microbimconf.univ.kiev.uamicrobimconf.univ.kiev.ua/abstractbook2014.pdf · . 1’2014 3 huwiage...

178

Upload: dangminh

Post on 17-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

: . 1’2014

2

CONTENTS/ SECTION «MICROBIOLOGY»

« »………………………………………………………...... PLENARY SESSION

………………………………………………………………...... Boyko N.V. MICROORGANISMS AND IMMUNONUTRITION: NOVEL PRACTICAL TRENDS OF SELECTION AND APPLICATION OF PROBIOTICS………………..................

., ., ., ., ., ., .

…………... ., ., ., .

…....

. , . ………….....

., ., . : - ………………………......

. ,

(50- )……………………………………………………………….............

ORAL/POSTER PRESENTATION

................................................................... Adamchuk-Chala N.I. EFFECT OF SOIL HETEROGENEITY ON SOIL MICROCENOSES OF ALFA-ALFA ROOT ZONE INOCULATED BY MARKED POPULATION OF RHYZOBIUM MELILOTY.................................................................................................. Antonenko L.O., Klechak I.R. THE ACTIVITY OF OXIDATIVE AND CELLULOLYTIC ENZYMES TRAMETES FR... Baig M.H., Danishuddin M., Kaushal L., Khan A.U. BLAD: A COMPREHENSIVE DATABASE OF WIDELY CIRCULATED BETA-LACTAMASES............................................................................................ Emelyanova E.V. PRACTICAL ASPECTS OF USES OF THE PULSE ADDITIONS METHOD........... Faidiuk I.V. PHAGE P1 LYSOGENIC CONVERSION OF PHYTOPATHOGENIC BACTERIA..... Holubenko O., Akulenko I., Shemchuk T. DETERMINATION OF SCFAS IN FAECES SAMPLES USING GC/MS................

17 18 18 18 19 20 21 22 23 23 23 24 24 25 26

: . 1’2014

3

Huwiage G.M. THE USE OF PROBIOTICS TO TREAT CHILDREN WHO SUFFER FROM ACUTE GASTRO-ENTERITIS DIARRHOEA IN ALGARABOULLI HOSPITAL-LIBYA......... Khrokalo L. METHANE PRODUCING BY ANAEROBIC BACTERIA SELECTED FROM ORGANIC WASTES..................................................................................... Moroz J., Skurnik M. MOLECULAR, GENETIC AND STRUCTURE STUDIES OF THE LIPOPOLYSACCHARIDE (LPS) AS VIRULENCE FACTOR OF YERSINIA BACTERIA................................................................................................. Nidialkova N. ., Matseliukh .V., Varbanets L.D. MEDIUM OPTIMIZATION OF AN ELASTOLYTIC PEPTIDASE FROM BACILLUS THURINGIENSIS V -7324 ..................................................................... Zaets I.E., Kukharenko O., Podolich O.V. , de Vera J.-P., Reva O.N., Kozyrovska N.O. DNA PROFILING OF THE POLYMICROBIAL KOMBUCHA COMMUNITY............ Zelena L.B. INFLUENCE OF APOPTOSIS-INDUCING TREATMENTS ON THE EXPRESSION OF GENES THAT ARE INVOLVED IN UBIQUITIN-PROTEASOME SYSTEM AND FATTY ACIDS SYNTHESIS IN YEAST.........................................

. , . BRADYRHYZOBIUM JAPONICUM 8

634 ...................................................

., ., . ,

...................................... . ., . .

.........................................................................................

. , . , ., . , .

-

......................................................................... ., ., .

............................

., .

................................................................. ., .

PSEUDOMONAS BASIDIOMYCETES

..................................... ., . ., . .

26 27 28 29 29 30 31 32 32 33 34 35 36

: . 1’2014

4

...................... ., ., ., .

PS UDOMONAS SYRINGAE PV. TROFACIENS...........................................................................................

., ., . LACTOBACILLUS LANTARUM

................................. ., ., .

.....................................

. , ., ., .

STENOTROPHOMONAS MALTOPHILIA

......................................................................... , ., ., .

PSEUDOMONAS PANTOEA

VITEK 2 COMPACT.................................................................................................

, ., ., .

PSEUDOMONAS .................. .

.......................................................................

., ., ., .,

., .

.............................................

., ., .

( APSICUM ANNUM)............................................................ ., ., ., .

XANTHOMONAS VESICATORIA......................

., . PHOTOBACTERIUM PHOSPHOREUM

WI-FI ..... ., ., ., .,

., ., ., .

BACILLUS , .............................................................

. , . , . -

..................

37 37 38 39 40 41 41 42 43 44 45 45 46 47

: . 1’2014

5

. ., . . TN5-

BRADYRHIZOBIUM JAPONICUM ....................

. , . , . , ., ., . NEUROSPORA CRASSA -

........................................................

., . -L- CRYPTOCOCCUS

ALBIDUS EUPENICILLIUM ERUBESCENS................................................... . ., . .

STREPTOMYCES GLOBISPORUS 1912-HP7 – .................................

., ., .

.LACTOBACILLUS.................................... ., .

BRASSICACEAE AMARANTHACEAE ...........................................

. ., . ., . .

........................................ . ., . ., . ., . ., .

., . ., . ., . ., . ., . .

..................................................................................

., ., ., . ,

ESCHERICHIA COLI 25922........... ., ., .

............ ., ., .

ALU - BACILLUS SUBTILIS LYS-42..........................

. ......

. .

......................................................................... ., ., ., .

....................................................................................................

48 49 50 50 51 52 53 54 54 55 56 57 58 58

: . 1’2014

6

., ., .

........................................................... ., .

, , EXOPHIALA ALCALOPHILA GOTO ET

SUGLY....................................................................................................... ., ., ., .

BRADYRHIZOBIUM JAPONICUM

............................................................................................ ., ., ., .

BACILLUS

................................................ . ., . ., . ., . .

ANDIDA ALBICANS STAPHYLOCOCCUS AUREUS......................................................................

.

............................................................................................. ., ., ., .,

, ., . « ® »

... ., .

, , ,

2,4- N- .................................. ., ., .

.................................................................

. ., . .

.... ., .

............................................................................

., ., ., ., . EFSA...............................................

. . BACILLUS AMILOLIQUEFACIENS -

7404, ................ ., ., ., .

.....................................................................................

59 60 61 62 62 63 64 65 66 66 67 68 69 69

: . 1’2014

7

. .

.................................................................................................

, ., ., . PSEUDOMONAS AERUGINOSA

..................... ., .

.........................................................

., ., ., ., ., . .

..................................... ., ., ., .

....................................................................... ., ., ., .,

.

...................... ., ., .

..................................................................

., ., ., .

BACILLUS................................................................... ., .

........................................... . , .

: , ....

, ., .

