( ) L1(0; T ).

    f(x; t) (4) (3)

    L(X ;'; ) (';LT )TR0Q(t) (X(t); t)dt R

    D

    '(0)(x) (x; 0)dx

    TR0

    dtR

    eU ()n '(s) (x(); t)d = 0 8 2 Y:(5)

  • 41

    , f(x; t) Q(t)(x X(t)) 2 Y Q(t) 2 L1(0; T ) 1 (5) ' 2 H .

    '

    ' ('; p) =ZQT

    '(x; t)p(x; t)dxdt; (6)

    p(x; t) 2 Lp(QT ) (p 2), 'obs =const . SA :

    SA 12

    t2Zt1

    A(t)j ddt(X X0)j2dt+ 12(' 'obs)

    2; (7)

    A(t) 2 C[t1; t2] { , , 0 < A0 A(t) A1

  • 42 ..

    (10)., (10) ' 2 H (1). - q(x; t) '. , q(x; t) (10) X(t)( , X(t)) ' .

    , (10), , - .

    2. 2.1. q;X (8), (10). (" "):

    a(X0; 'obs;X; eX) = 0 8 eX 2 (W 12 (t1; t2))3X(t1) = X(1); X(t2) = X(2);

    (11)

    a(X0; 'obs;X; eX) t2Zt1

    A(t)d(X X0)

    dt

    d eXdtdt+B(X;'obs)

    t2Zt1

    Q(t)( eX;r)q(X(t); t)dt;

    B(X;'obs) TZ0

    Q(t)q(X(t); t)dt+ZD

    '(0)(x)q(x; 0)dx+

    +

    TZ0

    dt

    Z

    eU ()n '(s)q(x(); t)d 'obs;( eX;r)q = eX1 @q

    @x1+ eX2 @q

    @x2+ eX3 @q

    @x3; eXi = 0 t 2 ([0; t1)[ (t2; T ]); i = 1; 2; 3:

    (11)

    ddtAddt (X X0) +B(X;'obs)Q(t)rq(X(t); t) = 0; t 2 (t1; t2);

    X(t1) = X(1); X(t2) = X(2):(12)

    , (11) ((12)) - X(t) q(x; t) x. -, " " p(x; t), ( '(x; t)) '. ,

  • 43

    , (12) ( ) - . (12).

    2.2. p(x; t)

    p(x; t) = f1=(mes ( eD) (et2 et1)) eD (et1;et2); 0 g; (13) eD D; (et1;et2) (0; T ). ' = ('; p) '(x; t) eQ eD (et1;et2) (12) X(t), e' = 'obs( A(t) ), 'obs "" ' eQ.

    , eU; a; ; 1; 2; 3; p t, f'ig, f jg - ( (1), (2)):

    A'i = i'i; AT j = j j ; (14) H , ('i; j) = ij . (), (14)

    p(x; t) =1Xj=1

    (p; 'j) j 1Xj=1

    pj j : (15)

    ,

    q(x; t) =1Pj=1

    pj1 ej(Tt)

    j j ;

    rq(X(t); t) =1Pj=1

    pj1 ej(Tt)

    jr j(X(t));

    (16)

    B(X;'obs) =1Pj=1

    pjjfTR0

    Q(t)(1 ej(Tt)) j(X(t))dt+

    +(1 ejT ) RD

    '(0)(x) j(x)dx+

    +TR0

    (1 ej (Tt))dt R

    eU ()n '(s)(x(); t) j(x())dg 'obs:(17)

    (16), (17), - (12) . , ,eQ QT ; p = j0 ; (18).. ' ('; j0 ) j0- ' =1Pj=1

    ('; j)'j X(t),

  • 44 ..

    ('; j0 ) = 'obs 'obs;j0 ('obs; j0) A! +0, 'obs { . (12)

    ddtAddt (X X0) + Fj0 (X(t); t) = 0; t 2 (t1; t2);

    X(0) = X(1); X(T ) = X(2);(19)

    Fj0 (X(t); t) = Q(t)B(X;'obs;j0)

    pj0j0

    (1 ej0 (Tt))r j0 (X(t)):

    B(X;'obs;j0) =pj0j0

    8

  • 45

    pi; i = 0; 1; 2; 3; { t, .. "" p(x; t), - (14).

    q(x; t) = q0(t) +3Xi=1

    qi(t) cos(

    Lxi); (23)

    q0(t); : : : ; q3(t) . pi =const, i = 0; 1; 2; 3,

    q0(t) = a(T t)p0; qi(t) = pii(1 ei(Tt)); i = a+ i

    L

    2 (19)

    ddtAddt (Xi X0;i)

    LQ(t)B(X;'obs)qi(t) sin(

    LXi(t)) = 0; t 2 (t1; t2);

    Xi(t1) = X(1)i ; Xi(t2) = X

    (2)i ; i = 1; 2; 3:

    (24)

    , ( , ).

    2.4. sin () , (24):

    ddtAd

    dt(Xi X0;i) (

    L)2Q(t)B(X;'obs)qi(t)(Xi(t)

    (L)213!X3i (t) +O((

    L)4) = 0; i = 1; 2; 3:

    L, , (24) :

    ddtAddt (Xi X0;i) (

    L )

    2Q(t)B(X;'obs)qi(t)(Xi(t) 13!(L )

    2X3i (t)) = 0; t 2 (t1; t2);

    Xi(t1) = X(1)i ; Xi(t2) = X

    (2)i ; i = 1; 2; 3;

    (25) ( ) :

    ddtAddt (Xi X0;i) (

    L )

    2Q(t)B(X)qi(t)Xi(t) = 0; t 2 (t1; t2);

    Xi(t1) = X(1)i ; Xi(t2) = X

    (2)i ; i = 1; 2; 3;

    (26)

    B(X) B(X;'obs) (11) q(X(t); t) q(0) =q0(t) +

    3Pi=1

    qi(t).

    , ( D, , p(x; t) q(x; t)

  • 46 ..

    ) (12) ( ) - . , (12) - q(x; t) , .

    3. 3.1. (12) .

    'obs 'obs;0 + "'obs;1 8 " 2 ["0; "0] { , '0 - (1) f(x; t) = Q(t)(xX0(t)), 'obs;1 =const , 'obs;0 '0. SA(X0; 'obs;0; q;X0) = 0, (10) - "" X0(t), ""'obs;1". .

    , a(; ;X; eX) = 0 X X =X0; " = 0

    aX(X0; 'obs;0; eX; eeX) [ eX; eeX] ==

    t2Zt1

    A(t)d eXdt

    deeXdtdt+B1( eX)B1( eeX) 8 eX; eeX 2 (W 12 (t1; t2))3;

    B1( eX) = t2Zt1

    Q(t)( eX;r)q(X0(t); t)dt:

    [X;X ] =

    t2Zt1

    A(t)dXdt

    2 dt+ (B1(X))2 A0 t2 t12kXk2(L2(t1;t2))3 + (B1(X))2;

    [ eX; eeX] . HA - - X 2 (W 12 (t1; t2))3 [; ] [] = [; ]1=2.

    [X1; eX] = F1( eX) 8 eX 2 HA; (27) X1 2 HA { -,

    F1( eX) = 'obs;1B1( eX) = @@"a(X0; 'obs;0 + "'obs;1;X; eX)"=0;X=X0 : .

  • 47

    2. (27) X1 2 HA,

    [X1] j'obs;1j;

    dX1dt

    (L2(t1;t2))3 j'obs;1j=pA0;

    kX1k(L2(t1;t2))3 j'obs;1j(t2 t1)=(pA0):

    (28)

    -, (12) X = X0; " = 0, q(x; t) ( X @a=@"). q(x; t) X(t) (12) ", - (12) { " ".

    3.2. , :

    (i) supp(p) QT ;

    (ii) dist(X0(t), supp(p)) C0 =const 8t 2 (t1; t2);

    (iii) - (1) xi; i = 1; 2; 3; 8t 2 (0; T ) QT nsupp(p).

    ([1], [3]) X0(t)(8 t 2 (t1; t2)) q(x; t) xi; i = 1; 2; 3. , a(X0; 'obs;0+"'obs;1;X; eX) X = X0(t); " = 0; (8 t 2 (t1; t2)),

    a(X0; 'obs;0;X; eX) = 0 8 eX 2 (W 12 (t1; t2))3

    a(X0; 'obs;0 + "'obs;1;X; eX) = Xi+j0

    aij( eX; (X X0)i)"j ; i = (i1; i2; i3); ik 0; k = 1; 2; 3; i+ j = i1 + i2 + i3 + j

    aij( eX; (X X0)i) = 1i!j!

    @i+j

    @X i@"ja(X0; 'obs;0 + "'obs;1; eX; (X X0)i)

    a1;0( eX;X X0) = aX(X0; 'obs;0; eX;X X0) = [ eX;X X0] (., , [16]).

  • 48 ..

    (27) HA F1 2 (HA), [16] (12) - (X0(t); " = 0) -X = X(t; "), X(t; 0) = X0 X(t; ") " " = 0:

    X(t; ") = X0(t) + "X1(t) + "2X2(t) + 8 " 2 ["0; "0]; (29) "0 { ( C0; T .), .. (12) " X(t) (29). - (3) X = X(t; ") (10), SA X = X(t; "). - (i){(iii) q(x; t) x, .

    . , : 1) X0 2 (W 12 (t1; t2))3; X0(t1) = X(1); X0(t2) =X(2); 2) 'obs = 'obs;0+"'obs;1, 'obs;0 '0, '0 2 H (3) f(x; t) = Q(t)(x X0(t)); 3) (1) p(x; t) , q(x; t) x X0(t) 8 t 2 (t1; t2) (., , (i){(iii)). "0 > 0, , 8" 2 ["0; "0] (10) X(t; ") (29), ". Xj(t); j 1, (29) - (" "). , X1 (27) Xj ; j 1, .

    . , , '(x; t) "! 2

    3.3. (10)

    jX(t)X(+)(t)j < ; (30) =const> 0; X(+)(t) 2 (W 12 (t1; t2))3 { , , X(+)(t) 2 D; 8 t 2 (t1; t2). , X0(t), (30), jX0(t) X(+)(t)j < =2 X0(t1) = X(1); X0(t2) = X(2). - , " (10) (29). " 2 [e"0; e"0], 0 e"0 < "0; e"0 { , (30). ,

    3. , X0(t) (30) jX0(t)X(+)(t)j < =2; 8 t. e"0 > 0 , 8 " 2 [e"0; e"0] X(t; ") (30).

