第八章 聚合物的屈服和断裂

101
第第第 第第第第第第第第第 桂桂桂桂桂 桂桂桂桂桂桂桂桂 桂桂桂桂桂桂 桂桂桂 桂桂

Upload: jensen

Post on 04-Jan-2016

143 views

Category:

Documents


0 download

DESCRIPTION

第八章 聚合物的屈服和断裂. 桂林工学院 材料与化学工程系 高分子教研室 彭锦雯 主讲. 内容提要. 教学内容 :聚合物的塑性与屈服,聚合物的应力 - 应变曲线,细颈,银纹,屈服判据;聚合物的断裂与强度,断裂理论,影响聚合物强度的因素与增强,聚合物的增韧。 基本要求 :识别非晶态聚合物、晶态聚合物和取向聚合物的应力 - 应变曲线,掌握细颈和银纹的现象与理论解释,掌握屈服判据,区分脆性断裂与韧性断裂,明确聚合物的强度概念,了解断裂理论,掌握影响聚合物强度的因素及增强的手段,认识聚合物增韧的途径与机理及影响因素。 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第八章 聚合物的屈服和断裂

第八章 聚合物的屈服和断裂

桂林工学院材料与化学工程系

高分子教研室彭锦雯 主讲

Page 2: 第八章 聚合物的屈服和断裂

内容提要 教学内容:聚合物的塑性与屈服,聚合物的应力 - 应

变曲线,细颈,银纹,屈服判据;聚合物的断裂与强度,断裂理论,影响聚合物强度的因素与增强,聚合物的增韧。

基本要求:识别非晶态聚合物、晶态聚合物和取向聚合物的应力 - 应变曲线,掌握细颈和银纹的现象与理论解释,掌握屈服判据,区分脆性断裂与韧性断裂,明确聚合物的强度概念,了解断裂理论,掌握影响聚合物强度的因素及增强的手段,认识聚合物增韧的途径与机理及影响因素。

重点难点:应力 - 应变曲线,细颈和银纹现象的理解,屈服判据,聚合物的增强与增韧。

Page 3: 第八章 聚合物的屈服和断裂

本章内容

8.1 聚合物的塑性和屈服 8.1.1 应力应变曲线 8.1.2 聚合物的屈服 8.2 高聚物的断裂和强度 8.2.1 脆性断裂与韧性断裂 8.2.2 聚合物的强度 8.2.3 断裂理论 8.2.4 影响聚合物强度和韧性的因素 ------ 增强与增韧 8.2.5 疲劳

Page 4: 第八章 聚合物的屈服和断裂

表征材料力学性能的基本物理量

受受力力方方式式

简单拉伸 简单剪切 均匀压缩 参数

受受力力特特点点

外力 F 是与截面垂直,大小相等,方向相反,作用在同一直线上的两个力。

外力 F 是与界面平行,大小相等,方向相反的两个力。

材料受到的是围压力。

,,

,,,F

F

0l θF

F

Page 5: 第八章 聚合物的屈服和断裂

应变应变

张应变:

真应变:

切应变:

是偏斜角

压缩应变:

应力应力

张应力:

真应力:

切应力: 压力 P

0

0

l

ll

l

li

i

l

dl0

tgr

0V

V

0A

F

A

F

0A

Fs

Page 6: 第八章 聚合物的屈服和断裂

弹弹性性模模量量

杨氏模量:

泊淞比:

切变模量: 体积模量:

柔柔量量

拉伸柔量: 切变柔量: 可压缩度:

0

0

ll

AFE

纵向单位宽度的增加横向单向单位宽度的

ll

mm

tgA

F

rG s

0

=V

PVPB

0

ED

1 G

J1

B

1

Page 7: 第八章 聚合物的屈服和断裂

不同材料的泊松比

材料名称 泊松比 材料名称 泊松比

锌 0.21 玻璃 0.25

钢 0.25~0.35 石料 0.16~0.34

铜 0.31~0.34 聚苯乙系 0.33

铝 0.32~0.36 聚乙烯 0.38

铅 0.45 有机玻璃 0.33

汞 0.50 橡胶类 0.49~0.50

Page 8: 第八章 聚合物的屈服和断裂

几种常用的力学强度

拉伸强度 σt= P/bd (最大负荷 / 截面积 )MPa 1 MPa = 9.8 kg/cm2 ≈ 10 kg/cm2

弯曲强度 σf = 1.5(Pl/bd) MPa

冲击强度 σi = W/bd Kgcm/cm2

注意 ! 不同方法测量结果会有不同

Page 9: 第八章 聚合物的屈服和断裂

常见塑料的拉伸和弯曲强度塑料名称塑料名称 拉伸强度拉伸强度

(( MPMPaa ))伸长率伸长率

%%拉伸模量拉伸模量(( GPGPaa ))

弯曲强度弯曲强度(( MPMPaa ))

弯曲模量弯曲模量(( GPGPaa ))