PSEUDOMONAS AERUGINOSA ATCC 9027.................................. . ., ., ., .,

................................................ . ., ., ., .

.............. ., ., .

.......... . , .

VITEK COMPACT-2

.......

70 71 72 73 73 74 75 76 76 77 78 79 80 81 81

: . 1’2014

8

.

(CRO42-, CO2+, NI2+, CU2+,

HG2+)........................................................................................................ ., ., ., .,

., ., ., ., ., .

„ ”.................... ., .

®

....................................................................... ., .

...........................................................................................

., ., .

............................................................................ ., ., .

" " .............................................................

., ., . – ...................................................................................................

. ., . , . ., . . ,

.......... ., ., ., .

CHLOROBIUM LIMICOLA -8...............................................

., ., ., .

S. EPIDERMIDIS.................................

.

......... . ., . ., . ., . .

....................................................................................

., ., ., .

.......................

82 83 84 85 86 86 87 88 89 90 90 91 92

: . 1’2014

9

., ., .

......................................................................................... ., ., .

............................................................

., ., ., .

BACILLUS , ............................................................................

. ., . , , .....................

., ., ., ., ., .

.... ., ., ., .,

., ., .

........................................................................................... ., , ., ,

. .

..................................................................................... . ., . .

PSEUDOMONAS .................................

.

.................................................... ., ., .

.....................................................................................................

., ., .

ZF40

ERWINIA CAROTOVORA SUBSP. CAROTOVORA.......................................... ., .

.................. . , . ., ., .,

. . , . , .

.........................................................................................

., .

...................................................................................

93 94 95 95 96 97 98 99 100 100 101 102 103 103

: . 1’2014

10

. ., . ., . ., . .

AZOTOBACTER CHROOCOCCUM AZOTOBACTER VINELANDII ........................................................................

. SACCHAROMY ES

CEREVISIAE ..................................................... .

RHODOCOCCUS ERYTHROPOLIS

................................................................................................. ., ., .

....................

. .........

. , .

..........................

. ., ., . .

- ...............................................

. . STAPHYLOCOCCUS

AUREUS.................................................................................................... ., .

AZOTOBACTER .................................................................

SECTION «IMMUNOLOGY»

« »........................................................................... PLENARY SESSION

.............................................................................. Skivka L.M. IMMUNOGENIC CELL DEATH IN HEALTH AND DISEASES.............................

., ., . . , ..............

., ., ., ., .

........

., .

. ..............................................

104 105 106 106 107 108 109 110 110 112 113 113 114 115 115

: . 1’2014

11

., ., ., ., ., .

....................

., . IGE

..........................................................................

. . :

......................................................................... .

............................................

., ., ., .

....................................................................................

ORAL/POSTER PRESENTATION

.................................................................... Degen A.S., Topol I.O., Kamyshny A.M. FEATURES OF AN EXPRESSION OF THE T-BET AND GATA3 TRANSCRIPTIONS FACTORS IN EXPERIMENTAL PATHOLOGY...................... Galkin O.Yu. OPTIMIZATION OF CONDITIONS FOR THE ISOLATION AND PURIFICATION OF HUMAN IGE.......................................................................................... Kiyamova R. G. Kostianets .I., Dyachenko L.V., Lytovchenko A.S., Filonenko V.V. TUMOR-ASSOCIATED ANTIGENS AS MOLECULAR MARKERS FOR BREAST CANCER DIAGNOSTICS............................................................................. Nikulina V., Garmanchuk L., Senchylo N., Nikolaienko T. ADHESION POTENTIAL, PROLIFERATION AND THE GLUCOSE ABSORPTION LEVEL OF THE HELA CELLS UNDER THE INFLUENCE OF TEICHOIC ACID...... Palyvoda K.O., Oliinyk O.S., Lugovskaya N.E., Kolibo D.V., Lugovskoy E.V., Komisarenko S.V. GENERATION AND CHARACTERISATION OF RECOMBINANT SINGLE CHAIN VARIABLE FRAGMENT ANTIBODIES AGAINST PRO186-LEU197 PROTEIN C REGION.................................................................................................... Siryk G., Fedorchuk O., Malanchuk O., Skivka L. PHYSICAL ACTIVITY AT DIFFERENT DAYPARTS CHANGES CIRCULATING PHAGOCYTES FUNCTIONS.........................................................................

., ., ., . ., .

IN VITRO.....................................................................

117 117 118 119 119 120 120 121 122 122 123 124 124

: . 1’2014

12

., ., ., ., .

SMUDGE- ....................................................................................

, . TLR-9, TLR-2

................ ., ., ., ., .

...... ., ., .

C159T CD14

..................................................................................................... . , . , .

MALDI-TOF ...............

., ., ., .

...................................................................................... ., ., .

-3 ..............................

., . , ., ., ., .

........................................................................................ . ., . ., . ., . .,

. .

. ., . ., . ., . ., . .

.................

,

.................................................................................................. ., ., .

..................

., ., ., ., .

.................................

., ., .

.............................................................................

125 126 127 128 129 130 131 131 132 133 133 134 135 136

: . 1’2014

13

., ., ., ., ., .

.................................. ., ., ., .

................

.

........................................................... ., ., .

.............................

., ., ., ., ., ., ., ., .

, ( « »)

......................................................................... . . .

CD8 NK ....................................................... . , ., .

,

.................... . ., . ., . .

NF-KB TLR-4 ..................................

., ., . –

, -1 ..................................

., .

.......................................................................

., . . 6

IN VITRO ........................... ., ., ., ., .

.................................................................................. ., ., ., ,

., .

137 137 138 139 140 141 142 143 143 144 145 145

: . 1’2014

14

«DIA-HBCORE-AB»......................... .

......................................................................

., .

...................................................................... .

IN VITRO IN VIVO .................................................................

., ., ., ., ., .

.....................................

., ., .

...................................................................

., .

............................... ., ., ., .,

, .

............ . ., . ., . .

......................................................................................................

. - -4 ,

........................................................................ ., ., ., .,

., ., ., ., .

............................. ., ., .

-123 ..............................................................

.

..................................................................................

.

80 ........................................................

146 147 148 151 152 153 153 154 155 156 157 158 159 159

: . 1’2014

15

., ., ., .,

.

,

..................................................................................................... ., .

................................... ., .

, .....

., ., ., .

.................................... ., ., ., .

............ ., .

CD45RA/CD45ROCD4+ -, .............

., ., ., .

.

........................................................................... ., .

...................................................

., ., .

1986-87 ......................................................................................

., . ...............................................

., ., ., ., .1., .

PSEUDOMONAS AERUGINOSA ARABIDOPSIS THALIANA ..................................

., ., ., ., ., ., ., .

« », ,

.................................................. ., ., .

, .......................................................

160 161 162 163 163 164 165 166 167 167 168 169 170 171

: . 1’2014

16

., ., ., ., ., .