    (10) - , q(x; t) x. - q(x; t) (

  • 49

    (19)) - q(x; t), p(x; t), f j0g (. (19)) ..

    4. -

    .

    4.1. -, - . , X0 X1

    ddtAdX1dt + (B1(X1) 'obs;1)Q(t)rq(X0(t); t) = 0; t 2 (t1; t2);

    X1(t1) = X2(t2) = 0;(31)

    B1(X1) =

    t2Zt1

    Q(t)(X1;r)q(X0(t); t)dt;

    X = X(1) X0 + "X1

    X(1) . X(1) ( (3)) '(1) (1) f(x; t) = Q(t)(x X(1)).

    n- X(n) = X0 + "X1 +: : :+ "nXn, X2; : : : ; Xn ( (31)) [9].

    4.2. (12), (. . 5.1).

    'obs, X(t) .

    1. X0(t), '0 f = Q(t)(x X0) 'obs;0 '0.

    'obs 6= 'obs;0, .

    2. q(x; t).

    3. "'obs;1 , 'obs = 'obs;0 +"'obs;1 (, j"'obs;1j) , - ), X1, .. (31), X = X0 + "X1 = X(1).

  • 50 ..

    X(1) , X(1) X0 3. , - .

    (12) - ( , - .). X(n) , ( ) (3) X = X(n). (-, q(x; t) !).

    , . , - q(x; t) x. , -, - q Y . "" q , . , , "- ".

    4.3. X1 ( , X(1) =X0 + "X1 = X) , q(x; t). .

    A =const.

    d2X

    dt2= f(t); t 2 (t1; t2); X(t1) = X(t2) = 0

    X(t) =

    t2Zt1

    G(t; t0)f(t0)dt0;

    G(t; t0) :

    G(t; t0) =

    8>>>>>:(t t1)(t2 t0)

    (t2 t1) t1 t t0

    (t2 t)(t0 t1)(t2 t1) t

    0 t t2;

    (31) B(X1) X1; X(1):

    B1(X1) =

    'obs;1B1

    0@ t2Zt1

    G(t; t0)Q(t0)(rq)(X0(t0); t0)dt01A

    A+B1

    0@ t2Zt1

    G(t; t0)Q(t0)(rq)(X0(t0); t0)dt01A ;

  • 51

    X1(t) =

    'obs;1

    t2Zt1

    G(t; t0)Q(t0)(rq)(X0(t0); t0)dt0

    A+B1

    0@ t2Zt1

    G(t; t0)Q(t0)(rq)(X0(t0); t0)dt01A ;

    ( eX;r)q = 3Xi=1

    eXi(t) @q@xi

    :

    , q(x; t) , (rq)(x; t) - . Q(t):

    Q(t) = Q0(t t0); (32) Q0 =const> 0; t0 2 (t1; t2). X1(t) :

    X1(t) ='obs;1G(t; t0)(rq)(X0(t0); t0)Q0A+Q20G(t0; t0)jrqj2(X0(t0); t0)

    : (33)

    , jrq(X0(t0); t0)j 6= 0, (33) A = 0, " " X1(t); X(1)(t):

    X1(t) ='obs;1Q0

    G(t; t0)G(t0; t0)

    (rq)(X0(t0); t0)jrqj2(X0(t0); t0)

    (34)

    X(1)(t) = X0(t) + "'obs;1(t); (35)

    (t) =1Q0

    G(t; t0)G(t0; t0)

    (rq)(X0(t0); t0)jrqj2(X0(t0); t0)

    X0(t), - 'obs;0 = '0, ""'obs;1" .

    X(t).

    .

    . , - , . - '(s) .

    - - ( ,

  • 52 ..

    , , - ..). "" .

    , - - (, kdX4=dt4k2(L2(t1;t2))3 , - .).

    .. , .. .. .

    [1] .., .. - . // -. : , 1982. 30. { .: -.

    [2] // . -. . 16 { .: , 1985.

    [3] .., .., .. - . { .: , 1967 { 736 .

    [4] .-. , - . { .: , 1972.

    [5] .. . { .: -, 1958.

    [6] .. . {.: , 1974.

    [7] .. . { .: , 1982.

    [8] .. - // . 1981. 4, . 1. . 3{27.

    [9] .. . { .: , 1989.

    [10] .. // . 1964. 156, 3.. 503{506.

    [11] .. - // . . 1964. 2, . 3.. 462{477.

  • 53

    [12] .., .., .. - . { .:, 1993.

    [13] .., .. - // . { -, 1981. C. 3{18.

    [14] .., .. // . { .: , 1961. C. 30{45.

    [15] .. . { .:, 1961 { 400 .

    [16] .. . { .: , 1993. { 440 .

    [17] .., .. -. { . 1984. 279, 4.

  • c 1

    . . , . .

    E-mail: [email protected]

    - . . - -, . , - .

    1. [3], , -

    , , - , . -. [3], , " d L . L, " { . xj yj = xj=". C , .

    Lu = x1";x2";x3"

    @2u@t2

    + L0u = 0;

    L0u =@

    @xi

    Aij(

    x1";x2";x3")@u

    @xj

    ;

    (1.1)

    1 ( 99{01{01146, 99{01{01153) ( 96{1061).

  • c 55

    (y1; y2; y3) Aij(y1; y2; y3) { , -, 1- ( c 1) yj ;Aij = ATji, [1; 3]. ,

    0 < (y1; y2; y3); 0 < a(zj ; zj) (Aij(y1; y2; y3)zj ; zi) 8 yj ; zj : (1.2)

    (y); A(y) (1.1) .

    "

  • 56 . . , . .

    @N

    @yj

    = 0 1- N ,

    hql1l2l3 =

    *Aij

    @Nql1i1;l2i2;l3i3@yj

    +AijNql1i1j1;l2i2j2;l3i3j3

    +: (1.6)

    Lv X

    q+l1+l2+l32

    "q+l1+l2+l32hql1l2l3@q+l1+l2+l3v

    @tq@xl11 @xl22 @x

    l33

    0: (1.7)

    ,

    Nql1l2l3 = 0; hql1l2l3

    = 0 q : (1.8)

    Nql1l2l3(y1; y2; y3) (1.5) ( -).

    Nql1l2l3

    =

    0. [1] .1. (1.5) ,

    Nql1l2l3

    = 0 q + l1 +

    l2 + l3 > 0, (1.7) , , , hql1l2l3

    (hql1l2l3)T = (1)l1+l2+l3hql1l2l3 ; (1.9)

    l1 + l2 + l3 l1 + l2 + l3 .

    2. w:

    v X

    q;l1;l2;l30

    "q+l1+l2+l3dql1l2l3@q+l1+l2+l3w

    @tq@xl11 @xl22 @x

    l33

    ;

    dql1l2l3 { , d0000 = E,

    w:

    LBw b@2w@t2

    +1X

    l1+l2+l32

    "l1+l2+l32bh0l1l2l3 @l1+l2+l3w@xl11 @xl22 @xl33 0; (1.10) b =< >, bh0l1l2l3

    (bh0l1l2l3)T = (1)l1+l2+l3bh0l1l2l3 : (1.11) (1.10) (1.7) , , . - ( u ) (1.9), (1.11) ,

    hql1l2l3 = 0 ;bh0l1l2l3 = 0 l1 + l2 + l3 : (1.12)

  • c 57

    (1.1) , b =hi = 1, () , = (y); Aij = Aij(y), y = x1=".

    (1.7) (1.10) , v x3, (1.7)

    @2v

    @t2+ h020

    @2v

    @x21+ h002

    @2v

    @x22+ "2(h400

    @4v

    @t4+ h220

    @4v

    @t2@x21+ h202

    @4v

    @t2@x22

    +h040@4v

    @x41+ h022

    @4v

    @x21@x22

    + h004@4v

    @x42) +O("4) = 0:

    (1.13)

    (1.13) , 2 (c. (2.29)) 3.

    v = v1+12"2h400

    @2v1@t2

    (1.13)

    E +12"2h400

    @2

    @t2:

    LAv1 = @2v1@t2

    + h020@2v1@x21

    + h002@2v1@x22

    +"2(eh220 @4v1@t2@x21 + eh202 @4v1

    @t2@x22+ h040

    @4v1@x41

    + h022@4v1@x21@x

    22

    + h004@4v1@x42

    ) +O("4) = 0;

    eh220 = h220 + 12 h020h400 + h400h020 ;eh202 = h202 + 12 h002h400 + h400h002 :

    v1 = w +12"2eh220 @2w@x21 + eh202 @

    2w

    @x22

    E +12"2eh220 @2@x21 + eh202 @

    2

    @x22

    :

    ":

    @2w

    @t2+ h020

    @2w

    @x21+ h002

    @2w

    @x22

    +"2bh040 @4w@x41 + bh022 @

    4w

    @x21@x22

    + bh004 @4w@x42= 0;

    (1.14)

    bh040 = h040 + 12 h020h220 + h220h020+14

    (h020)

    2h400 + 2h020h

    400h

    020 + h

    400(h

    020)

    2;

    (1.15)

  • 58 . . , . .

    bh022 = h022 + 12 h020h202 + h202h020 + h002h220 + h220h002+14(2(h002h

    400h

    020 + h

    020h

    400h

    002)

    +h002h020h

    400 + h

    400h

    020h

    002 + h

    400h

    002h

    020 + h

    020h

    002h

    400);

    (1.16)

    bh004 = h004 + 12 h002h202 + h202h002+14

    (h002)

    2h400 + 2h002h

    400h

    002 + h

    400(h

    002)

    2:

    (1.17)

    , 1,2 , , .

    R = E bE; bA11 = A111 1 ; Q1 = A111 bA11 E;bA22 = hA22i ; Q2 = A22 bA22; ~Q2 = bA122 Q2bA33 = hA33i ; Q3 = A33 bA33; eQ3 = bA133 Q3:

    hg(y)i = 0 J

    hJ(g)i = 0; (J(g))0 = g:

    hfgi2 f2 g2 (1.18)( f g), - .