聚乙烯 22~ 39 60~ 150 0.84~ 0.95 25~ 40 1.1~ 1.4

聚苯乙烯 35.2~ 63.3 12~ 25 2.8~ 3.5 61.2~ 98.4

ABS 塑料 16.9~ 63.3 10~ 140 0.7~ 2.9 25.3~ 94.9 3.0

有机玻璃 49.2~ 77.3 2~ 10 3.2 91.4~ 119

聚丙烯 33.7~ 42.2 200~ 700 1.2~ 1.4 42.2~ 56.2 1.2~ 1.6

聚氯乙烯 35.2~ 63.3 20~ 40 2.5~ 4.2 70.3~ 112

尼龙 66 83 60 3.2~ 3.3 100~ 110 2.9~ 3.0

尼龙 6 74~ 78 150 2.6 100 2.4~ 2.6

尼龙 1010 52~ 55 100~ 250 1.6 89 1.3

聚甲醛 62~ 68 60~ 75 2.8 91~ 92 2.6

聚碳酸酯 67 60~ 100 2.2~ 2.4 98~ 106 2.0~ 3.0

聚砜 72~ 85 20~ 100 2.5~ 2.9 108~ 127 2.8

聚酰亚胺 94.5 68 > 100 3.2

聚苯醚 86.5~ 89.5 30~ 80 2.6~ 2.8 98~ 137 2.0~ 2.1

氯化聚醚 42.3 60~ 160 1.1 70~ 77 0.9

线性聚酯 80 200 2.9 117

聚四氟乙烯 14~ 25 250~ 350 0.4 11~ 14

Page 10: 第八章 聚合物的屈服和断裂

聚合物力学性质的特点

是已知材料中变性范围最宽的力学性质是已知材料中变性范围最宽的力学性质。即力学性质的多样性。例如液体有软弹性、硬弹性、刚性、脆性、韧性等。可以从纯粘性经粘弹性到纯弹性,为应用提供了广阔的选择余地。

例子:1. PS 制品很脆,一敲就碎(脆性)2. 尼龙制品很坚韧,不易变形,也不易破碎(韧性)3. 轻度交联的橡胶拉伸时,可伸长好几倍,力解除后基

本恢复原状(弹性)4. 胶泥变形后,却完全保持新的形状(粘性) 力学性对温度和时间有强烈的信赖性力学性对温度和时间有强烈的信赖性。造成以上特点

的原因:归结为聚合物的长链分子结构。

Page 11: 第八章 聚合物的屈服和断裂

高弹性——高聚物特有

显示高弹性的温度范围 (Tg~Tf)

分子量 温度范围 (Tg~Tf)增宽 (Tg~Tf)的范围决定了橡胶的使用温度范围

Page 12: 第八章 聚合物的屈服和断裂

粘弹性——力学行为对温度和时间 有强烈的依赖关系 为高聚物独特的力学行为 σ (应力) ε (应变) 在研究高聚物力学行为 T (温度) 时必须同时考虑 t (时间)

Page 13: 第八章 聚合物的屈服和断裂

比强度特高 比强度——单位重量材料能承受的最大负荷

Page 14: 第八章 聚合物的屈服和断裂

几种金属材料和塑料 ( 增强 ) 的比强度

材 料 名 称 比 重 拉伸强度( MPa ) 比 强 度高级合金钢 8.0 1280 160

A3 钢 7.85 400 50

铝合金 2.8 420 160

铸铁 7.4 240 32

聚乙烯 0.95 30 31.6

尼龙 66 1.12 83 74.1

玻璃增强尼龙 66 1.3 ~ 1.5 98 ~ 218 143

聚酯玻璃钢 1.8 290 160

环氧玻璃钢 1.73 500 280

玻璃增强聚碳酸酯 1.4 120 ~ 130 92.9

芳香聚酰胺纤维 1.45 2800 ~1900

聚酯纤维 1.38 1100 ~800

超高分子量聚乙烯纤维 0.97 3500 ~3400

聚苯并噁唑 ( 纤维 ) 1.56 5800 ~3700

Page 15: 第八章 聚合物的屈服和断裂

8.1 聚合物的塑性和屈服

8.1.18.1.1 应力应变曲线应力应变曲线

玻璃态高聚物的塑性玻璃态高聚物的塑性与屈服与屈服:: 小形变的情况小形变的情况 大形变的情况大形变的情况

研究玻璃态高聚物大形变研究玻璃态高聚物大形变常用应力常用应力 -- 应变实验,判断应变实验,判断高聚物材料的强弱,硬软,高聚物材料的强弱,硬软,韧脆。韧脆。

Page 16: 第八章 聚合物的屈服和断裂

1. 典型的应力 -应变曲线 ------ 以屈服点 A为界分成两部分:

AA 点以前是点以前是 弹性区域弹性区域 ,可恢复原,可恢复原样。样。 AA 点以后呈点以后呈 塑性行为塑性行为 ,不可恢复,不可恢复原样,发生永久变形,材料屈服。原样,发生永久变形,材料屈服。其中:其中: AA 点为点为屈服点屈服点,对应的应力和应,对应的应力和应变为变为屈服应力屈服应力 和 和屈服应变屈服应变 AB AB 段叫段叫应变软化应变软化 BC BC 段段颈缩颈缩阶段阶段 CD CD 段段取向硬化取向硬化 DD 点发生点发生断裂断裂,对应的应力为,对应的应力为抗抗拉强度拉强度

y y

B

Page 17: 第八章 聚合物的屈服和断裂

应力应变曲线

A

AE

断裂点 B point: Breaking point

A 弹性极限应变 A 弹性极限应力B 断裂伸长率 B 断裂强度 Y 屈服应力

屈服点 Y point: Yielding point

弹性极限点A point: Point of elastic limit

Page 18: 第八章 聚合物的屈服和断裂

应力: σ = F/A0

应变: ε = ∆l / l0

材料的杨氏模量 E为应力 -应变曲线起始部

分的斜率

E = tgа = ∆σ /∆ ε

Page 19: 第八章 聚合物的屈服和断裂

应力应变曲线形变过程分析

弹性形变弹性形变→→屈服屈服→→应变软化应变软化→→冷拉冷拉→→应变硬化应变硬化→→断裂断裂

Page 20: 第八章 聚合物的屈服和断裂

2 、外界条件对应力 - 应变曲线的影响

(( 11 )不同温度)不同温度 随温度的增加应随温度的增加应力力 -- 应变曲线的类型应变曲线的类型从硬而脆的变为软而从硬而脆的变为软而韧的。韧的。

T

T

a: T<<Tg 脆断

b: T<Tg 屈服后断c: T<Tg 几十度 韧断d: Tg以上 无屈服

Page 21: 第八章 聚合物的屈服和断裂

(( 22 )不同拉伸速率)不同拉伸速率

速度

速度

.