..................................................

SECTION «METHODICAL FUNDAMENTALS OF TEACHING OF MICROBIOLOGY AND IMMUNOLOGY»

« »...........................................................................................

ORAL/POSTER PRESENTATION

....................................................................

. . « »

........................................... .

« » ................................................

.

......................................................................

., . ............

171 173 174 174 174 175 176

: . 1’2014

17

: . 1’2014

18

PLENARY SESSION/

Boyko N.V.

MICROORGANISMS AND IMMUNONUTRITION: NOVEL

PRACTICAL TRENDS OF SELECTION AND APPLICATION OF

PROBIOTICS Uzhhorod National University, Uzhhorod,

Ukraine [email protected]

Healthy life-style requires the con-sumption of well-balanced foods preferably rich in biologically-active compounds and fibre. The range of claimed healthy foods and functional products is enormous; but their role in health and wellbeing is still largely unclear. The possible way to substan-tially improve the human health is using of active dietary ingredients to mod-ulate normal gut microbiota and homeostasis of mucosal sites. We developed new conceptual criteria for the construction of pre- and probio-tics. In this paper we propose our background for the interpreting of “synbiotic” as a “complete and ba-lanced dietary intake of macronutrients and micronutrients beneficially affect-ing on microbial community structure”. Indexation of plants-originated priori-tised traditional foods from countries of Black Sea region (BSAC) had been performed within BaSeFood project1. The nutritional content, macro- and microelements, vitamins and folate had been determined and presented in EuroFIR composition data base. All prioritised foods and their major plant components are the greatest source of original beneficial microbes and novel prebiotic compounds. The ability of plants ingredients of national foods to selectively stimulate the commensal and to inhibit the potentially pathogen-

ic microbes had been confirmed in our in vitro and in vivo models. Recognition of the molecular mechanisms of directed modulation of gut microbiome and correspondingly human/host mucosal cross-talk following to the traditional foods intake will lead to effective regulation of host metabolic balance. A complex analysis of the traditional foods of the BSAC would make possible to select the potential candidates with putative functional properties due to their interaction with specific micro-organisms and present as an examples of “healthy immune-nutrition diet”. Our results support the concept of potential implementation of personalised diets for the patients with diet associated chronic diseases. 1The research leading to these results has received funding from the Euro-pean Community’s Seventh Frame-work Programme (FP7/2007-2013) under grant agreement N 227118.

., .,

., ., ., .,

.

, ,

[email protected] -

( ) (HCl)

( ). -

.

: . 1’2014

19

-

. -

, ( ), ( ) ( ),

HCl ( ).

120 , 3 . I ( ) 1

28 . II

28 (0,14 ). III

28 « ®

» (0,14 ). ( „ . ”).

, HCl ,

. -,

HCl -. 50%

, 50% - -

-, -

-

. .

.

- .

,

, . -

. -

Nos2, -

NO -, -

Par2, -

. ,

, -

,

-

.

., ., ., .

«

»;

;

», , [email protected]

,

15-35 -

74%, 40 - 90-95%. -

- « »

-.

46 , 180-250

(28 ) - («Sigma», ) (14

).

: . 1’2014

20

.

-, , -

, NO- .

36 ( 38±3,2 )

.

,

, , , NO- .

- «

» - « . -

». , -

: -

, , NO- .

» -

,

NO- . -

« »

20 --

,

, ,

NO- .

. 2, . 1

1

, , ; 2

. . , ,

[email protected]

– – ,

-.

,

,

-

,

.

- –

-.

-,

- Enterobacter

nimipressuralis 32-3,

1,2-1,7 , -

. ,

-,

: . 1’2014

21

1,2-2,0 -,

-

.

-

55,7 – 91,4%

,

.

,

, ,

-,

3-10% 11-24%

,

. , -

,

.

., ., .,

: -

, ,

[email protected] -

, . -

-

. , ,

,

-. – -

.

, 20-

, -

.

, ,

-. 40-

. -

, -.

, -. -

. –

, .

, , . -

« -». , -

-,

.

: . 1’2014

22

, -

.

, -,

. -

.

. -

,

(50- )

, ,

[email protected] ( -

) ,

,

. --

. ,

.

-. -

, , ,

.

. -

.

. --

. ,

( ). -

-

VP1. -

. , , -

, ,

. -. -

, ,

-

" " ( . .

) ,

-. ,

, --

,

.

: . 1’2014

23

ORAL/POSTER PRESENTATION

Adamchuk-Chala N.I.

EFFECT OF SOIL HETEROGENEITY ON SOIL MICROCENOSES OF ALFA-ALFA ROOT ZONE INOCULATED BY

MARKED POPULATION OF RHYZOBIUM MELILOTY

Zabolotni Institute of microbiology and virology, Kyiv, Ukraine

[email protected] Soil biochemical properties respond most rapidly to small changes in soil, and directly related to soil organisms involved biogeochemical cycles of C, N and P as early indications of soil quality. Soil heterogeneity under different practices strongly influences soil microbial process, and an effect of management practices: the combina-tion of all operations, cropping prac-tice, fertilizer and other treatments conducted on applied to the soil may vary among different soil microcenos-es. im of investigation - evaluation of the impact of soil management on soil microcenoses used complex indices calculated by the combinations of different biochemical physic-chemical soil properties during formation of rhyzobial-legume symbiosis alfa-alfa plants inoculated by marked popula-tion of Rhyzobium meliloty 53Q30. In the studied soils , it was found that the presence of the genus Bacillus corre-lated with acidity and buffer soil acidity and phosphorus, the presence of the genus Pseudomonas correlated with indicators of soil electrical conductivi-ty, pH and buffer pH soil content of K, Ca i Al. The presence of the genus Rhyzobium dependent on the mechan-ical properties clay loam texture. Higher impacts of the vegetative indices of rhyzobial-legume symbiosis were selected in inoculated alfa-alfa

plants on the sandy loam, loam and clay loam soil textures, and moisture adversely to 23-55%. Research will be required to validate such approaches and to underprint the promotion of plant microbial linkages for improved N retention, and other ecosystem services, in managed system.