    [3]. hB(y)i = 0

    hAJ(B)i = hJ(A hAi)Bi :

    [3]

    h0200 = bA11; h0k00 = 0; 8k > 2;h4000 =

    J(R)A111 J(R)

    A111 J(R) bA11 A111 J(R) ; (1.19)h2200 =

    J(QT1 )J(Q1)

    hJ(R)J(Q1)i J(QT1 )J(R) ; (1.20)N2000 = J(A

    111 (J(R) bA11 A111 J(R))); N0200 = J2(Q1): (1.21)

    (1.15)

    bh0400 = bA11 ( hJ(QR)J(QR)i hJ(QR))i hJ(QR))i) : (1.22) (1.18), bh0400 0.

    [2] ( u 1) , ( )h4000 0.

  • c 59

    2. , , u { , -

    x2 A12 =AT21 = 0. (1.13) (1.14).

    Nql1l2l3 = Nql1l2l3

    (y) - (1.4)

    Hql1l2l3 = Nq2l1l2l3

    +@

    @y

    A11

    @Nql1l2l3@y

    +Ai1

    @Nql1i1;l2i2;l3i3@y

    +@

    @y

    A1jN

    ql1j1;l2j2;l3j3

    +AijN

    ql1i1j1;l2i2j2;l3i3j3

    (2.23)

    l1 = l3 = 0:

    Hq0l0 = Nq20l0 +@

    @y

    A11

    @Nq0l0@y

    +A22N

    q0l20 = h

    q0l0 = const : (2.24)

    2 3 0 Hql1l20; Nql1l20

    ,Hql1l20, C

    ql1l20

    . q = 0; l = 1

    H001 =@

    @y

    A11

    @N001@y

    = h001:

    , h001 = 0 N001 = 0. q = 0; l = 2

    H002 =@

    @y(A11

    @N002@y

    ) +A22 = h002:

    h002 = hA22i ; A11@N002@y

    = J(Q2) + C002;@N002@y

    = (A11)1J(Q2) +A111 C002; C002 = bA11 A111 J(Q2) : (2.25) ,

    N002 = J(A111bA11 A111 J(Q2)A111 J(Q2)): (2.26)

    h004 =

    A22N

    002

    :

    N002,

    h004 =

    J(Q2)A111 J(Q2)

    J(Q2)A111 bA11 A111 J(Q2) : (2.27) (2.24) (1.21) (2.26)

    h202 =

    A22N200

    N002 = (J(R)A111 J(Q2)+ J(Q2)A111 J(R))+(

    J(R)A111

    bA11 A111 J(Q2)+ J(Q2)A111 bA11 A111 J(R)): (2.28)

  • 60 . . , . .

    (2.24) , Nq0l = 0; hq0l = 0;

    q; l . (1.7)

    @2v

    @t2+ bA22 @2v

    @x22+ "2

    h400

    @4v

    @t4+ h202

    @4v

    @t2@x22+ h004

    @4v

    @x42

    +O("4) = 0: (2.29)

    .1, ":

    @2w

    @t2+ bA22 @2w

    @x22+ "2bh004 @4w@x42 = 0; (2.30)

    bh004 (1.17), (1.19), (2.27), (2.28). : bh004 = 1 1,

    1 =D(J(Q2) bA22J(R))A111 (J(Q2) bA22J(R))E

    +12

    J(Q2)A111 J(R) J(R)A111 J(Q2)

    bA22 bA22 J(Q2)A111 J(R) J(R)A111 J(Q2)

    +14[ bA222 J(R)A111 J(R) 2 bA22 J(R)A111 J(R) bA22 + J(R)A111 J(R) bA222];

    1 =D(J(Q2) bA22J(R))A111 E bA11 DA111 (J(Q2) bA22J(R))E

    +12bA22[J(R)A111 bA11 A111 J(Q2) J(Q2)A111 bA11 J(R)A111 ]

    +12[

    J(Q2)A111

    bA11 J(R)A111 J(R)A111 bA11 A111 J(Q2)] bA22+14[ bA222 J(R)A111 bA11 J(R)A111 2 bA22 J(R)A111 bA11 J(R)A111 bA22

    +

    J(R)A111

    bA11 J(R)A111 bA222]: A22 A11 , -

    bh004 = D(J(Q2) bA22J(R))A111 (J(Q2) bA22J(R))ED(J(Q2) bA22J(R))A111 E bA11 DA111 (J(Q2) bA22J(R))E : (2.31)

    (2.30) ei(kx2!t)e,

    c2e = ( bA22 ("k)2bh004)e; = !=k - . A11 A22 , , ,

    . bh004 - (2.31) (1.18) , . -, , , .

  • c 61

    , , - (1.1) ( A21 = (A12)T 6= 0) jjA21jj.

    v 2 , bh004 : , { . (y) 6= const, bA22 - d1 6= d2 A22(y) = bA22 + ((y) b) bA22. A111 (y) , Q = jjqij jj =

    A111 (J(R))

    2

    q12 6= 0. , - bh004 ; , - d3 = q12(d1 d2)2=4.

    (2.30) ei(kx2!t)e;

    (c2 d1)(c2 d2) = (d3"k)2. ,

    - "k.

    , (1.1) (A21 = (A12)T 6= 0) - .

    3.

    , u 1, - A12 = A21 = 0, 2. , , -., (1.7) (1.13). - (2.23).

    Hql1l2 = Nq2l1l2

    +@

    @y

    A11

    @Nql1l2@y

    +A11

    @Nql11;l2@y

    +

    @

    @y

    A11N

    ql11;l2

    + A11N

    ql12;l2

    +A22Nql1;l22

    :

    Nql1l2 = 0 q l2 . Nq0l2 = 0, l2 ,Nql1l2 = 0, q; l1; l2 , , :

    Hql1l2 = 0 q l2 ,

    , ,

    hql1l2 = 0 q l2 :

  • 62 . . , . .

    , ,

    h011 = 0; h013 = 0; h

    031 = 0; h

    015 = 0; h

    033 = 0; h

    051 = 0; h

    211 = 0; h

    213 = 0; h

    231 = 0:

    (1.9) ,

    h003 = 0; h012 = 0; h

    021 = 0; h

    030 = 0; h

    005 = 0; h

    014 = 0; h

    023 = 0

    h032 = 0; h041 = 0; h

    050 = 0; h

    203 = 0; h

    212 = 0; h

    221 = 0; h

    230 = 0:

    (1.8), , (1.7) (1.13). , - (x1; x2) - bh004, bh022 bh040, (1.7) (1.15) { (1.17).

    bh004, bh040 ((1.22), 2.31)). - bh022 (1.16) h022.

    (1.6)

    h022 =

    A22N

    020

    +A11(

    @N012@y

    +N002):

    (1.21)

    A22N020

    = A22J2(Q1) = hJ(Q2)J(Q1)i.

    H012 =@

    @y(A11

    @N012@y

    +N002) +A11@N002@y

    +A22N010 = h012:

    ,

    A11(@N012@y

    +N002) = C002 + J(h

    012 (A11

    @N002@y

    +A22N010)):

    A111 h i

    0 =

    (A11)1

    C002 +

    (A11)1J(h012 (A11

    @N002@y

    +A22N010)):

    C002 = bA11(A11)1J(h012 (A11 @N002@y +A22N010))

    =

    QT1 J(h

    012 (A11

    @N002@y

    +A22N010))

    = J(QT1 )(A11

    @N002@y

    +A22N010))=

    J(QT1 )A11

    @N002@y

    J(QT1 )A11J(Q1) :

    (2.25) A11@N002@y

    = 002 J(Q2);

  • c 63

    J(QT1 )A11

    @N002@y

    =

    J(QT1 )J(Q2)

    .

    h022 =

    J(QT1 )A22J(Q1)

    +

    J(QT1 )J(Q2)

    + hJ(Q2)J(Q1)i : (3.32)

    . h022 =

    A22(J(Q1))2

    + 2 hJ(Q2)J(Q1)i.

    hJ(A)i = 0 8 A,

    (Q1 R)(J(Q1 R))k

    =

    *1

    k + 1J(Q1 R))k+1

    0+= 0 8 k 0; (3.33)

    D( bA11A111 E)(J(Q1))kE = Q1(J(Q1))k =

    *1

    k + 1(J(Q1))k+1

    0+= 0 8 k 0:

    h022 (3.32) :

    A22(J(Q1))2 = bA22 (J(Q1))2 J 0(Q2)(J(Q1))2 = bA22 (J(Q1))2+ 2 hJ(Q2)J(Q1)Q1i :

    h022 = bA22 (J(Q1))2+ 2 bA11 (A11)1J(Q2)J(Q1). h220 h

    202. (1.20)

    h220 =

    (J(Q1))2

    2 hJ(R)J(Q1)i. h220 =

    (J(Q1))2

    +

    J 0(R)(J(Q1))2

    2 hJ(R)J(Q1)i=

    (J(Q1))2

    2 hQ1J(R)J(Q1)i 2 hJ(R)J(Q1)i=

    (J(Q1))2

    2 bA11 (A11)1J(R)J(Q1) :, (2.28)

    h202 = 2

    J(R)A111 J(Q2)

    +

    J(Q2)A111 J(R)

    ) + 2

    J(R)A111

    bA11 A111 J(Q2) ; , h020 = bA11, h002 = bA22, h400 = A111 (J(R))2 bA11 A111 J(R)2 - (1.19). (1.16) , h400 (1.19), bh022 = 2 2;

    2 = 2 bA11 A111 J(Q1)J(Q2) 2 bA11 bA22 DA111 J( eQ2)J(R)E2 bA11 bA22 (A11)1J(R)J(Q1)+ 2 bA11 bA22 (A11)1(J(R))2

    = 2 bA11 bA22 D(A11)1(J(Q1 R))(J( eQ2 R))E ;2 = 2 bA211 bA22 (A11)1J(R) D(A11)1J( eQ2)E

    +2 bA211 bA22 (A11)1(J(R))2 = 2 bA211 bA22 (A11)1(J(Q1 R)) D(A11)1(J( eQ2 R))E :

  • 64 . . , . .