4

.

3

.

2

.

1 拉伸速率

时温等效原理:时温等效原理:拉伸速度快 拉伸速度快 = = 时间短时间短 温度低温度低

Page 22: 第八章 聚合物的屈服和断裂

( 3 )物质结构组成

a: 脆性材料

c: 韧性材料d: 橡胶

b: 半脆性材料酚醛或环氧树脂

PP, PE, PC

PS, PMMA

Nature rubber, PI

Page 23: 第八章 聚合物的屈服和断裂

(4) 结晶

应变软化更明显 冷拉时晶片的倾斜、

滑移、转动,形成微晶或微纤束

Page 24: 第八章 聚合物的屈服和断裂

(5) 球晶大小

Page 25: 第八章 聚合物的屈服和断裂

(6) 结晶度

Page 26: 第八章 聚合物的屈服和断裂

3. 晶态聚合物的应力一应变曲线

整个曲线可分为三个阶段: 到 y点后,试样截面开始变得

“ ”不均匀,出现 细颈 。

晶态聚合物“冷拉”的原因:•Tm以下,冷拉:拉伸成颈(球晶中片晶的变形)•非晶态: Tg以下冷拉,只发生分子链的取向•晶态: Tm以下,发生结晶的破坏,取向,再结晶过程,与温度、应变速率、结晶度、结晶形态有关。

Page 27: 第八章 聚合物的屈服和断裂

玻璃态聚合物的拉伸与结晶聚合物的拉伸相似之处: 即两种拉伸过程均经历弹性变形、屈服、发展大形变以及应变硬化等阶段,其中大形变在室温时都不能自发回复,而加热后则产生回复,故本质上两种拉伸过程造成的大形变都是高弹形变。该现象通常称为“冷拉”。

两种拉伸过程又有区别: 即产生冷拉的温度范围不同,玻璃态聚合物的冷拉温度区间

是 Tb 到 Tg ,而结晶聚合物则为 Tg 至 Tm ;另一差别在于玻璃态聚合物在冷拉过程中聚集态结构的变化比晶态聚合物简单得多,它只发生分子链的取向,并不发生相变,而后者尚包含有结晶的破坏,取向和再结晶等过程。

Page 28: 第八章 聚合物的屈服和断裂

4 、聚合物具有的应力 - 应变曲线类型:

(( 11)硬而脆)硬而脆(聚苯乙烯,(聚苯乙烯, PPMMAMMA 等)等)

(( 22)硬而韧)硬而韧(尼龙等)(尼龙等)(( 33 )硬而强)硬而强(( PVCPVC 与与 PSPS

的共混物)的共混物)(( 44)软而韧)软而韧(橡胶)(橡胶)(( 55)软而弱)软而弱 (( 无规无规 PP)PP)

Page 29: 第八章 聚合物的屈服和断裂

聚合物力学类型 软而弱 软而韧 硬而脆 硬而强 硬而韧

聚合物应力—应变曲线          

应力应变曲线特点

模 量(刚性) 低 低 高 高 高

屈服应力(强度) 低 低 高 高 高

极限强度(强度) 低   中 高 高

断裂伸长(延性) 中等 按屈服应力 低 中 高

应力应变曲线下面积(韧性)

小 中 小 中 大

五种不同类型材料的比较

Page 30: 第八章 聚合物的屈服和断裂

例子

聚合物力学类

型软而弱 软而韧 硬而脆 硬而强 硬而韧

聚合物应力—应变

曲线         

实例 聚合物凝胶

橡胶 . 增塑 .PVC.PE.PT

FE

PS.PMMA.固化酚醛树脂断裂前无塑性形变断裂前有银纹

硬 PVC

ABS.PC.PE.PA 有明显的屈服和塑性形变 . 韧性好

Page 31: 第八章 聚合物的屈服和断裂

8.1.2 聚合物的屈服

1. 高聚物屈服点的特征大多数高聚物有屈服现象,最明显的屈服现象是拉伸中出现的细颈现象。它是独特的力学行为。并不是所有的高聚物材料都表现出屈服过程,这是由于温度和时间对高聚物的性能的影响往往掩盖了屈服行为的普遍性,有的高聚物出现细颈和冷拉,而有的高聚物脆性易断。

Page 32: 第八章 聚合物的屈服和断裂

关于细颈现象

样条尺寸:横截面小的地方

应变软化:应力集中的地方

出现“细颈”的位置

自由体积增加

松弛时间变短

出现“细颈”的原因

无外力

有外力

Orientation

RT

E

e

0

RT

aE

e

0

细颈稳定 取向硬化 Considère作图法 唯象角度 判据

细颈 : 屈服时,试样出现的局部变细的现象。

Page 33: 第八章 聚合物的屈服和断裂

(1) 屈服应变大屈服应变大:高聚物的屈服应变比金属大得多,金属 0.01左右,高聚物0.2左右(例如 PMMA 的切变屈服为0.25 ,压缩屈服为 0.13 )(2) 屈服过程有应变软化现象屈服过程有应变软化现象:许多高聚物在过屈服点后均有一个应力不太大的下降,叫应变软化,这时应变增大,应力反而下降。