Antonenko L.O., Klechak I.R. THE ACTIVITY OF OXIDATIVE AND

CELLULOLYTIC ENZYMES TRAMETES FR

National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

[email protected] There is a sufficient amount of works aimed at studying oxidative and cellulolytic enzymes of Trametes fungi. The aim of our experiments was to study the activity of these enzymes in the Trametes fungi strains from the Collection of mushroom species of M.G. Kholodny Institute of Botany NAS of Ukraine Mycology Department where such studies had never been held before. The experiment showed the activity of extracellular monophe-nol monooxygenase and endo-1,4- -glucanase in 4 strains of different species (T. versicolor, T. hirsuta, T. ochracea, T. villosa) at different carbon and nitrogen nutrition sources. The cultivation was held under steady state conditions during 7 days at the temperature of 30° . The study of monophenol monooxygenase activity during its cultivation in media with different carbon and nitrogen sources showed that strain peculiarities are more important than suggested nutrition sources. The highest values of monophenol monooxygenase were marked for strain 1009 T. villosa – when starch was used as carbon source (102,5 units/cm3) that is twice more when glucose was used and 5

: . 1’2014

24

times more when no carbon source was used at all). The high amount, in comparison to the other carbon sources, of extracellular protein also points at enzyme formation (37,7 mg/dm3) in culture fluid, part of which is being enzymatic. As for endo-1,4- -glucanase activity, its highest values were marked in 353 T. versicolor when fructose and mannitol were used, in 5302 T. ochracea when starch and maltose were used, in 5137 T. hirsuta on lactose and mannitol, in 1009 T. villosa on mannitol, starch and mal-tose. Thus, by changing carbon and nitrogen nutrition sources the strain 1009 T. villosa with the highest mono-phenol monooxygenase activity was selected and the variants of media were selected: with starch and pep-tone, with glucose and peptone. On the assumption of the highest endo-1,4- -glucanase activity 353 T. versi-color and 1009 T. villosa strains were selected for the further studies.

Baig M.H., Danishuddin M.,

Kaushal L., Khan A.U. BLAD: A COMPREHENSIVE

DATABASE OF WIDELY CIRCULATED BETA-LACTAMASES

Aligarh Muslim University, India [email protected]

Beta-lactamases confer resistance to a broad range of antibiotics and inhibitors by accumulating mutations. The number of beta-lactamases and their variants is steadily increasing. The horizontal gene transfer likely plays a major role in dissemination of these markers to new environments and hosts. Moreover, information about the beta-lactamase classes and their variants was scattered. Catego-rizing all these classes and their associated variants along with their

epidemiology and resistance pattern information on one platform could be helpful to the researcher working on multidrug-resistant bacteria. Thus, the beta-lactamase database (BLAD) has been developed to provide compre-hensive information (epidemiology and resistance pattern) on beta-lactamases. Beta-lactamase gene sequences in BLAD are linked with structural data, phenotypic data (i.e. antibiotic resistance) and literature references to experimental studies. In summary, BLAD integrates information that may provide insight into the epidemiology of multidrug resistance and enable the designing of novel drug candidates.

Emelyanova E.V. PRACTICAL ASPECTS OF USES OF THE PULSE ADDITIONS METHOD G.K.Skryabin Institute of Biochemistry and

Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow

Region, Russia [email protected]

Microbe cultivation in aerated sub-merged conditions has been used extensively in fermentations to pro-duce a variety of substances, cell protein and for transformation sub-stances into other more valuable products. The quantitative content for each nutrient should be properly chosen. The pulse additions method has been proposed by Dudina. It provides rapid identification of growth limiting component in the fermenta-tion. The presence or absence of the deficiency of any nutrients can be verified by the pulse addition of microdoses of nutrient components into the fermentation medium. In our studies the method of pulse additions was employed for the different nutri-tion components: substrates, which

: . 1’2014

25

were the carbon and energy sources; various sources of nitrogen and phosphorus; so called "conservative substrates" as mineral components of the medium (Mg, Ca, Zn, Fe, Cu, Mn). The criterion for assessing was the fast change of the low inertial parameters of fermentation (pH of medium and oxygen consumption) in response to the pulse addition of an insignificant quantity of the growth limiting nutrition component into the fermentation medium. The value of response depended on the value of growth-limitation. The described above technique may be convenient and applicable both in fermentation microbiology and in biosensor analy-sis. This method - can be used for identification of culture growth limita-tion by nonconservative and also conservative substrates; - makes it possible to define multi-substrate limitation and at a high value of growth-limitation by other medium component to detect the deficiency of a nutrient, the concentrations of which in the medium are sufficient for non-limited growth; - is useful to estimate concen-tration of growth-limiting substrate by the response (the change of medium pH and oxygen consumption).

Faidiuk I.V.

PHAGE P1 LYSOGENIC CONVERSION OF

PHYTOPATHOGENIC BACTERIA Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine

[email protected] A comparison of the phage-host systems is essential for understanding the mechanisms of virus adaptation to variations of environmental conditions. Lysogenic conversion with the partici-pation of coliphage P1 in case of

uncommon bacterial hosts can expand our understanding of heterologous phage-bacterial systems.The purpose of the work was to investigate the peculiarities of P1 mc1ts100 lysogeny in Erwinia amylovora and Erwinia "horticola" bacteria associated with trees. 80% of used bacterial strains appeared to be susceptible to P1 infection which resulted in the cells’ phenotype conversion from CmS to CmR. The latter was proved to be caused by introduction of prophage DNA that is maintained as a single-copy plasmid of 94.8 kb in the cells. In the absence of selective pressure E. “horticola”(Eho) strains spontaneously loose CmR marker with a high frequen-cy up to 5.5%. It correlates with cells’ curing from the prophage DNA. Only in Eho 60-3m it occurs due to deletion in the region of Tn9 while the rest of replicon is kept. After the plasmid curing the characteristic value of phage sensitivity of cells is changed. In lysogenic cells the prophage genes of type III restriction-modification com-plex EcoP1I are actively expressed. The system formed by Eho 45 and 60 as well as their lysogenic derivatives and specific bacteriophages provides an opportunity to divide the latter into three groups according to the level of restriction in the course of their interaction with the enzyme EcoP1I. The difference in phage responses to the endonuclease presence in lyso-gens presumably correlates with the number of enzyme recognition se-quences and the adsorption sites availability. The expression of both immune and structural module of P1 is inappropriate or absent in lysogenized phytopathogens. Among all functions encoded by prophage efficiently expressed are solely the genes of

: . 1’2014

26

mobile genetic elements: Tn9 cat-gene and RM-system EcoP1I. The constructed lysogenic strains allow for the exploration of RM-system Eco 1I interaction with polyvalent phages able to grow not only on E. coli, but also on phytopathogenic bacteria.

Holubenko O., Akulenko I., Shemchuk T.