    ,

    bh022 = 2[ bA11 bA22 D(A11)1J(Q1 R)J( eQ2 R)E( bA11)2 bA22 (A11)1J(Q1 R) DA111 J( eQ2 R)E]:

    (3.33), (1.22)

    bh040 = bA211 A111 (J(Q1 R))2 bA311 A111 J(Q1 R)2 : , (2.31)

    bh004 = bA222 DA111 (J( eQ2 R))2E bA11 bA222 DA111 J( eQ2 R)E2 : (1.14) w =ei(k(1x1+2x2)!t).

    c2 =!2

    k2= (21 bA11 + 22 bA22) ("k)2 bh04041 + bh0222122 + bh00442 :

    S(1; 2) = bh04041 + bh0222122 + bh00442: S(1; 2) bh040 ;bh022 ;bh004. ,

    S(1; 2) =

    A111 Z

    2 bA11 A111 Z2 ;

    Z = 21 bA11(J(Q1 R)) + 22 bA22(J( eQ2 R): (1.18) f =A1=211 ; g = A

    1=211 Z, , S(1; 2) 0. ,

    1. , w { , - { (1.14) { ! - .

    4. , -

    (1; 2; 3) -

    @2u

    @t2+

    @

    @x1

    A11

    @u

    @x1

    +

    @

    @x2

    A22

    @u

    @x2

    +

    @

    @x2

    A23

    @u

    @x3

    +

    @

    @x3

    A32

    @u

    @x2

    +

    @

    @x3

    A33

    @u

    @x3

    = 0:

    (4.34)

  • c 65

    , (1; 2; 0), h

    ql1;l2;0

    . - (2.23) l3 = 0 (4.34).

    Hql1;l2;0 = Nq2l1;l2;0

    +@

    @y

    A11

    @Nql1;l2;0@y

    !+A11

    @Nql11;l2;0@y

    +

    @

    @y

    A11N

    ql11;l2;0

    +A11N

    ql12;l2;0

    + A22Nql1;l22;0

    +

    A23(Nql1;l21;1

    +Nql1;l21;1) +A33Nql1;l2;2

    = hql1;l2;0:

    (4.35)

    Nql1;l2;l3 = 0, -, (4.35)

    Hql1;l2;0 = Nq2l1;l2;0

    +@

    @y

    A11

    @Nql1;l2;0@y

    !+A11

    @Nql11;l2;0@y

    +

    @

    @y

    A11N

    ql11;l2;0

    +A11N

    ql12;l2;0

    +A22Nql1;l22;0

    = hql1;l2;0:

    , A12 = A21 = 0, 2, 3. O("4), - x1; x2, (1.14) , , 3.

    , - (1; 2; 3) 2 6= 0, 3 6= 0 -

    xn1 = x1; xn2 =

    2x2 + 3x3p22 +

    23

    ; xn3 =3x2 + 2x3p

    22 + 23

    : (4.36)

    x1 .

    @2u

    @t2+

    @

    @x1

    A11

    @u

    @x1

    +

    @

    @xn2

    An22

    @u

    @xn2

    +

    @

    @xn2

    An23

    @u

    @xn3

    +

    @

    @xn3

    An32

    @u

    @xn2

    +

    @

    @xn3

    An33

    @u

    @xn3

    = 0;

    (4.37)

    An22 =22A22 + 223A23 +

    23A33

    22 + 23

    ; An23 = An32 =

    23A22 + (22 23)A23 + 23A3322 +

    23

    ;

    An33 =23A22 223A23 + 22A33

    22 + 23

    :

    (1.2) a An22, a An33.

  • 66 . . , . .

    (1; n2 ; 0),

    n2 =

    p22 +

    23 .

    ei(k(1x1+2x2+3x3)!t)

    ei(k(1x1+n2 x

    n2 )!t). -

    -

    c2 =!2

    k2= 21 bA11 + (n2 )2 bAn22 ("k)2Sn(1; n2 );

    Sn(1; n2 ) =

    A111 Z

    2 bA11 A111 Z2 ; Z = 21 bA11J(Q1R)+(n2 )2 bAn22J( eQn2 R);

    bAn22 = 22 hA22i+ 223 hA23i+ 23 hA33i22 + 23 ; Qn2 = 22A22 + 223A23 +

    23A33bAn22 :

    (1.18), ,, Sn(1; n2 ) 0.

    , 2. ,

    (4.34), { ", (1.10) - , .

    , , - , .

    [1] Bakhvalov N.S., Eglit M.E. Variational properties of averaged equations for pe-riodic media // Proc. of the Steklov Institute of Mathematics. 1992. Issue 3.P. 3{18.

    [2] Bakhvalov N.S., Eglit M.E. Eective equations with dispersion for waves propa-gation in periodic media // Doklady Math. 2000. Vol. 370, 1. P. 1{4.

    [3] .., .. Long-waves asymptotics with dispersion for thewaves propagation in stratied media. Part 1. Waves orthogonal to the layers// Russian J. Numer. Analys. and Math. Modelling. 2000. 15, 1. P. 3{14.

    [4] Bakhvalov N.S., Panasenko G.P. Homogenization. Averaging processes in peri-odic media. {Dordrecht: Kluwer. 1989. {366 P.

  • - Rn

    . .

    E-mail:[email protected]

    { . { . :(i) , (ii) (iii) , -, Rn. , (ii) - , n .

    The classical interpretation of matrix is representation of the operator inxed coordinate system. For a symmetric matrix this is the representation of thequadratic form as well. In the paper the new concept is presented: (i) a stronglynonsingular matrix, (ii) irreducible low and upper Hessenberg matrices and (iii)two system of special polynomials, taken together represents the dierent aspectsof the some object exterior to the linear vector space Rn. For instance, if element(ii) is Jacobi matrix with nonsingular spectrum, then this object is the oscillationsystem with n degrees of freedom.

    { - . { - . :(i) , (ii) - (iii) , , Rn. -, ii , n [2].

    [3-6] , - , , A. - ( , , [7]) .

  • 68 . .

    , , ((i),(ii) (iii)), Rn-.

    : Bk = Bek, Bl = eTl B, ek k- E, k- l- B. Bk k- B, k. b , b, .

    R = (rij) { . - [4], T

    T =

    26666664

    11 12 : : : 1n21 22 23 : : : 2n

    32. . .

    . . ....

    . . .. . . n1;n

    n;n1 nn

    37777775 . T - R:

    Rk+1 = T Rk = r11T ke1; k = 0(1)n (1)( k = n R, Rn+1 Rn+1), :

    lk =rl;k+1rkk

    k1Xj=m

    rjkrkk

    lj ; (2)

    l = 1(1)k + 1; k = 1(1)n; m = max(l 1; 1): ,

    k+1;k =rk+1;k+1rkk

    ;

    k;k =rk;k+1rkk

    rk1;krk1;k1

    ;

    k;k1k1;k =rk1;k+1rk1;k1

    rk1;krk1;k1

    k1;k1 rk2;krk2;k2

    ; (3)

    k = 1(1)n 1: n 1 T . - , T . .

    n(x) = xn nXj=1

    pnj+1xj1

  • - Rn 69

    T , P = (pn; : : : ; p1)T . (1) k = n Rn, R, (2) k = n. { [4]:

    P = R1T Rn; (4)

    Tn = 1rnn

    (RP n1Xj=1

    rjnTj): (5)

    L R - A = LR. A (LT = DR, D { ,), .

    L R - A,

    Ak(m; l) =Ak1 AlAm aml

    k, Ak1 - k 1 Ak(k; k) = Ak. [1],

    A = LDU; (6)

    L = (lij), U = (uij), i; j = 1(1)n, D = diag(d1; : : : ; dn) , D - ,

    lij = jAj(i; j)j;di = 1=(jAi1jjAij); jA0j = 1; (7)uij = jAi(i; j)j;

    (6) ,

    lkkdkukk = jAkj=jAk1j; k = 1(1)n: (8) , A , (LT = U), "k = sign(jAkj=jAk1j),E = diag("1; : : : ; "n) R = (ED)1=2U

    A = RTER: (9) ,

    Ak1[i; j] =

    26666664a11 : : : a1;j1 a1;j+1 : : : a1k: : : : : : : : : : : :

    ai1;1 : : : ai1;j1 ai1;j+1 : : : ai1;kai+1;1 : : : ai+1;j1 ai+1;j+1 : : : ai+1;k: : : : : : : : : : : :ak1 : : : ak;j1 ak;j+1 : : : akk

    37777775 ;i; j = 1(1)k:

  • 70 . .

    , aij Ak. - (6)

    A1 = UDL; (10)

    U = U1D1 = (uij); L

    = D1L1 = (lij):

    [3] Ak1[i; j]:

    1. (10) - A1

    lij = (1)i+j jAi1[j; i]j; i j;uij = (1)i+j jAj1[j; i]j; j i: (11)

    , , A = RTR , T , , [4].

    .

    1. A -

    , (11)

    2. k- U k- L

    k 1- Uk1(x) Lk1(x) ,

    Uk1(x) =kPi=1

    uikxi1 =

    =kPi=1

    (1)i+kjAk1[k; i]jxi1 =

    = Ak1 Ak1 : : : xk2 xk1

    ;Lk1(x) =

    kPi=1

    lkixi1 =

    =kPi=1

    (1)i+kjAk1[i; k]jxi1 =

    1

    Ak1 : : :xk2

    Ak xk1

    :

  • - Rn 71

    jAk1j. - Uk1(x), L

    k1(x) .

    , k- U = U1D1 (k- L = D1L1) Uk1(x) (L

    k1(x)) x.

    V =

    266641 x1 : : : xn111 x2 : : : xn12...

    ......

    1 xn : : : xn1n

    37775 (i) Rn-.

    k(x) =kYi=1

    (x xi) =kXi=1

    ck;kixi;

    '(k)l (x) = k(x)=(x xl); l = 1(1)k; k = 1(1)n;

    V V 1 [3], [6]:

    V = ZW;

    Z = (zij), W = (wij), i; j = 1(1)n, { ,

    wij =iXl=1

    xj1l

    '(i)l (xl)

    ;

    zji = i1(xj)

    V 1 =W1Z1;

    Z1 = (z?ij) W1 = (w?ij), i; j = 1(1)n, -

    z?jl =

    1

    '(j)l (xl)

    ; l = 1(1)j;

    w?ij = cj1;ji; i = 1(1)j;

    . W ( wij

    (i 1)- xj1 x1; : : : ; xi) - [3] ( )

    T =

    26666664

    x11 x2

    1. . .. . .

    . . .1 xn

    37777775 ;

  • 72 . .

    W1 k(x), k = 0(1)n 1. 2 A. 1.