Page 34: 第八章 聚合物的屈服和断裂

(3) 屈服应力依赖应变速率屈服应力依赖应变速率:应变速率增大,屈服应力增大。

应变速率对 PMMA真应力应变曲线的影响

应变速率增大

1

2

34 1——0.2吋分

真应变

4——1.28 吋 /分

3——1.13 吋 /分

2——0.8 吋 /分

真应力

Page 35: 第八章 聚合物的屈服和断裂

(4) 屈服应力依赖于温度屈服应力依赖于温度:温度升高,屈服应力下降。在温度达到 时,屈服应力等于 0gT

温度对醋酸纤维素应力~应变曲线的影响

应力

应变

80℃

65℃

50℃

25℃

0℃

- 25℃

Page 36: 第八章 聚合物的屈服和断裂

(5) 屈服应力受流体静压力的影响屈服应力受流体静压力的影响:压力增大,屈服应力增大。

1.7千巴

1巴0.69 千巴

3.2千巴

切应力

切应变

Page 37: 第八章 聚合物的屈服和断裂

(6) 高聚物屈服应力不等于压缩屈服应高聚物屈服应力不等于压缩屈服应力力,一般后者大一些。所以高聚物取向薄膜不同方向上的屈服应力差别很大。(7) 高聚物在屈服时体积略有缩小。高聚物在屈服时体积略有缩小。

Page 38: 第八章 聚合物的屈服和断裂

高聚物屈服特征的小结高聚物屈服特征的小结(( 11 ) 屈服应变大) 屈服应变大(( 22 ) 应变软化现象) 应变软化现象(( 33 ) 屈服应力的应变速率依赖性) 屈服应力的应变速率依赖性(( 44 ) 屈服应力的温度依赖性) 屈服应力的温度依赖性(( 55 ) 流体静压力对屈服应力有影响) 流体静压力对屈服应力有影响(( 66 ) 高聚物屈服应力不等于压缩屈服应) 高聚物屈服应力不等于压缩屈服应力力(( 77 ) 高聚物在屈服时体积稍有缩小) 高聚物在屈服时体积稍有缩小

Page 39: 第八章 聚合物的屈服和断裂

关于工程应力和真应力

应力 : σ = F/A0

真应力: σ 真= F/A

A = A0l0 / l = A0 / (1+ε)

因为: A < A0

所以: σ 真> σ

Page 40: 第八章 聚合物的屈服和断裂

Considere 作图法(真应力 - 应变曲线) (P180)

在横坐标 ε = -1处向真应力 -应变曲线作切线就是表观屈服点,

有: d σ 真 / d ε = σ 真/ (1+ε) = σ 真 / λ 这种以真应力作图求表观屈服点的方法就是 Considere作图法。

Y点

1truetrue

d

d

0d

d e

在真应力 - 应变曲线上确定与工程应力 - 应变屈服点 Y所对应的 B 点。

Page 41: 第八章 聚合物的屈服和断裂

2. 真应力 -应变曲线及屈服判据三种类型

D

E

0 1 2 3 0 1 2 3 0 1 2 3

由 无法作切线,不能成颈

由 可作两条切线,有两个点满足屈服条件, D 点时屈服点, E 点开始冷拉

由 可作一条切线,曲线上有一个点满足 ,此点为屈服点,在此点高聚物成颈

0 0 0

0

d

d

Page 42: 第八章 聚合物的屈服和断裂

屈服判据屈服判据

应力一般包括应力一般包括 33个正应力个正应力 33个切应力的个切应力的 66 个分量组成:个分量组成:

f = (f = (σσxxxx,,σσyyyy,,σσzzzz,,σσxyxy,,σσyzyz,,σσzxzx)) 而不同的应力状态又对应不同的应力分量组合,在组合应力而不同的应力状态又对应不同的应力分量组合,在组合应力条件材料的屈服条件称为屈服判据。条件材料的屈服条件称为屈服判据。屈服判据的理论屈服判据的理论::

最大切应力理论(最大切应力理论( TrescaTresca判据)判据) 最大变形能理论( Von Mises判据判据) 双参数屈服判据理论( Coulomb, Mohr判据判据)

Page 43: 第八章 聚合物的屈服和断裂

3.3. 屈服机理屈服机理(1)(1) 银纹屈服银纹屈服 ------ 银纹现象与应银纹现象与应力发白力发白I.I. 银纹银纹现象现象:: 很多高聚物,尤其是玻璃态很多高聚物,尤其是玻璃态透明高聚物(透明高聚物( PSPS、、 MMAMMA、、 PPCC )在储存过程及使用过程中,往)在储存过程及使用过程中,往往会在表面出现像陶瓷的那样,肉往会在表面出现像陶瓷的那样,肉眼可见的微细的裂纹,这些裂纹,眼可见的微细的裂纹,这些裂纹,由于可以强烈地反射可见光看上去由于可以强烈地反射可见光看上去是闪亮的,所以又称为银纹是闪亮的,所以又称为银纹 cragecrage

F

F

Page 44: 第八章 聚合物的屈服和断裂

产生银纹的原因:

a. 是高聚物受到张应力作用时,在材料某些薄弱环节上应力集中,而产生局部塑性形变,而在材料表面或内部出现垂直于应力方向的微细凹槽或“裂纹”的现象

b. 环境因素也会促进银纹产生,化学物质扩散到高聚物中,使微观表面溶胀或增塑,增加分子链段的活动性,玻璃化温度下降促进银纹产生,另外,试样表面的缺陷和擦伤处也易产生银纹,或起始于试样内部空穴或夹杂物的边界处,这些缺陷造成应力集中,有利于银纹产生