DETERMINATION OF SCFAS IN FAECES SAMPLES USING GC/MS

Taras Shevchenko National University of Kyiv, ESC "Institute of biology”, Kyiv,

Ukraine [email protected]

Recently, an attention to the physio-logical changes of main microflora representatives is being rapidly increased. Thus there is a necessity of attracting faster and more effective methods to the assessment of micro-biocenosis. One of those techniques is gas chromatography–mass spectro-metry analysis of the short chain fatty acids(SCFAs) content in stool sam-ples, which are the major metabolic products of gastrointestinal tract microflora representatives. An applica-tion of such method is successfully used in global research institutes, but is still untapped in Ukraine. The purpose of our work was to study the process of sample preparation and SCFAs content analysis, to determine their spectra in stool samples of healthy rats and to compare our data with other sources. The research object was samples of faeces, which were taken from sexually mature rats(males) line Wistar, without abnor-malities of the gastrointestinal tract. All animals were kept in the NSC "Institute of Biology" vivarium at standard conditions. It is known when the pH of the fecal homogenate decreases, the output of SCFAs significantly increas-

es, therefore as the solvent was used 0.02 M hydrochloric acid. Analysis of investigated acids was performed by gas chromatograph Agilent Technolo-gies 6890N and capillary column DB_FFAP. As the mobile phase was used gas He. Quantitative and qualita-tive analyzes were conducted using mass-detector Agilent Technologies 5973 inert. In order to check the reproducibility of the conditions in each assay and determinate the concentration of acids, to each sample there was added an internal standard (4-methyl-valeric acid) with known concentration. We idetificated and calculated the concentrations of 5 carboxylic acids, which were pre-sented in all stool samples of healthy rats. These acids are acetic, propionic, butyric, valeric and iso-valeric. Processed technique of determining SCFAs in biological substrates using gas chromatography method has high accuracy, sensitivity, speed of data receiving, so can be used as screening method.

Huwiage G.M. THE USE OF PROBIOTICS TO TREAT

CHILDREN WHO SUFFER FROM ACUTE GASTRO-ENTERITIS

DIARRHOEA IN ALGARABOULLI HOSPITAL-LIBYA

High Institute of Polytechnique, Algaraboulli, Libya

[email protected] The term “probiotic,” which is derived from the Greek word for life, “bios,” was invented in the middle of the last century as a result of observing the beneficial influence of certain microor-ganisms on the intestinal flora. Recent-ly, for the correction of violations of the normal microflora of the human body, treatment dysbacterioses, many infectious and systemic human dis-

: . 1’2014

27

eases associated with microorgan-isms, are the most effective probiotics. The aim of study: The aim of our study was to determine wich probiotics are most effective in treatment of acute gastro-enteritis diarrhea in children. Materials and methods study: In our study we take two different series of commercial probiotic,wich is contain of different bacterial strains,these probiotc are Bifidombactrin (one dose contain contain 1 107 Bifidombacte-rium bifidum) and Lactobactrin (one dose contain 2 109 L.plantarum and L.fermentum) ,we also take 22 children as case study stay in Algarabolli hospital/Libya,age from 5 to 11 years and differ them to two groups, 11 child in each group, each child take one dose by three times aday. Results: After amonth of treatment and through an analysis showing that , agroup of children who have been given Lacto-bactrin, a single dose for three times a day improved their health and stop diarrhea quickly . While chldren who have been giving Bifidombactrin did not improved their heath. Conclusion: Microflora of the large intestine complete digestion through fermenta-tion, protect against pathogenic bacteria and stimulate the immune system. Probiotics can modify the composition and some metabolic activities of the microflora. whereas probiotics appear effective in treat-ment of childhood diarrhea, post-antibiotic diarrhea, and pouchitis. They affect immune modulation. The experimental researches will allow to establish what of widely used probio-tics are most biologically active and to give the recommendation on their use in a medical practice.

Khrokalo L. METHANE PRODUCING BY

ANAEROBIC BACTERIA SELECTED FROM ORGANIC WASTES

Kyiv National technical university of Ukraine “Kyiv polytechnic institute”, Kyiv, Ukraine

[email protected] Methane digestion is commonly considered as a three-stage process and provides due to activity of compli-cated anaerobic bacteria communities with hydrolytic, acetate-forming and methane-forming ones. Research was focused on screening of high methane productive anaerobic bacterial com-munity obtained from different organic wastes, growing and identification of methane-forming bacteria. The samples of wastes involved in experi-ment were taken from anaerobic sludge of waste water treatment station, pig manure, poultry excre-ments and fermented residue from biogas reactor. Storage bacteria culture was cultivated in strict anae-robic conditions (ORP less – 300 mV) and temperature + 35 0C on mineral liquid media (modified Zhilina’s media). Emissions of gases were analyzed on gas chromatograph LHM-8MD. Selection of methane-forming bacteria provided by passage of storage culture patterns on liquid media with addition of carbon source such as methanol and sodium acetate. Antibiotic amoxicillin in concentration 0,12 g/l was used for keeping pure cultures of methane-forming bacteria. Finally, the reinoculation of methane-forming bacteria was made on solid medium according to Hungate method in own modification. The purity of selection was controlled by microsco-py and gas emissions. Microslides were colored by Gram and viewed under light microscopy. Methane-forming bacteria identification was

: . 1’2014

28

provided by keys (Bergey, 2001; Iastremska, 1993). Bacteria communi-ties selected from poultry excrements and fermented residue from biogas reactor had the highest amount of methane production. Experiment results also demonstrated that activity of methane emission is larger in bacterial community patterns than in patterns with selected methane-producing bacteria cultures. Among methane-forming bacteria the strains of genera Methanosarcina and Metha-nothrix were identified. Further bacte-ria selection could be used for creation of bacteria enzyme drugs for applica-tion in biogas technologies. Fermenta-tion of organic wastes and biomass an industrial scale gives the possibility to obtain energy carrier, high-quality organic fertilizer and reduces human impact on the environment.

Moroz J., Skurnik M. MOLECULAR, GENETIC AND

STRUCTURE STUDIES OF THE LIPOPOLYSACCHARIDE (LPS) AS

VIRULENCE FACTOR OF YERSINIA BACTERIA

Haartman Institute, University of Helsinki, Helsinki, Finland

[email protected] Yersinia enterocolitica (Ye) is a well known human and animal pathogen. Among humans, the pathway of Ye associates with intestinal disease, such as enterocolitis, with inflammatory diarrhea, ileitis, mesenteric appendici-tis and gastroenteritis. Ye is a Gram-negative bacterium that contains the leaflet of its outer membrane a large number of lipopolysaccharide (LPS) molecules. LPS is a glycolipid consist-ing of three domains: lipid A moiety, the core oligosaccharide (OS), and the distal O-antigen (O-Ag) capping part.

The WaaL protein catalyzes the ligation of O-Ag onto the lipid A core. Based on in silico investigations, Ye possess 2 oligo-/polysaccharide ligases (WaaLos and WaaLps). The current studies were aimed to estimate importance of the ligases to control the LPS substitutions through construction of both deletion and catalytic mutants for virulence and structural studies. The mutagenesis of the waaLos and waaLps genes was aimed to be carried out using the allelic exchange strategy. That includes the use of suicide vectors which by two homologous recombination events exchange the wild type gene with a mutated gene. Suicide vectors were constructed for mutating both waaL-genes and were used to generate individual waaLos and waaLps mutants of Ye serotype O:3 and O:8. The isolated mutant candidates were confirmed by PCR-analysis. The LPS phenotypes of the Ye O:3 and O:8 waaLos and waaLps knock-out mu-tants were analyzed by DOC-PAGE and silver staining of proteinase K treated whole cell lysates. Hereby, obtained data show correlation between ex-pression of outer core and presence waaLos gene in bacteria genome. However, absence of waaLps gene, in waaLps single mutant, was compen-sated by the remaining WaaLos adequately. Further investigations with double mutant and complementation experiments will help to understand these mechanisms.