    (7). (10) P = U(ED)1=2 E = diag("1; : : : ; "n), -

    A1 = PEP T : (12) P = (pj1i1 ), i = 1(1)j, j = 1(1)n,

    pj1i1 = (1)i+j1p

    "j jAj1jjAj jjAj1[j; i]j; j i; (13)

    "j = sign(jAj j=jAj1j):

    2. k- P - pk1(x) k 1,

    pk1(x) =k1Xi=0

    pk1i xi =

    =1p

    "kjAk1jjAkjkXi=1

    (1)i+kjAk1[k; i]jxi1 =

    =1p

    "kjAk1jjAkj

    Ak1 Ak1 : : : xk2 xk1 : (14)

    2. A -

    -. , -

    3. R T - (1). D Rk+1 = T Rk, k = 1(1)n 1, T = DT D1 = (tij) { R = DR { -. ( D ):

    tkk = kk ;tk;k1tk1;k = k;k1k1;k: (15)

    . R , - T ,

    Rk+1 = T Rk; k = 1(1)n 1:

  • - Rn 73

    k Rk+1 = T Rk . Rl = DRl, Rk+1 = D1 T DRk = T Rk, U = D1 T DT ,

    URk =kXj=1

    rjkUj = 0; k = 1(1)n 1:

    k = 1 , U1 = 0. Uj = 0, j = 1(1)k 1, Uk = 0, k = 1(1)n 1. T , Un = 0. , U , . D1 T D. 2

    3. T R, (1)

    R =n1Xk=1

    T k1R1eTk +RneTn ;

    T , (4):

    T R =n1Xk=1

    T kR1eTk +RPeTn :

    { , :

    T R = RF; (16)

    F {

    F =n1Xk=1

    ek+1eTk + Pen:

    , , , (xi) = 0, xi , v(xi) = (1; xi; : : : ; xn1i ) { . P = R1.

    1. :

    PT = FP; (17)

    v(xi)PT = xiv(xi)P: (18)

  • 74 . .

    A, A = LDU , D, (7), - :

    A An+1An+1 an+1;n+1

    =LD 0lD d

    U u0

    =

    =LDU LDulDU d+ lDu

    :

    U TU , L TL, (1) k = n : u = TUUn = UP ,l = LnTL = P TL, (4).

    An+1 = LDU = AP; An+1 = P TA:

    4. A - TU TL, - ,

    (x) =1jAj

    A APvT (x) xn

    =

    1jAj

    A v(x)P TA xn

    ; (19)

    v(x) = (1; x; : : : ; xn1)T . , -, : vT (xi)PU TU PLv(xi) TL, PUU = PLL = E.

    . (19) ( ) ( ). , :

    AP =nPi=1

    pjAnj+1:

    , (18). 2

    , , .

    5. Rn- .

    . A, A =LR TL, TR, p

    (L)k (x),

    p(R)k (x), k = 0(1)n 1. T (L), T (R), ,

    L = l11nXk=1

    ekeT1 T

    k1L ;

    R = r11nXk=1

    T k1R e1eTk

  • - Rn 75

    A. , p(L)k (x) p(R)k (x), k = 0(1)n1, L1 R1, A.

    A .

    4. ,

    , A = RTR. , (9), R E . (9) :

    A = ~RT ~D ~R; (20)

    ~D = diag( ~d1; : : : ; ~dn), ~R = (~rij), i; j = 1(1)n, { ,

    ~di = jAij=jAi1j; ~rij = jAi(i; j)j=jAij (21) R ~R

    R = ( ~DE)1=2 ~R; (22)E = diag("1; : : : ; "n), "i = sign ~di, 3 -

    T = (DE)1=2 ~T ( ~DE)1=2 (23) ~T = (~tij), i; j = 1(1)n, (9) (20) -.

    , T , R, ~T , ~R , - , (1) - (3). , (22), (23) - ~T ~R :

    ~Rk+1 = ~T ~Rk = ~T k ~R1; k = 0(1)n 1; (24)

    ~tjk = ~rj;k+1 k1Pi=m

    ~rik~tji; (25)

    j = 1(1)k + 1; k = 1(1)n 1; m = max(j 1; 1);, ,

    ~tk+1;k = 1;~tk;k = ~rk;k+1 ~rk1;k ; (26)

    ~tk1;k = ~rk1;k+1 ~rk2;k ~rk1;k~tk1;k1; k = 1(1)n 1: { -

    ~R A, ~D+ = diag( ~d+1 ; : : : ; ~d

    +n )

    ~D = ~D+E :

  • 76 . .

    E ( 2n) -, A+ =~RT ~D+ ~R 2n A = ~RT ~D ~R. - A+ A .

    2. A - (9) (20) :

    ~D = E ~D+; ~R = ~R+; R = R+:

    . ~D+. , (20) ~rii = 1,i = 1(1)n,

    jAi(i; j)j = j ~RTi jj ~Dijj ~Ri(ij)j = jEijj ~RTi jj ~D+i jj ~Ri(ij)j == jEijjA+i (i; j)j:

    , (6) L = UT

    uij = jAi(ij)j = jEiju+ij ;,

    ~rij =uijqjAji

    =ju+ij jjA+i j

    = r+ij :

    . , A = RTER = ~RT ~D ~R R = ( ~D+)1=2 ~R =( ~D+)1=2 ~R+ = R+: 2

    5. Rn-cRn- A = (aij), aij = ai+j2,

    Rn-. , [3-4].

    6. Rn- ~T , - (20), :

    ~T =

    266664b1 g1

    1 b2. . .

    . . .. . . gn11 bn

    377775

    bj = rj;j+1 rj1;j ; j = 1(1)n;gj =

    jAj1jjAj+1jjAj j2 ; j = 1(1)n 1: (27)

  • - Rn 77

    . [3-4]:

    jAl1(l; k)j = ul1;k+1 + jAl1jul2;l1ul1;k ul2;kjAl1jjAl2jjAl1j (28)

    jAl2julk = jAl1jjAl1(l; k)j ul;l1ul1;k (29)( , jAlj l- k-, ulk). jAl1(l; k)j - A, :

    ul1;k+1jAl1j =

    ul2;kjAl2j +

    ul1;kjAl1j

    ul1;ljAl1j

    ul2;l1jAl2j

    +jAl2julkjAl1j2 ;

    , (16):

    ~rl1;k+1 = ~rl2;k + ~rl1;k~rl1;l ~rl2;l1

    +jAl2jjAljjAl1j2 ~rlk : (30)

    l = k - (26) ( ), :

    ~tk1;k =jAk2jjAkjjAk1j2 :

    (26) (27). , ~tj1;k = 0 j < k, ..

    T . : (30),

    ~rl1;k+1 =lX

    i=l2

    ~rik~tl1;i;

    (25)

    ~rl1;k+1 =kX

    i=l2

    ~rik~tl1;i;

    kXi=l+1

    ~rik~tl1;i = 0: (31)

    l = k 1 ~tk2;k = 0 k = 3(1)n. , (28) l+2. , , k, , ~tkj;k = 0 ~tkj1;k = 0. , ~T . 2

  • 78 . .

    T , (9).. B ,

    jbij j = jbjij.. A -

    (9) T ,

    T =

    266664b1 a1"1"2

    a1 b2. . .

    . . .. . . an1"n1"nan1 bn

    377775 ;

    aj =

    vuutabsjAj1jjAj+1jjAj j2 :

    ,

    T T = ETE :

    1. .. . { .: , 1966.

    2. .., .. . { .-.: , 1950.

    3. .., .. .{ : , 1986.

    4. .. - // . . . 1986. XXVII, 2. . 84{90.

    5. .. . // . . .1987. XXVIII, 6. C. 148.

    6. .. . { -: , 1994.

    7. .. . 1068, 1996.

  • Sn{

    ..

    - Sn{. .

    1. 1955 - Sn{ ( ). . , - .. .. [1] : \... , , . , Sn{ ". H , - , , - [2{6]. - .

    H , - , Sn{, , , - .

    2. Sn{ q(r), [1, 4, 6]

    1r2

    @

    @r(r2'(n)) +

    @

    @

    1 2r

    '(n)+ '(n) = f (n)(r); (1)

  • 80 ..

    '(n)(R; ) = S() 0: (2) f (n)(r) = 12

    sR 11 '

    (n1)(r; )d + q(r)-

    "n" ; 0 r R; 1 1; (r) s(r) > 0. 1 1 2n (j ; j+1),

    0 = 1, 0 r R N (rk; rk+1) , rk. Mkj , rk r rk+1; j j+1. (1) Mkj \" dM = r2drd ( n) :

    r2k+1

    j+1Zj

    '(rk+1; )d r2kj+1Zj

    '(rk ; )d+ (1 2j+1)rk+1Zrk

    r'(r; j+1)dr

    (1 2j )rk+1Zrk

    r'(r; j)dr +

    rk+1Zrk

    (r)r2dr

    j+1Zj

    '(r; )d =

    rk+1Zrk

    f(r)r2dr; (3)

    = j+1 j . "" Sn{ '(r; )

    Mkj . - f(r) .

    Akj'kj +Bkj'k+1;j + Ckj'k;j+1 +Dkj'k+1;j+1 = Ekfk + Fkfk+1; (4)

    k = 0; 1; :::; N1; j = 0; 1; :::; n1. Akj ; Bkj ; :::; Fk, [1,6].

    (4) :

    'Nj = S(j); j = 0; 1; :::; n; (5)

    '0j = '0;2nj ; j > n: (6)

    (2), | .

    - . - -, 'k0, k = 0; 1; :::; N: (1) = 1, -

    @'@r

    + '(r;1) = f(r) (7)

  • Sn - 81

    '(R;1) = S(1). - . - [1, 6] . . 0 j < n Ckj (4), j n - Dkj > 0. , , , . , M - [7], - [8]. (1), (2) '(r; ) f(r) 0 S() 0, fk = f(rk) 0 S(j 0) 'kj k j . .

    3. "" Sn- . , , , .. . , (1),(2) ( [4,6], [1, 6] .), , .