Page 45: 第八章 聚合物的屈服和断裂

银纹定义银纹定义:银纹现象为聚合物所特有,是聚合物在张应力作用下,于材料的某些薄弱部分出现应力集中而产生局部的塑性形变的取向,以至在材料表面或内部垂直于应力方向上出现长度为 100μm ,宽度为 10μm左右,厚度为 1μm 的微细凹槽。

银纹特征:应力发白现象,密度为本体的 50%,高度取向的高分子微纤。

银纹进一步发展→裂缝→脆性断裂。

Page 46: 第八章 聚合物的屈服和断裂

银纹现象银纹现象:含有约:含有约 50%50%体积的空穴体积的空穴裂纹裂纹:是空的,里面无高聚物:是空的,里面无高聚物银纹的特点银纹的特点:(:( 11)银纹仍有强度)银纹仍有强度 (( 22)银纹的平面垂直于产生银纹的张应力。)银纹的平面垂直于产生银纹的张应力。

Page 47: 第八章 聚合物的屈服和断裂

II.II. 应力发白应力发白现象现象:橡胶改性的:橡胶改性的 PSPS :: HIPSHIPS 或或 ABSABS 在受在受到破坏时,其应力面变成乳白色,这就是所到破坏时,其应力面变成乳白色,这就是所谓应力发白现象。谓应力发白现象。应力发白和银纹化之间的差别应力发白和银纹化之间的差别在于银纹带的在于银纹带的大小和多少,应力发白是由大量尺寸非常小大小和多少,应力发白是由大量尺寸非常小的银纹聚集而成。的银纹聚集而成。

Page 48: 第八章 聚合物的屈服和断裂

(2)(2)剪切屈服(剪切带)剪切屈服(剪切带)现象现象:韧性高聚物在拉伸至屈服点:韧性高聚物在拉伸至屈服点时,常可见试样上出现与拉伸方向时,常可见试样上出现与拉伸方向成成 4545°°角的剪切滑移变形带。角的剪切滑移变形带。 对韧性材料来说,拉伸时对韧性材料来说,拉伸时 45 °45 °斜截面上的最大切应力首先达到材斜截面上的最大切应力首先达到材料的剪切强度,所以首先出现与拉料的剪切强度,所以首先出现与拉伸方向成伸方向成 4545 °° 的剪切滑移变形的剪切滑移变形带带 ------ 细颈细颈。。 因为变形带中分子链的取向度因为变形带中分子链的取向度高,故变形逐步向整个试样扩展。高,故变形逐步向整个试样扩展。

剪切带的结构形态

Page 49: 第八章 聚合物的屈服和断裂

通常通常,韧性材料最大切应力首先达到抗剪强度,所以材,韧性材料最大切应力首先达到抗剪强度,所以材料先屈服。 脆性材料最大切应力达到抗剪强度之前,真料先屈服。 脆性材料最大切应力达到抗剪强度之前,真应力已超过材料强度,所以材料来不及屈服就已断裂。应力已超过材料强度,所以材料来不及屈服就已断裂。

因此因此韧性材料韧性材料 ------ 断面粗糙断面粗糙 ------ 明显变形明显变形 脆性材料脆性材料 ------ 断面光滑断面光滑 ------ 断面与拉伸方向垂直断面与拉伸方向垂直

定义:韧性聚合物单轴拉伸至屈服点时,可看到与拉伸方向成 45° 的剪切滑移变形带,有明显的双折射现象,分子链高度取向,剪切带厚度约 1μm左右,每个剪切带又由若干个细小的不规则微纤构成。

Page 50: 第八章 聚合物的屈服和断裂

电镜( SEM )下的剪切带图片

Page 51: 第八章 聚合物的屈服和断裂

岩石山体的剪切带

Page 52: 第八章 聚合物的屈服和断裂

共性共性:银纹和剪切带均有分子链取向,:银纹和剪切带均有分子链取向,吸收能量,呈现屈服现象吸收能量,呈现屈服现象

注意:一般情况下,材料既有银纹屈服又有剪切屈服注意:一般情况下,材料既有银纹屈服又有剪切屈服

主要区别 剪切屈服 银纹屈服

形变 形变大几十 ~几百%

形变小 <10%

曲线特征 有明显的屈服点 无明显的屈服点

体积 体积不变 体积增加

力 剪切力 张应力

结果 冷拉 裂缝

Page 53: 第八章 聚合物的屈服和断裂

细颈、剪切带和银纹比较

主要区别 细颈、剪切带 银纹

形变量 形变量大 10~100% 形变量小 <10%

曲线特征 有明显的屈服点 无明显的屈服点

体积 体积几乎不变 体积增加

主要相同点

能量 吸收能量 吸收能量

Page 54: 第八章 聚合物的屈服和断裂

如何区分断裂形式如何区分断裂形式? ------关键看屈服: 屈服前断裂为脆性断裂 屈服后断裂为韧性断裂

8.2 高聚物的断裂和强度

强度是指物质抵强度是指物质抵抗破坏的能力抗破坏的能力

张应力张应力 拉伸强度拉伸强度

弯曲力矩弯曲力矩 抗弯强度抗弯强度

压应力压应力 压缩强度压缩强度

拉伸模量拉伸模量

弯曲模量弯曲模量

硬 度硬 度

Page 55: 第八章 聚合物的屈服和断裂

8.2.1 脆性断裂与韧性断裂

试样发生脆性或者韧性断裂的影响因素试样发生脆性或者韧性断裂的影响因素:( 1 )与材料的组成有关(内因)( 2 )与拉伸温度与拉伸速度有关(外因)