: . 1’2014

29

Nidialkova N. ., Matseliukh .V., Varbanets L.D.

MEDIUM OPTIMIZATION OF AN ELASTOLYTIC PEPTIDASE FROM BACILLUS THURINGIENSIS V -7324

Danylo Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine, Kyiv,

Ukraine [email protected]

The medium optimization for the strains-producers cultivation to accumulate of the microbial enzymes has a great practical importance for industrial applications today. Besides to optimize the medium composition it is used either the empirical methods or a mathematical planning of the expe-riment. Previously it has been shown that Bacillus thuringiensis V -7324 synthesized peptidase with elastolytic activity that is a perspective for the medical application. So the aim of this study was optimization of the nutritious medium of B. thuringiensis V -7324 for the maximal accumulation of elastolytic enzyme. By means of the screening experiment it was estab-lished that all components are signifi-cant except a gelatin. A substitute of nitrogen source in the nutritious medium to methionine, valine, threo-nine, alanine and arginine led to an increase of specific elastolytic activity at the supernatant of culture fluid by 10.0-16.5 times. While an addition of ammonium sulfate and sodium nitrate resulted to increase of activity by 4.4 and 2.4 times respectively. A substitute of carbon source to an arabinose and rhamnose led to increase of specific elastolytic activity on 65-90 U/mg of protein. Due to a high cost of the amino acids it was chosen an arabi-nose and ammonium sulfate for further research to accumulate of B. thurin-giensis -7324 elastolytic pepti-

dase. Selection of the inorganic nutrition was shown that an zinc sulfate need to be replaced by zinc acetate in the basic medium for the accumulation of the investigated enzyme. An optimal ratio of selected carbon and nitrogen sources was found by a bifactorial experiment on three levels. It was established that the optimal concen-trations of arabinose is 13 g/l and ammonium sulfate – 14 g/l. Thus, the maximal accumulation of B. thurin-giensis -7324 elastase (132,5 U/mg of protein) is achieved on the nutrient medium having this composi-tion (g/l): arabinose – 13,0, (NH4)2SO4 – 14,0, 2 4 – 1,6, (CH3COO)2Zn – 0,25, MgSO4.

Zaets I.E. 1, Kukharenko O. 1,

Podolich O.V. 1, de Vera J.-P. 3, Reva O.N. 2, Kozyrovska N.O. 1

DNA PROFILING OF THE POLYMICROBIAL KOMBUCHA

COMMUNITY 1Institute of Molecular Biology & Genetics of

NAS of Ukraine, yiv, Ukraine 2 Bioinformatics and Computational Biology

Unit, Department of Biochemistry, University of Pretoria, South Africa

[email protected] High-throughput sequencing allows obtaining DNA barcodes from the environmental or man-made samples, allowing therefore the taxonomical assignation of microbial community members and the uncover of uncultiv-able microbial species, which cannot be detected by microbiological me-thods. In this work, we applied pyrose-quencing of 16S rDNA and ITS ampli-cons for the bacterial and yeast species profiling of the Ukrainian ecotype of the kombucha culture (UEKC), which was selected besides others as a cellulose-forming bio-

: . 1’2014

30

component for the international space exposure project BIOMEX (ESA). 454 pyrosequencing of appropriate barcodes and bioinformatics data analysis has been performed for the microbial species profiling of the UEKC. DNA samples were isolated from a 14 day liquid kombucha culture and a biofilm fraction of the culture separately. The DNA reads obtained from the sequencer were aligned locally by BLASTN. The BLASTN results were merged and visualized by MEGAN 4.67.4. The BLASTN output files were searched by an in-house BioPython-based script to retrieve the statistics of the top scored hits for all reads. It was found that UEKC com-prised two bacterial (Proteobacteria, Firmicutes) and yeast (Ascomycota) phyla, and several unknown pro- and eukaryotic microbial organisms. The core community includes acetobacte-ria of two genera (Gluconacetobacter, Gluconobacter) and yeasts (mainly, Saccharomycetes of Brettanomyc-es/Dekkera, Pichia, and Candida genera). The presence of several species, which previously had not been associated with the kombucha com-munity, was discovered that included Herbaspirillum spp., Halomonas spp. and several other occasionally occur-ring microbial organisms. Based on these data, the precise species inventory of microbial association will get us insight on the functionality of this community as whole entity. This in turn makes it possible to design model consortia of defined microbial organ-isms for a basic research and biotech-nology industry.

Zelena L.B. INFLUENCE OF APOPTOSIS-

INDUCING TREATMENTS ON THE EXPRESSION OF GENES THAT ARE

INVOLVED IN UBIQUITIN-PROTEASOME SYSTEM AND FATTY

ACIDS SYNTHESIS IN YEAST Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine

[email protected] Yeast cells are affected by different environmental stresses that can lead to cell death. This complex process is associated with changes in cell mem-brane and mitochondria structure, protein degradation, producing of abnormal proteins, chromatin frag-mentation, DNA breakage and others. In our study the expression of genes involved in fatty acids synthesis (ole1 and fas1)and ubiquitin-proteasome system (ubc6) after treatments with H2O2 and acetic acid was evaluated in two wild-type Saccharomyces cerevi-siae strains and their polyphospha-tase-deficient mutants. The level of gene expression in yeast cells was analyzed by RT-PCR. Comparative analysis of results obtained by RT-PCR revealed no changes of fas1 expres-sion in most cases with the exception of one wild-type strain and its mutants after treatment with H2O2 when gene expression was not detected. The expression of ole1 and ubc6 genes depended on strain and type of treatments. The level of their expres-sion raised in wild-type strains after each of treatments used. The increas-ing of ole1 expression was observed after acetic acid treatment in poly-phosphatase-deficient mutants of one strain whereas the slight decreasing or no changes was detected in the mutants originated from another. The treatment with H2O2 caused the increasing of ubc6 expression in most

: . 1’2014

31

cases. Thus, results of our research showed strain-specific mode of induction or repression of gene expression encoding ubiquitin-conjugating enzyme and two enzymes of fatty acids synthesis under influence of stress conditions in S. cerevisiae strains.

. 1, . 2

BRADYRHYZOBIUM JAPONICUM 8 634

1 , , ;

2 . , ,

[email protected]

- –

.

, 38–42% , 18–23% , 25–30% -, , ,

.

. -

. - Bradyrhizobium

japonicum.