    H (7)

    (1 + (rk)rk)'k0 'k+1;0 =rk+1Zrk

    f(r)dr; 'N0 = S(1); (8)

    rk = rk+1 rk . , Mkj 0; (0 j n), (3) :

    8>>>>:r2kj+1Zj

    d+ (1 2j+1)rk+1Zrk

    rdr +

    rk+1Zrk

    r2dr

    j+1Zj

    d

    9>>>>;'k;j+1+

    r2k+1

    j+1Zj

    d 'k+1;j+1 (1 2j )rk+1Zrk

    rdr 'kj = rk+1Zrk

    f(r)r2dr: (9)

    (5) 'k0 (8) - 0 j < n 'k;j+1 (9). , 'k;j+1 . - (9) .

    { n j 2n 1

  • 82 ..

    'k+1;j+1 :8>>>>:r2k+1j+1Zj

    d+ (1 2j+1)rk+1Zrk

    rdr +

    rk+1Zrk

    r2dr

    j+1Zj

    d

    9>>>>;'k+1;j+1

    r2k

    j+1Zj

    d 'k;j+1 (1 2j )rk+1Zrk

    rdr 'k+1;j = rk+1Zrk

    f(r)r2dr: (10)

    k = 0 '0;j+1 '0;2n(j+1) (6).

    (10) 'k+1;j+1 - , . - : (8){(10) - . - (8) ; (9)

    r2kj+1Zj

    d+ (1 2j+1)rk+1Zrk

    rdr + r2k+1

    j+1Zj

    d+ (1 2j )rk+1Zrk

    rdr 0;

    (10). , -

    M - [7], .. A1 0, f(r) S() -. , f(r) 0; S() 0 [8]

    0 maxk;j

    'k;j maxn

    max0kN1

    rk+1Zrk

    f(r)dr=(rk)rk ;

    max0kN1

    rk+1Zrk

    f(r)r2dr=

    rk+1Zrk

    r2dr; max0jn

    S(j)o:

    f S, : j 'kj j; j f(r) j; j S(j). - (8){(10).

    , , -, ..

    [1] .., .. .{ .: , 1981. { 454 .

  • Sn - 83

    [2] Carlson B.G. Solution of the transport equation Sn{approximations / Los AlamosScientic Laboratory Report LA{1891, 1955.

    [3] ., . Sn{ // - . { .: , 1959. {408 .

    [4] .. . { .: , 1961.{ 667 .

    [5] .H. Sn- // . {.: , 1962. {91.

    [6] .. . { .: , 1978. {216 .

    [7] .., .. { . { .: H, 1984.{ 218 .

    [8] .. . { H-, 1998. { 9 . (/H. . -, ; 1118)

    [9] .. . { .: H, 1988. { 263 .

  • 1

    . . , . .

    E-mail: [email protected]

    - .

    - - [1]{[20] . ..[3, 4].

    - , - . , - - . - . . -, [13], [15], [21].

    1. :(

    d'dt + A(t)'+ F (') = f; t 2 (0; T )

    't=0

    = u;(1.1)

    1 ( 00{01{00611)

  • 85

    A { ,

    A(t)' = 2X

    i;j=1

    @

    @xiai;j

    @'

    @xj+

    2Xi=1

    ai@'

    @xi+ a':

    x = (x1; x2) 2 R2, { - @, ai;j , ai, a - :

    a(x; t) 0;2Xi=1

    @ai@xi

    = 0; ai;j = aj;i;

    2Xi;j=1

    ai;jij 2Xi=1

    2i 8i 2 R; = const > 0:

    A Y = L2( (0; T )) Y D(A) =f' : ' 2 Y ;A' 2 Y; '=@ = 0g. f 2 Y , u 2 H = L2(), F (') - ,

    F (') =Qe='; ' > 0;

    0; ' 0;Q; ; > 0 - . (1.1) , , [23], [24].

    S(') =

    2k'jt=0k2 + 12

    Z T0kb' 'k2dt; (1.2)

    =const 0; b' = b'(t) 2 Y { , kk { H . b'(t) , , -. [13]. , .

    (1.1) u 2 H (.. u) . [6],[13]: '='(t) - u , (1.1), - (1.1) (1.2) .

    :8>:@'@t +A(t)'+ F (') = f; t 2 (0; T )

    't=0

    = uS(') = min

    uS('):

    (1.3)

    (1.3) [6], [13], [15], [25] . (1.2) , , [15].

  • 86 . . , . .

    [6], [13], (1.3) - ' = '(t), ' = '(t) u :(

    @'@t +A(t)'+ F (') = f; t 2 (0; T )

    't=0

    = u;(1.4)

    (@'

    @t +A(t)' + (F 0('))' = (b' '); t 2 (0; T )

    't=T

    = 0;(1.5)

    u 't=0

    = 0; (1.6)

    A(t) { , (t), F 0 F .

    (1.4){(1.6) - [13], [25] . , , ', ', u (1.4){(1.6) , .

    2. (1.4){(1.6) -

    - . (1.4), (1.5) . ,

    (1.4) . o (1.4) '(x; t), t 2 (0; T ) HA [26], - @'@t 2 L2( (0; T )) (0; T )

    (@'

    @t; )(t)+['; ](t)+

    2Xk=1

    ak

    @'

    @xk;

    +(F ('); )(t) = (f; )(t); ('

    t=0

    ; ) = (u; );

    (2.1) 2 HA. (; ) { H , HA { , A(t),

    ['; ] =Z

    (2X

    i;j=1

    ai;j@'

    @xj

    @

    @xi+ a' )dx

    ['] = ['; ']1=2. , -

    - , [26]. , Pi i [26]. - (2.1)

    'h(x; t) =NXi=1

    bi(t) i(x);

  • 87

    N { . bi(t) :

    (@'h@t

    ; i)(t) + ['h; i](t) +2Xk=1

    ak@'h@xk

    ; i

    + (F ('h); i)(t) = (f; i)(t); (2.2)

    ('h(x; 0) '0; i) = 0 i = 1; N: (2.3) (1.4){(1.6) :8>>>>>:

    @'h@t ; i

    + ['h; i] +

    2Xk=1

    ak@'h@xk

    ; i

    + (F ('h); i) = (f; i)

    ('ht=0uh; i) = 0;

    (2.4)

    8>>>>>:@'h@t ; i

    + ['h; i]

    2Xk=1

    ak@'h@xk

    ; i

    + (F 0('h)'h; i) = (b' 'h; i)

    ('ht=T

    ; i) = 0;(2.5)

    (uh 'ht=0

    ; i) = 0; i = 1; N: (2.6)

    : e'h = 'h 'h, e'h = 'h 'h, euh = uh uh, 'h, '

    h, uh { :8>>>>>:

    @'h@t ; i

    + ['h; i] +

    2Xk=1

    ak@'h@xk

    ; i

    = (f; i)

    ('ht=0uh; i) = 0;

    (2.7)

    8>>>>>:@'h@t ; i

    + ['h; i]

    2Xk=1

    ak@'h@xk

    ; i

    = (b' 'h; i)

    ('ht=T

    ; i) = 0;

    (2.8)

    (uh 'ht=0

    ; i) = 0; i = 1; N: (2.9)

    e'h, e'h, euh :8>>>>>:@ e'h@t ; i

    + [e'h; i] + 2X

    k=1

    ak@ e'h@xk

    ; i

    + (F ('h + e'h); i) = 0

    (e'ht=0euh; i) = 0;(2.10)

  • 88 . . , . .

    8>>>>>>>>>:@ e'h@t ; i

    + [e'h; i] 2X

    k=1

    ak@ e'h@xk

    ; i

    +

    (F 0('h + e'h)('h + e'h); i) = (e'h; i)(e'ht=T ; i) = 0;

    (2.11)

    (euh e'ht=0; i) = 0; i = 1; N: (2.12) :

    8>>>>>: @ e'(n+1)h@t ; i

    !+ [e'(n+1)h ; i] + 2X

    k=1

    ak@ e'(n+1)h@xk

    ; i

    !+ (F ('h + e'(n)h ); i) = 0;

    (e'(n+1)h t=0eu(n+1)h ; i) = 0;(2.13)

    8>>>>>>>>>>>>>>>:

    @ e'(n+1)h

    @t ; i

    !+ [e'(n+1)h ; i] 2X

    k=1

    ak@ e'(n+1)h@xk

    ; i

    !+

    +(F 0('h + e'(n)h )('h + e'(n)h ); i) = (e'(n+1)h ; i)(e'(n+1)h t=T ; i) = 0;

    (2.14)

    (eu(n+1)h e'(n+1)h t=0; i) = 0; i = 1; N: (2.15) (2.13){(2.15)

    (2.7){(2.9), .

    3. (2.7){(2.9) f; b' 2 Y =

    L2( (0; T )).

    3.1. f; b' 2 Y . > 0 (2.7){(2.9) 'h, '

    h, uh,

    k'hkY + k'hkY + kuhk c(kfkY + kb'kY ); c = const > 0: (3.1) [6], [9], [13] -

    . (3.1) c { .

    .

  • 89

    3.1. 'h (2.7)

    k'ht=T

    k2 + k'hk2Y 1kfk2Y + k'h

    t=0k2; (3.2)

    = 94mes, { , A.

    . (2.7) [13] -

    @'h@t

    ; 'h

    + ['h; 'h] = (f; 'h);

    t 0 T ,

    12k'hk2(T ) +

    TZ0

    ['h]2(t0)dt0 =

    TZ0

    (f; 'h)dt0 +

    12k'hk2(0):

    ['h]2

    Z

    2Xk=1

    @'h@xk

    2dx C2()k'hk2;

    C() = 32(mes)1=2 { -x [27],

    " > 0

    12k'hk2(T ) + k'hk2Y

    14"kfk2Y + "k'hk2Y +

    12k'hk2(0):

    " = =2, (3.2). 'h

    (2.8). 3.1. 3.1. 3.1 (2.7){(2.8)

    'h = G0uh +G1f; 'h = G

    (T )1 (b' 'h);

    G0 : H ! Y; G1 : Y ! Y; G(T )1 : Y ! Y { . 'h; '

    h (2.7), (2.8) (2.9),

    uh:

    Luh = P; (3.3)

    L = T0G(T )1 G0 + E; P = T0G

    (T )1 (b'G1f), T0' = 't=0; E' = '.

    L HN { f igi=1;N . 0 , ..

    (Luh; uh) = kuhk2 +TZ0

    kG1uhk2dt > 0:

  • 90 . . , . .

    Luh = P , -

    kuhk dkPk; (3.4) d = 1=min(L), min(L) { L., min(L) .