脆性断裂脆性断裂屈服前屈服前

断裂断裂无塑性无塑性流动流动 表面光滑表面光滑 张应力张应力

分量分量

韧性断裂韧性断裂 屈服后屈服后断裂断裂

有塑性有塑性流动流动 表面粗糙表面粗糙 切应力切应力

分量分量

Page 56: 第八章 聚合物的屈服和断裂

高分子材料的内在韧性,要在一定的温度和受力状高分子材料的内在韧性,要在一定的温度和受力状态下方能表现出来,离开这一环境就表现出脆性。态下方能表现出来,离开这一环境就表现出脆性。1. 判断材料断裂的方式 a. a. 应力应力 -- 应变曲线:发生屈服之前断裂,为脆性断裂;应变曲线:发生屈服之前断裂,为脆性断裂; b. b. 断裂能量:冲击强度为断裂能量:冲击强度为 22KJ/mKJ/m22 为临界指标。为临界指标。 c. c. 试样断裂表面的形态。试样断裂表面的形态。

Page 57: 第八章 聚合物的屈服和断裂

脆性断裂与韧性断裂表面

脆性断裂 韧性断裂

Page 58: 第八章 聚合物的屈服和断裂

2. 脆韧转变温度 Tb (脆化温度、脆化点 )

在一定速率下(不同温度)测定的断裂应力和屈服应力,作断裂应力和屈服应力随温度的变化曲线 ------ 其交点对应的温度为脆化温度 Tb

Page 59: 第八章 聚合物的屈服和断裂

3. 3. 脆性断裂和塑性屈服是两个各自独立的过程脆性断裂和塑性屈服是两个各自独立的过程

在一定温度和应变速率下,当外加应力达到它们之中较低的在一定温度和应变速率下,当外加应力达到它们之中较低的那个时,就发生断裂或者屈服那个时,就发生断裂或者屈服

显然:显然: 和 曲线的交点应该就是脆韧转变点 和 曲线的交点应该就是脆韧转变点,,在高于这点相应的温度时,材料总是韧性的。在高于这点相应的温度时,材料总是韧性的。

TB Ty

Page 60: 第八章 聚合物的屈服和断裂

问题:断裂应力和屈服应力谁对温度更敏感?

屈服应力比断裂应力对温度更敏感!

Page 61: 第八章 聚合物的屈服和断裂

问题:断裂应力和屈服应力谁对应变速率更敏感?

屈服应力比断裂应力对应变速率更敏感!

Page 62: 第八章 聚合物的屈服和断裂

影响高聚物脆韧转变的条件影响高聚物脆韧转变的条件

断裂应力断裂应力受应变速率和温度的影响不大受应变速率和温度的影响不大

应变速率和温度对应变速率和温度对屈服应力屈服应力的影响很大:随温度的的影响很大:随温度的

增加而降低,随应变速率的增加而增加增加而降低,随应变速率的增加而增加

聚合物聚合物脆韧转变点脆韧转变点随应变速率的增加而移向高温随应变速率的增加而移向高温

聚合物材料的聚合物材料的缺口缺口特别影响材料的脆韧转变特别影响材料的脆韧转变

------------尖锐的缺口可以使聚合物的断裂从韧性变为脆尖锐的缺口可以使聚合物的断裂从韧性变为脆

性 性

Page 63: 第八章 聚合物的屈服和断裂

脆性断裂与韧性断裂的判断

T<Tb, 先达到b ,脆性断裂

T >Tb, 先达到y ,韧性断裂

Page 64: 第八章 聚合物的屈服和断裂

塑料一般的使用温度范围? ------Tb-Tg

Tb越低聚合物材料的韧性越 ?好 差

— T >Tb

Page 65: 第八章 聚合物的屈服和断裂

4. 材料的断裂方式

聚合物材料的破坏是高分子主链的化学键断裂高分子主链的化学键断裂、高高分子分子间滑脱分子分子间滑脱及分子链间相互作用力的破坏分子链间相互作用力的破坏。

化学键拉断化学键拉断15000MPa

分子间滑脱分子间滑脱 5000MPa

分子间扯离分子间扯离氢键 500MPa

范德华力 100MPa

理论值

Page 66: 第八章 聚合物的屈服和断裂

通常高分子在断裂时三种方式兼而有之,通常聚合物的理论断裂强度在数千MPa ,而实际断裂强度只有数十MPa.

例: PA , 60 MPa ; PPO , 70 MPa

理论值与实验结果相差如此之大的原因: 高分子链长度有限高分子链长度有限 样条存在缺陷样条存在缺陷 应力集中应力集中

theoryeriment )1000

1~

100

1(exp

Page 67: 第八章 聚合物的屈服和断裂

含有球形无机粒子的聚合物粘结剂的电镜图片

Page 68: 第八章 聚合物的屈服和断裂

疲劳断裂的表面电镜图片

Page 69: 第八章 聚合物的屈服和断裂

聚合物木层板断裂表面的电镜图片

Page 70: 第八章 聚合物的屈服和断裂

例 1 : PC 聚碳酸酯

Tg = 150℃

Tb = -20 ℃

室温下 PC 是否易碎?