Bradyrhizobium japonicum M8 634 , 8+634 . -

,

2012-2013 .: ( 8, 634 , 8+634 ) - (74,72,75);

(94,84,83); (163,132,133); (19,7,14,7,16,6) ,

-(70,8, 79, 120, 15,3).

,

, -,

, -

. -

,

. , -

-. ,

-

.

: . 1’2014

32

., ., .

,

. . ,

, [email protected]

, --

.

, -

-.

-

,

, , -

.

-. ,

,

, -, -

-.

, 35-45°

Desulfovibrio, 60°

Desulfotomaculum Desulfomicrobium.

16S , -

2 100%

GenBank - Desulfovibrio sp. DSM

12803 (AJ251630.1), 3

92% - GenBank

Desulfotomaculum sp. ECP-C-5 (AF529223.1),

4 99% -

Desulfomicrobium baculatum DSM 2555 (AY464939.1).

-. -

-

, --

.

. ., . .

"

", , [email protected]

-,

.

: . 1’2014

33

,

. -

, -.

. -

( , , , ) -

( , , , , , ,

) . -

, -

(P. mirabilis, S. aureus MRSA, E. cloaceae, K. pneumoniae, P. aeruginosa); (S. enterica, Shigella dysenteriae, L. monocytogenes, EPEC E. coli)

(E. coli 058, E. faecalis,);

(L. acidophilus, L. delbrueckii, L. casei, L. fermentum, B. dentium).

, :

, , .

-

. in vitro -

-.

– -, -

. -,

, -

-

.

, .

. 1, . 1,

. 1, .

2 . 2

1 . ;

2 , ,

, [email protected]

--

.

Purpureocillium lilacinum. . lilacinum Chaetomium aureum

(3,7x106-

3,7x108 ) . , ,

-

-

: . 1’2014

34

. -, -

.lilacinum

» -

. Purpureocillium lilacinum

-:

- ( 5%);

(0,02-

0,2%);

(0,002, 0,2%). ,

-

- (0,2%). -

« » 20%

». - « -

» « » 2% . ,

2O2 -

. -,

--

2%. ---

.

« »

P.lilacinum », , -

, -

.

., ., .

. . .

, ,

[email protected] ,

,

- Enterobacteriaceae. -

,

, .),

-

. -

. , ,

-. –

-.

- 30

: . 1’2014

35

.

. . -

t- .

, -

28,6% -

Candida (8,7% ; p<0,05) 14,3% – Enterococcus sp. (0% ; p<0,05).

--

60,9% Streptococcus pyogenes

(42,9% ; p<0,05), 30,4% - Staphylococcus epidermidis

(14,3% ; p<0,05), 17,4% -

Enterobacteriaceae (0% ; p<0,05).

St. aureus, Str. pneumoniae, Neisseria sp.

(p>0,05).

. ,

--

, -

– .

., .

», , [email protected]

,

.

, ,

-. ,

,

, -

.

. ( ,

, , ) ,

-. -

, -

. ,

-

( 1 ): 1 – , 25 - . , 15,4 – .

. , 19 – . .

100 -: 62 - . , 1,6 – . , 2,6 – .

, 2,2 – . -. ,

: . 1’2014

36

, -

100 3 ( .

), 4,6 ( . ), 2,4 ( . . ), 2,8

- . .

-

2,1 ( . ), 2 ( . ), 1,3

– . . , 5,8 – . . -

3,8 ( . ), 1,2 ( .

), 6,3 ( . ), 3,1 ( . -

). , -

, -, -

0

100 .

., .

PSEUDOMONAS BASIDIOMYCETES

,

, , [email protected]

Pseudomonas, Basidiomycetes,

, , .

, -

, .

-

.

Pseudomonas,

. -

(Agaricus bisporus (J.Lge) Imbach) – Sylvan 130 Hauser A-15.

(Lycoperdon perlatum

Pers.) , (Pleurotus ostreatus

Kumm.) -.

: -,

,

) ),

. -

-

) ( ).

-. ,

-

.

Pseudomonas (P.fluorescens (biotype G-syn. tolaasii))

-

: . 1’2014

37

. ,

, ,

, ,

.

, -

.

., . ., -. .

. .

, , [email protected]

-,

- ( ),

,

-,

.

-

Roundup Ready (RR) . -

Bradyrhizobium japonicum -6035 RR 40-3-2.

. -,

RR -

B. japonicum -6035, --

( ).

-

1,5 , -

1,2 .

3,9 , -

1,5 . ,

- RR

, -

1,5 – 2,8 . -

.

, , -

.

., .,

., .

PS UDOMONAS SYRINGAE PV. TROFACIENS

. . , .

[email protected] Pseudomonas syringae pv. trofaciens –

, -

. ,

,

: . 1’2014

38

.

-

, , . -

, ,

,

. -

. -

, -

( , 250 .), ( , 167 +

, 43 + , 250 .), ( 500 ), ( 60

), ( 15 , 700 .).

11 P. syringae pv. atrofaciens 4, 20, 912, 8462, 9010, 9057, 9400, 9404, 9417, 9747, 9780),

P. syringae pv. atrofaciens PDDCC 4394. -

P. syringae NCPPB

281. ---

, ,

. 24 -

28°

. , -

P. syringae pv. atrofaciens P. syringae. ,

10 ,

,

. , ---

P. syringae pv. atrofaciens P. syringae.

., .,

. LACTOBACILLUS

LANTARUM

. . , ,

[email protected] -

,

. - L. lantarum,

-,

-

. L.

plantarum -, -

. -

, , , , ,

, , ,

: . 1’2014

39

109 L. plantarum. ,

12-48 ,

600 120 0 . 20% -

. L. plantarum

100 - 420 NaCl 2% - 8%, -

, 100 8% NaCl -

, .

51,4% - --

, 24% - 8,3% -

. L. plantarum

. -

. L. plantarum

. 10

L. plantarum, -,

, 2 ,

100 - 420 , 8% NaCl, -

,

-

.

. 1, . 2, . 1

1 . . , , ;

1 « », [email protected]

-

, -,

, , -

-

. -

.

-

.

-

.

, -

. ,

-

. «

» -.

: . 1’2014

40

200 , . -

,

17,4-32,1% . -

: -

- 2,2-3,7 ,

– 1,9-4,1 , – 1,1-1,4

.

68,6-80% 31,2-50%

.

. ,

,

-

. , -

.

. 1, 1., . 1, . 2

STENOTROPHOMONAS MALTOPHILIA

1

, , ; 2 .

, ,

[email protected] , -

. -

. , -,

.

-

, .

-

Stenotrophomonas maltophilia

.

Stenotrophomonas maltophilia. .

, Fe(II) Fe(III) -

. -

. ,

Stenotrophomonas maltophilia

. , -

. , 7

-,

11 .