    P 3.1. :

    kPk 1p(kb'G1fkY ) 1p

    kb'kY + 3=2kfkY ;

    (3.4)

    kuhk d1=2kb'kY + d3=2kfkY : (3.5) 'h { (2.7), 3.1

    k'hkY 1kfkY + 1=2kuk;

    (3.5)

    k'hkY 1+

    d

    2

    kfkY + d

    kb'kY : (3.6)

    (2.8) (3.6):

    k'hkY 1kb' 'hkY 1kb'kY +

    12

    +d

    3

    kfkY + d

    2kb'kY : (3.7)

    (3.5){(3.7), (3.1),

    c = max

    dp+d

    +1+

    d

    2;

    d

    3=2+1+

    d

    2+

    12

    +d

    3

    :

    .

    4. .

    (x) = Qe=x; x 2 (0;1), F (').

    4.1. 0; 00

    j(x)j Q; j0(x)j q1Q; j00(x)j q2Q; (4.1)

    q1 =4 e

    2; q2 = max(1;2), i = j00(i)j; i = 1; 2, 1;2 = 2(12 +p36 ),

    00(x) = expf x( 2x)g=x4, x 2 (0;1).

    4.1

  • 91

    4.2. F Y Y ,

    kF (')kY QpTmes; kF 0(') kY q1Qk kY ; 8 '; 2 Y; (4.2)

    q1 (4.1).

    (2.13){(2.15) - .

    4.1. e'(0)h ; e'(0)h ; eu(0)h R:

    ke'(0)h kY + ke'(0)h kY + keu(0)h k R; R > 0: Q 1=(cq1 + g0=R), g0 = cq1(k'hkY + k'hkY + kuhk), - (2.13){(2.15) e'(n)h ; e'(n)h ; eu(n)h .

    . (2.13){(2.14) ke'(0)h kY+ke'(0)h kY +keu(0)h k R. ( n) e'(n+1)h ; e'(n+1)h ; eu(n+1)h{ , 3.1 4.2

    ke'(n+1)h kY+ke'(n+1)h kY+keu(n+1)h k c(kF ('h+e'(n)h )kY+kF 0('h+e'(n)h )('h+e'(n)h )kY ) cq1Q(k'h+e'(n)h kY+k'(n)h +e'hkY ) cq1Q(ke'(n)h kY+ke'(n)h kY )+cq1Q(k'hkY+k'hkY ): ,

    ke'(n)h kY + ke'(n)h kY + keu(n)h k (cq1Q)n(ke'(0)h kY + ke'(0)h kY )+ 1 (cq1Q)n1 cq1Q g0Q R; Q 1=(cq1 + g0=R). , R.

    4.1

    maxtke'(n)h kL1() +maxt ke'(n)h kL1() + keu(n)h kL1() qR (4.3)

    q, n R.

    HN - L2() vh =NPi=1

    bi i

    L1() [26]. , -

    Q .

    4.2. e'(0)h ; e'(0)h ; eu(0)h R = r0 = k'hkY + k'hkY + kuhk. Q < Q0, Q0 = [2c(q1 +qq2r0)]1, (2.13){(2.15) .

  • 92 . . , . .

    . R = r0 4.1, - 4.1 Q 1=(2cq1). (2.13){(2.15) n = e'(n+1)h e'(n)h , n = e'(n+1)h e'(n)h , vn = eu(n+1)h eu(n)h :8>>>>>:

    @n@t ; i

    + [n; i] +

    2Xk=1

    (ak@n@xk

    ; i) = (F ('h + e'(n1)h ) F ('h + e'(n)h ); i)(nt=0vn; i) = 0;

    (4.4)

    8>>>>>>>>>>>>>:

    @n@t ; i

    + [n; i]

    2Xk=1

    (ak@n@xk

    ; i) = (F 0('h + e'(n1)h )('h + e'(n1)h ); i)(F 0('h + e'(n)h )('h + e'(n)h ); i) (n; i)

    (nt=T

    ; i) = 0(4.5)

    (vn nt=0

    ; i) = 0; i = 1; N: (4.6)

    3.1 4.1, 4.2, (4.4){(4.6) (4.3)

    knkY + knkY + kvnk c(kF ('h + e'(n1)h ) F ('h + e'(n)h )kY+kF 0('h+e'(n1)h )(e'(n)h e'(n1)h )kY +k(F 0('h+e'(n)h )F 0('h+e'(n1)h )('h+e'(n)h )kY )

    cQ(q1ke'(n)h e'(n1)h kY + q1ke'(n)h e'(n1)h kY + 2qq2r0ke'(n)h e'(n1)h kY )= (ke'(n)h e'(n1)h kY + ke'(n)h e'(n1)h kY );

    = cQ(q1 + 2qq2r0). , m n -

    :

    ke'(n+m)h e'(n)h kY+ke'(n+m)h e'(n)h kY+keu(n+m)h eu(n)h k n n+m1 ; k = const > 0:(4.7)

    < 1, (4.7) , - .

    5. -

    .

  • 93

    (2.13){(2.14) - :8>:

    d'dt +A

    h(t)' = ef;'t=0

    = u;(5.1)

    8>:d'

    dt +Ah(t)' = '+ g;

    't=T

    = 0;(5.2)

    u 't=0

    = 0; (5.3)

    ' = '(t), ' = '(t), u { N , Ah(t); Ah { N , ef = ef(t); g = g(t) { -.

    (5.1){(5.3) , [21], [22]. ( - -) - [22]:8>:

    'k+1(j) 'k(j) +A

    k+1=2'k+1(j) + 'k(j)

    2 =efk+1=2;

    '0(j) = uj(5.4)

    8>:'

    k+1(j) 'k(j) +A

    k+1=2'k+1(j) + 'k(j)

    2 = 'k+1=2(j) + gk+1=2;

    'M(j) = 0;(5.5)

    uj+1 = uj + j+1('0(j) uj) + j+1(uj uj1); (5.6) j+1; j+1 { , 'k(j), 'k(j), uj {

    , 'k+1=2(j) = 'k+1(j) + 'k(j)

    2 , { , k =0;M 1; = T=M .

    (5.4){(5.6) [22]. - (5.4), (5.5) (5.4){(5.6) BiCGSTAB- [28], [29].

    , - (2.13){(2.15), (5.4){(5.6).

    . - - h=0:05, =0:05.

  • 94 . . , . .

    ( , )

    kuj+1 ujkkujk < ";

    " = h2 = 2:5 103, kk { L2(). -

    : aij = 1; i = j; aij =0; i 6= j; ai = 0; a = 0, Q = = = 1. ' (1.1) , b' = b'(x1; x2; t), t 2 (0; 1); x1 2 (0; 1); x2 2 (0; 1). , u , (2.4){(2.6) , , u0 = x21x

    22(1 x1)(1 x2), [21]

    j+1 =

    8>:2

    + ; j = 0

    4

    Tj()Tj+1()

    ; j > 0; j+1 =

    8>:0; j = 0

    Tj1()Tj+1()

    ; j > 0;(5.7)

    =+ ; = + (2max)

    1[1 1 max

    2

    1 + max2

    !2T=];

    = + (2min)1[1 1 min

    2

    1 + min2

    !2T=];

    max =8h2

    cos2h

    2; min =

    8h2

    sin2h

    2:

    . 5.1 , - ", . . 5.1, .

    5.1. n(")

    1 0.5 0.2 0.1 0.05 0.01 0.001 0.0005 n 8 8 8 9 11 16 42 54

    , [18], - u (5.1){(5.3), u, (5.1){(5.3) = 0, O(). R R = kuj uk=kuk, uj { , . . 5.2 R . , R , - .

  • 95

    5.2. R

    1 0.5 0.2 0.1 0.05 0.01 0.001 0.0005

    R 0.9765 0.9541 0.8931 0.8078 0.6804 0.3167 0.0586 0.0351

    (1.2). . 5.3 - S(') . . 5.4 S(') - .

    5.3. S(') 1 0.1 0.05

    0 0.12732 0.11895 0.118481 0.02019 0.01666 0.013562 0.02009 0.01687 0.014193 0.02006 0.01649 0.013284 0.02006 0.01654 0.013525 0.02006 0.01653 0.013416 * 0.01652 0.013457 0.01653 0.013428 0.01653 0.013439 * 0.01343 17 0.01343

    5.4. S(')

    1 0.5 0.2 0.1 0.05

    S(') 0.02006 0.01963 0.01839 0.01653 0.01343

    (2.13){(2.15), -

    (2.10){(2.12), { 2-3 - . , - . 0:05 1, , { -. ,

  • 96 . . , . .

    . -, .

    - - , .

    [1] .. . {.: , 1998.

    [2] .. . {.: , 1969.

    [3] .. // . 1964..156, N3. C.503{506.

    [4] .. // . . 1964. .2. .3..462{477.

    [5] .. . {.: , 1969.

    [6] .-. , - . {.: , 1972.

    [7] Marchuk G.I., Penenko V.V. Application of optimization methods to the prob-lem of mathematical simulation of atmospheric processes and environment //Modelling and Optimization of Complex Systems: Proc. of the IFIP-TC7 Work.conf. New York: Springer, 1978. P. 240-252.

    [8] Le Dimet F.X., Talagrand O. Variational algorithms for analysis and assimilationof meteorological observations: theoretical aspects // Tellus. 1986. 38A. P. 97-110.

    [9] . . - // Research ReportDNM 91/2, {M.: , 1991.

    [10] Kurzhanskii A.B., Khapalov A.Yu. An observation theory for distributed-parameter systems // J. Math. Syst. Estimat. Control. 1991. V.1, . 4, P.389-440

    [11] .. - . {M.: , 1992.{ . 17.07.92, 2333{1392.

  • 97

    [12] Zou X., Navon I.M., Le Dimet F.X. Incomplete observations and control of grav-ity waves in variational data assimilation // Tellus A. 1992. V. 44A. P.273{296.

    [13] Agoshkov V.I., Marchuk G.I. On solvability and numerical solution of data as-similation problems // Russ. J. Numer. Analys. Math. Modelling. 1993. V. 8. .1. P. 1{16.

    [14] .., .., .. - . {M.: -, 1993.

    [15] Marchuk G.I., Zalesny V.B. A numerical technique for geophysical data assimi-lation problem using Pontryagin's principle and splitting-up method // RussianJ. Numer. Analys. Math. Modelling. 1993. V. 8. 4. P. 311{326.