Page 71: 第八章 聚合物的屈服和断裂

例 2 : PMMA 聚甲基丙烯酸甲酯

Tg = 100℃

Tb = 90 ℃

室温下 PMMA 脆

性的还是韧性的?

Page 72: 第八章 聚合物的屈服和断裂

极限强度极限强度

衡量材料抵抗外力破坏的衡量材料抵抗外力破坏的

能力的量度,表征了材料的能力的量度,表征了材料的

受力极限。受力极限。

8.2.2 聚合物的强度

拉伸强度:

db

ft max

(( 11 ))拉伸强度拉伸强度与与压缩强压缩强度度

Page 73: 第八章 聚合物的屈服和断裂

%100%max

lo

lol断

lol

dbfE

断裂伸长率:断裂伸长率:

扬氏模量:扬氏模量:

Page 74: 第八章 聚合物的屈服和断裂

(( 22 ))弯曲强度弯曲强度

db

flof 22

max3

db

lofE f 34

3

弯曲强度:弯曲强度:

弯曲模量:弯曲模量:

Page 75: 第八章 聚合物的屈服和断裂

(( 33 ))冲击强度冲击强度

冲击强度:冲击强度:

bd

Wi

式中式中 WW是冲断试样是冲断试样所消耗的功。所消耗的功。

Page 76: 第八章 聚合物的屈服和断裂

8.2.3 断裂理论

自学

Page 77: 第八章 聚合物的屈服和断裂

8.2.4 影响聚合物强度和韧性的因素 ------ 增强与增韧

聚合物的增强聚合物的增强 ------ 拉伸强度和拉伸模量的增加

聚合物的增韧聚合物的增韧 ------冲击强度的增加

------冲击强度是衡量材料韧性的指标

db

Wi

冲断试样所消耗的功冲断试样所消耗的功

冲断试样的厚度和宽度冲断试样的厚度和宽度

Page 78: 第八章 聚合物的屈服和断裂

从分子角度来看,聚合物之所以具有抵抗外力破坏的能力主要靠分子内的化学键合力和分子间范德华力和 H键力,据此可计算出聚合物的理论强度。

化学键拉断化学键拉断

分子间滑脱分子间滑脱

分子间扯离分子间扯离

主要方式

化学键断裂所需力最大

分子间扯离所需力最小

通过断裂形式分析:分子之间相互作用大小对强度影响最大

Page 79: 第八章 聚合物的屈服和断裂

1. 高分子结构的影响

A 、高分子的强度来源于主链的化学键力和分子之间的作用力,极性↗则强度↗; H键↗则也强度↗

例: LPPE PVC PA610 PA66

拉伸强度( kg/cm2 ) 150 500 600 830

注解 无极性 有极性基团 有 H键 H键密度大

说明:极性基团过密或取代基过大,阻碍链段的运动,Tb 高,显脆性,尽管拉伸强度大了,但易发生脆性断裂。

Page 80: 第八章 聚合物的屈服和断裂

B 、主链含芳杂环的聚合物强度大于脂肪族主链的聚合物

例: PC PPO 聚芳砜 PE PS

拉伸强度( kg/cm2 ) 670 850 720-850 220-390 350-633

注解 含芳杂环 不含 侧基含芳环

聚芳砜的结构:* O S *

O

On

Page 81: 第八章 聚合物的屈服和断裂

C 、分子链支化程度↗分子间距↗ 分子间作用力↘,会导致抗拉伸强度↘抗冲击强度↗

例: HPPE ( LDPE ,支化) LPPE ( PDPE ,线

型)

拉伸强度 160 << 220-390

( kg/cm2 )

冲击强度( J/m.24 ,℃ 缺口) 7850 >> 27-1080

Page 82: 第八章 聚合物的屈服和断裂

D 、程度关联可有效的增加分子链间的联系,拉伸强度和冲击强度均可提高

例:

交联 PE 比 PE: 拉伸强度大一倍

冲击强度大 3~4倍

Page 83: 第八章 聚合物的屈服和断裂

E 、分子量的影响

分 子量小时随 M↗拉伸强度和冲击强度均↗,达到一定分子量( 104 )以后,拉伸强度不再随 M

↗而↗,但冲击强度仍能随 M↗而↗。

例:

超高分子量 PE ( M=4~ 6×106 )比普通 PE冲击强度大三倍,用于制造人造关节。

Page 84: 第八章 聚合物的屈服和断裂

2 、聚集态结构的影响(结晶和取向)

A 、结晶度↗,拉伸强度↗、抗弯强度↗、弹性模量↗

例 PP 结晶度 拉伸强度 抗弯强度

98% 345 565

96.5% 325 450

93.6% 290 410

结晶度↗太高,冲击强度↘,材料变脆

Page 85: 第八章 聚合物的屈服和断裂

B 、球晶尺寸过大,会使拉伸强度↘,冲击强度显著↘

例: PP 球晶尺寸 (μm) 拉伸强度 断裂伸长(%)