    [16] Agoshkov V.I. Control theory approaches in data assimilation processes, inverseproblems and hydrodynamics // Computer Mathematics and its Applications.1994. V.1. P. 21.

    [17] Glowinski R., Lions J.L. Exact and approximate controllability for distributedparameter systems // Acta Numerica. 1994. V.1. P. 269.

    [18] Marchuk G.I., Shutyaev V.P. Iteration methods for solving a data assimilationproblem //Russ. J. Numer. Analys. Math. Modelling. 1994. V. 9. 3. P. 265{279.

    [19] ., .. - // . . 1996. .32, 5. C. 613{629.

    [20] .., .., .. - // .. . . . 1997. .2. 12. C. 1449{1458.

    [21] .., .. - // . 1997. T.37, 7. C. 816{827.

    [22] Parmuzin E.I., Shutyaev V.P. Numerical analysis of iterative methods for solvingevolution data assimilation problems // Russ. J. Numer. Anal. Math. Modelling.Vol. 14. 3. 1999. P. 265{274.

    [23] .. // . . 1959. T. XIV. B. 2(86). C. 87{158.

    [24] . -. {.: , 1985.

  • 98 . . , . .

    [25] .. // . . 1998. .34, 3.C. 383{389.

    [26] .., .. - . {.:, 1981.

    [27] .. . {.:, 1994.

    [28] Freund R.W., Golub G.H., N.M. Nachtigal. Iterative solution of linear systems// Acta Numerica. 1992. P. 57{100.

    [29] H. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CGfor the solution of nonsymmetric linear systems // SIAM J. Sci. Statist. Comput.1992. V. 13. P. 631{644.

  • 1

    . .

    E-mail: [email protected]

    -, -. , : . , - - . , - , , .

    1.

    , , .

    , - , . , - . :

    @'

    @t+K(') ' = S'+ f; 'jt=0 = '0; (1)

    ' 2 ; f 2 F;

    1 , 99{05{64038.

  • 100 . .

    { - (), K(') { , ':

    (K(')'; ') = 0; K = K;S { - ( - ):

    (S'; ') 2('; '); S = S: (1) , ,

    S, f :

    12@

    @t('; ') 1

    2@

    @tk'k2 = 0: (2)

    , . , (1) ,.. - .

    , (1) , .. c [1]. - , , - [1]. , , .. , '0 2 A, A { (1). , , -, . , (1), '0 2 A, . , (1) - , , - . , , , , , , .

    , '(t) , , - '(t) (1) - .

    M' K(') '+ S': M '(t) :

    A'0 K('(t)) '0 +K('0) '(t) + S'0:(, K(') '.) ' = '(t) + '0, - '(t) '0 :

    @'0

    @t+A('(t))'0 = 0; '0jt=0 = '00: (3)

  • 101

    , A M K('0) '(t), , , - '(t). ( .)

    2.

    -. , , (1) ( f S - ), -, '0 '0 - . , - . , , , , , . - [2]. , - .

    :

    q H + @@p

    p2

    m2@H

    @p;

    H { , { , { , m2 > 0. , - , -.

    q

    @q

    @t+ 2J(H; q) = ~": (4)

    ~" { , ,J { , 2 =const > 0.

    p = p0; p1

    @

    @t

    @H

    @p= f1(H); p = p0; p2

    @H

    @t= 0; p = p1:

  • 102 . .

    L :

    L

    8>>>>>:+

    @

    @p

    p2

    m2@

    @pp 2 (p1; p0);

    @

    @pp = p0;

    p2 p = p1:

    L@H

    @t= F (H; ~"):

    L { , :

    @H

    @t= L1F (H; ~"):

    L1 { . ( ) - , . - { . , - , : -, , , - - L.

    - , - , - , . .

    - (1) - [3].

    (1):

    @'

    @t+K(') ' = S'+ f; 'jt=0 = '0; t 2 [0; T ]

    @'

    @t+K(') ' = S + f; 'jt=T = 'T : (5)

    (') S :

    K(') = K('); S = S;

  • 103

    (5) :

    @'

    @t+K(')' = S'+ f; 'jt=0 = '0;

    (6)

    @'

    @tK(') ' = S'+ f; 'jt=T = 'T :

    (6) ', ' .

    @

    @t('; ') + (K(')'; ') + (K(')'; ') = (f; ') (f; '):

    (K';') = (';K') = (K'; ')

    ('; ')T ('; ')0 =TZ0

    (f; ') dtTZ0

    (f; ') dt: (7)

    , , ' . 'T ; f

    , - . , , .

    (6) , '(t) '. . , : - ( ).

    , - '(t) (0;1) t =1. , .

    t1 = T t, ' :

    @'

    @t1K(') ' = S' + f1; 'jt1=0 = '0:

    '0

    0 { .

    @'0

    @tK(')'0 = S'0 : (8)

  • 104 . .

    (8) '0

    ,

    12@k'0k2@t

    = (S'1; '0) 2k'k2;

    k'0k e2tk'00 k:

    - .

    @'0

    @t1K(')'0 = S'0 + f; '0 jt1=0 = 0:

    , f , f , . :

    12@k'0k2@t

    2k'k2 + (f; '0)

    2k'0k2 + kfk k'0k 2k'0k2 + 12"kfk2 + "

    2k'0k2 =

    ="2 2

    k'0k2 + 1

    2"kfk2:

    , , " = 2, :

    @

    @tk'0k2 2k'0k2 + 1

    2kfk2;

    k'0k2 (1 e2t) 12kfk2 1

    2kfk2:

    , , - , . , , - , , , - (7) . , - .

    3.

    . . (1) . - { f . ,

  • 105

    - ( ) . (1).

    @'

    @t+K(') ' = S'+ f

    , - .

    - , 1959 . [4] , . - . - ; , , (1) S = 0; f = 0, - (') ( ). , :

    duidt

    = Qi(u); i = 1; : : : ; N; u 2 RN ;(9)

    ui(0) = ui0:

    (9)

    NXi1

    @Qi@ui

    = 0

    NXi1

    u2i = C:

    , -

    (u) = AeP

    u2i

    B ;

    ; { .

    du0idt

    = Qi(u0) + fi; u0i(0) = ui0: (10)

    ui = u0i ui. , kfk , (0; t) kuik , f 6= 0 t 0. (10)

  • 106 . .

    u. ui

    ui =

    tZ0

    Xj

    gij(t; t0)fj dt0; (11)

    u =

    tZ0

    G(t; t0)f dt0;

    G(t; t0) . : -

    (11) , (u), kuk:

    < G(t; t0) >=< G() >= C()C1(0); = t0 t; (12) () =< u(t+)u0(t) > { . - (12) , , . ,

    < u >=

    tZ0

    C()C1(0)f d: (13)

    (13) t ! 1 - f :

    < u >=

    1Z0

    C()C1(0)f d: (14)

    ( [5].) - : (1), ""? "-" , .. : -, . "", , - . :

    kfkfk = " 1:

  • 107

    , (1) :

    1. ' =< ' > { (< > { , .. ).

    2. E = ('; ') { .3. E

    = ('; ') { .

    4. E E = (' '; ' ') { .

    5. D(E) = [('; ') ('; ')]2 { . '0 = ' '.

    k'0kk 'k =

    (E E)1=2E1=2

    :

    :

    "1 =D(E)E2 ; "2 =

    k'0kk 'k :

    "1 1 , 1="1 . , 1="1 [6], '

    N =1"1

    =(Pi)2P2i

    ;

    i { C(0). , - : 1 N N . , , - ( .. - - ) , . , - ( ), , " " . , "1 1 (13) (1) ( , ) .

    , , - , (13) .

    , "2 1. B , , - "2 '. , [7]:

    @'0

    @t+A1'0 = 0; (15)

  • 108 . .

    1 (1), ' .

    , 0 - - F < 0 0T >. - '0 : C0 < '0 '0T >

    A1C0 + C0AT1 = F

    ( , Re(A1) > 0), : C() < '0(t+ ) '0(t) >

    C() = eA1C0 ( > 0):

    (15) f , -

    < '0 >= A11 f;

    11 , ,

    A11 =

    1Z0

    C()C10 d;

    .. - .

    , , , .

    - (, ). "" , , ( - ). , -, "" - . , . , - - .

    , -

    ,

  • 109

    , ... , -, . , (, , ) - , .

    1. .., .. .{.: , 1994. {252 .

    2. .., .. // . 1958. . 2. . 66{104.

    3. .. .{.: , 1974. {303 .

    4. Kraichnan R.H. Classical uctuation-relaxation theorem // Phys. Rev. 1959.V. 109. P. 1407{1422.

    5. Leith C.E. Climate response and uctuation dissipation // J. Atmos. Sci. 1975.V. 32, 1. P. 2022{2026.

    6. - .. , "-" // -. 1969. 2. . 24{36.

    7. .. // .. . 1998. . 34, 6. . 741{751.

  • 1

    . . , . .

    E-mail: [email protected]

    - . { - , , { - ; - , - .

    . - . . - . , , . - : A, B, C. - . . . - , .

    The work deals with the numerical modelling of the marine dynamics andan analysis of the sensitivity of the obtained solutions.Our goal is threefold:

    1 , 00-05-64051

  • 111

    { to develop numerical model of the marine general circulation that simulatesthe large-scale structure of the hydrological elds, its time-space variability andlocal peculiarities{ to construct a cost-eective exible computational algorithms for the modeland retrospective data analysis of the solution{ to develop methods for assessment of the solution on the base of adjoint equa-tion technique.The model is based on the primitive equation system of thermohaline sea dy-namics. The governing equations are written in the bottom following system ofcoordinates (-system).The special symmetrized form of notation of the dierential equations is usedin the model. The operator of the problem prior to its space approximation isrepresented as the sum of suboperators of a simpler structure. The numericalalgorithm of the model is based on implicit splitting schemes and the grid ap-proximations of the split problems with respect to space variables, which obeythe main conservation law that holds for the original system.The space approximation of the model equations is realized on staggered com-bined grids: the combinations of grids A, B, and C can be used. The model isimplemented on a personal computer with rather cost-eective code.The sensitivity of the solution is considered. Adjoint method is used for this pur-pose. In order to characterize state of the system a special functional dependingon the solution of the adjoint problem is introduc