10 300 500

100 225 25

200 125 25

微晶 PP 的冲击强度 > 球晶 PP

Page 86: 第八章 聚合物的屈服和断裂

C 、取向可以使强度成倍提高 原因:( 1 )取向后高分子链顺着外力的方向平行排列,使

断裂 时,破坏主价键的比例大大提高,而共价键的强度比范德华力的强度高。

( 2 )取向可以阻碍裂纹向纵深发展。

0.2 0 0.4 0.8 1.0

强度

取向因子 f

Page 87: 第八章 聚合物的屈服和断裂

3. 应力集中物的影响

应力集中现象应力集中现象:材料的缺陷在受力时,使材料内部的应力平均分布的状态发生变使缺陷附近局部范围内的应力急剧增加,远远大于平均值。

缺陷就是应力集中物缺陷就是应力集中物:它包括裂缝、空隙、缺口、银纹和杂质。

应力集中物的存在大大降低了材料的强度降低了材料的强度,也是造造

成聚合物实际强度远小于理论强度成聚合物实际强度远小于理论强度的原因。

Page 88: 第八章 聚合物的屈服和断裂

4 、增塑剂的影响

增塑剂的加入对聚合物起稀释作用,减小了高分子链间的作用力,因而使拉伸强度↘,且有下降值与增塑剂加入量成正比。

增塑剂使链段运动能力增强,所以冲击强度↗

Page 89: 第八章 聚合物的屈服和断裂

5 、填料的影响

按作用分:

惰性填料:只起稀释作用,加入后使强度↘

活性填料:可使强度显著↗

按填料形状分: 粉状填料

纤维状填料

液晶填料

Page 90: 第八章 聚合物的屈服和断裂

6 、共聚与共混的影响

共聚和共混可以综合两种以上均聚物的性能共聚和共混可以综合两种以上均聚物的性能,一般用橡胶增韧塑料

共聚和共混方法不同共聚和共混方法不同:如 ABS树脂 共聚:接枝共聚得到高抗冲 ABS树脂 共混:丁腈橡胶与 AS树脂(机械或乳液)共混共聚和共混两者结构相同共聚和共混两者结构相同:都具有两相结构,橡胶

以微粒状分散于连续的塑料相中,塑料连续相使模量和硬度得以保持,承载应力;分散的橡胶微粒作为应力集中物吸收大量的冲击能,使韧性提高。

Page 91: 第八章 聚合物的屈服和断裂

7. 外力作用速率和温度的影响

A 、外力作用速率 拉伸速率↗,屈服强度和断裂强度均↗,

这是由于链段运动跟不上外力作用,使材料屈服需更大外力的结果。

Page 92: 第八章 聚合物的屈服和断裂

B 、温度 温度↘,屈服强度和断裂强度均↗,这是

由于链段运动被冻结,使材料屈服需更大外力的结果。

C 、拉伸速率增加对强度影响的效果大致相同于温度降低的效果 ------ 时温等效原理的表现形式之一。

Page 93: 第八章 聚合物的屈服和断裂

考虑分子结构因素 ------ 增强小结

极性基团或氢键极性基团或氢键

主链上含芳杂环结构主链上含芳杂环结构

适度的交联适度的交联

结晶度大结晶度大

取向好取向好

高 低拉伸强度拉伸强度 tt

高 低

加入增塑剂加入增塑剂

高 低高 低高 低高 低

Page 94: 第八章 聚合物的屈服和断裂

考虑外界因素 ------ 拉伸强度小结

温度高温度高

应变速率大应变速率大

高 低

高 低

拉伸强度拉伸强度 tt

Page 95: 第八章 聚合物的屈服和断裂

冲击强度(韧性)的判断

a>b>c>d

c>d>b>a

d>c>b>a

———— 曲线下的面积曲线下的面积代表所吸收能量代表所吸收能量

因素因素

•强度•延展性

请判断请判断 :: 韧性好坏顺韧性好坏顺序序

Page 96: 第八章 聚合物的屈服和断裂

增韧小结

•强度强度•延展性延展性

———— 分子间作用力分子间作用力

———— 分子链柔顺性分子链柔顺性极性基团或氢键极性基团或氢键有支链结构有支链结构

适度交联适度交联结晶度大结晶度大双轴取向双轴取向

好 差好 差

加入增塑剂加入增塑剂

好 差好 差好 差好 差

韧性韧性

Page 97: 第八章 聚合物的屈服和断裂

考虑外界因素 ------ 冲击强度小结

温度高温度高

应变速率大应变速率大

好 差

好 差

冲击强度冲击强度 i i 即韧性即韧性

Page 98: 第八章 聚合物的屈服和断裂

8.2.5 疲劳

定义定义:是材料在周期应力作用下断裂或失效的现象。:是材料在周期应力作用下断裂或失效的现象。

材料在递增的应力作用下将发生屈服或断裂,在低材料在递增的应力作用下将发生屈服或断裂,在低

于屈服应力或断裂应力的周期应力作用下会产生疲于屈服应力或断裂应力的周期应力作用下会产生疲

劳。劳。

疲劳的测定疲劳的测定:疲劳曲线(:疲劳曲线( S-NS-N 曲线)曲线)

SS :受载应力的极大值:受载应力的极大值

NN :达到材料破坏的应力循环次数,也叫疲劳寿命:达到材料破坏的应力循环次数,也叫疲劳寿命

Page 99: 第八章 聚合物的屈服和断裂

关于 S-N 疲劳曲线

σmax随 N增加而逐渐减小,到达一定周期数时

“就产生了 疲劳极限疲劳极限”,即随 N的增加, S-N曲线变为水平线。

疲劳极限:是一个应力值,当应力低于这个值时,材料可承受的周期数为无限大。

一般热塑性聚合物的疲劳极限约为静态极限强度的 1/5.

Page 100: 第八章 聚合物的屈服和断裂

疲劳破坏的原因

疲劳破坏的原因疲劳破坏的原因:是裂纹的形成和增长造成的损伤在周期应力作用下逐渐积累而发生的。

裂纹的形成裂纹的形成:

( 1 )聚合物成型之后,材料未使用之初就存在

( 2 )外力应力后以银纹为先导而产生

Page 101: 第八章 聚合物的屈服和断裂