Stenotrophomonas

maltophilia

: . 1’2014

41

.

7 .

Fe(II), 7 .

, , --

Stenotrophomonas maltophilia

-,

, Fe(II) .

, ., ., .

PSEUDOMONAS PANTOEA

VITEK 2 COMPACT

. . , . , 154, , ,

« » . .

, , [email protected]

, -

-, -

. -

VITEK 2 compact.

Pseudomonas Pantoea

- (GN

Colorimetric Identification Card).

Pseudomonas savastonoi pv. glycinea - 9074, 9072, 8541; Pseudomonas syringae pv. syringae 8414, 8570, Pantoea agglomerans -5113 , 8435, 8490, 9185.

Pseudomonas

. Pantoea agglomerans - -

.

Pseudomonas savastonoi pv. glycinea, Pseudomonas syringae pv. syringae Pantoea agglomerans,

. , Pseudomonas

savastonoi pv. glycinea 8541

Pseudomonas syringae pv. syringae.

.

, ., ., .

PSEUDOMONAS

. . , . , 154, , ,

« » . .

, , [email protected]

Pseudomonas

.

-

: . 1’2014

42

-

.

. .

VITEK 2

compact. -,

-,

--

. -

Pseudomonas – --

, -

. 15

--

28 . -

- VITEK 2 Compact

48 3 :

12 1, 9 , 12. --

Pseudomonas. ,

- Pseudomonas savastanoi

Pseudomonas syringae.

.

. . , , .

[email protected] -

Fe( ) .

Fe(III) -

. -

( ) -

-.

-, -

.

( ) Fe(III) 0,5

. -

10 - – ,

, , , ( ).

-

1 .

- (2,6·102

),

: . 1’2014

43

.

. Deception (2,6·106 ).

1,6·103-1,1·104

. ,

) -

3,4·104 ( – ) - 5,9·104

). , -

-

, ,

.

. -

--

.

., ., ., .,

., .

, ,

[email protected]

, -,

-

.

-

. ,

-

. -

(180-230 ). ( ) (50 , .)

14 .

0,1 6%- .

®" (0,16 , per.os.) 14

8 .

, 14- 56- 9-

. --

. 1- 14-

. 56

Clostridium spp. (lg 3,5+0,3 2), (-) E. coli (lg 4,4±0,2 2), 2-3

Staphylococcus. Bifidobacterium, Lactobacillus, Propionibacterium .

-

56 .

(185,2±215,1 86,1±83,77 2)

: . 1’2014

44

56 . ,

. -, -

.

., ., .

( APSICUM ANNUM)

. . , ,

[email protected]

,

,

.

Xanthomonas vesicatoria Pectobacterium carotovorum

subsp. carotovorum. -

, -, -

. ,

,

. .

, -

. -,

, -

. , 15

, .

15 25 -,

- 25 . ,

14 -

( ),

X. vesicatoria, . -

- 25-35 . -

,

, 4 5 33-1;

22, X. vesicatoria 8 -

P. carotovorum. 33-1,

20-27 , 8 – 32 .

. , -

,

-

4 5 -.

: . 1’2014

45

., ., ., .

XANTHOMONAS

VESICATORIA

, , [email protected]

,

-. ,

-

quorum sensing. -

- Xanthomonas vesicatoria,

-.

.

- ( ) -,

(25%, 12%, 6%, 3%) (30

., 60 .)

--

BioTech. ,

X. vesicatoria <0,195%, .

- 1% 15 .

1 lg, 0,5% 30 . – 1,3 lg. ,

-.

-.

3% -

30 . 76,0%, 60 . – 65,4%; 6% – 66,4% 53,8% ;

12% – 56,5% 80,4% ; 25%

– 67,7% 82,4% -. 3%

30 . 58,1%, 60 .

– 75,7%; 6% – 76,7% 78,4% ;

12% – 87,4% 77,7% ; 25%

– 71,4% 70,8% -. , -

--

Xanthomonas vesicatoria. ., .

PHOTOBACTERIUM

PHOSPHOREUM

WI-FI

. . . , ,

[email protected] -

- ( )

. -

: . 1’2014

46

Wi-Fi, --

.

Wi-Fi ,

-,

.

Wi-Fi --

. -

Photobacterium phosphoreum - 7071,

. -

, 3 10 ,

Wi-Fi TP-LINK TL-WR841N

(<6 , 100

2,4 ) 5,10 15 . -

-115. , Wi-Fi TP-LINK TL-WR841N

Photobacterium phosphoreum - 7071. -

. - Wi-Fi (5

) (

2-3%), 10 . 16 %. -

15 . .

38%. -

.

, -

Photobacterium phosphoreum - 7071

.

., ., ., .

., ., ., .

BACILLUS ,

, . ,

[email protected]

---

. -

.

.

- Bacillus

,

« -» « -». 13

Bacillus

: . 1’2014

47

.

, . -

1:10, 1:100, 1:1000 . -

LB -

. , ,

3 . ,

,

. --

(94-98% ).

4 : Bacillus subtilis 74,75,77, B. subtilis var.niger 83. -

B. subtilis 74 B. subtilis 77. ,

-

28% - B. subtilis 74 40%

B. subtilis 77 1:1000).

(1:1000) -

23%. , ,

,

, -.

. , .,

.

-

. . , ,

[email protected] ,

, 105 - 107

. 2 - 3 - 105

, 107 ( < 0,05),

- 105 .

--

105, ,

, - -

. --

: ; , -

. " -

", --

105 .

( ) 2- (49

%). -.

(33 %) (29 %). (13 %) , (8 %) -

(7 %). -

: . 1’2014

48

, , 27.8 % -

, 63.2 % - , 9%

( ).

(31.8 %) -

. --

18% .

-

9% 13% . " -

": -,

.

.

,

.

. ., . .

TN5- BRADYRHIZOBIUM JAPONICUM

, , [email protected]

,

– .

,

.

Tn5- Bradyrhizobium japonicum

. - (Glycine max L.

(Merr.)) ,

B. japonicum: 646 ( , ), 604 ( ),

66 ( ), 21-2 ( -) Tn5-

646: 9-1 ( ) 113 ( )

--

.

, -

.

.

, -

Tn5- -,

20- -

646 21-2. 28-

-

Tn5- 113. , -

B. japonicum,

-

: . 1’2014

49

,

. -

-.

. 1, . 2,

. 2, . 2, . 1, . 2

NEUROSPORA CRASSA -

1 -.

. , , ; 1 . ,

, . [email protected]

– ---

, .

,

. ,

,

, -

.

-

– N. crassa.

--

– ( -), -

, - – -

(3- -(5Z,8Z,11Z,14Z)-

(3-HETE)) (18- -

(9Z,12Z)- (18-HODE)). Neurospora crassa 3-HETE, 18-HODE

. 5 50 -

. , 3-HETE

18-HODE, ,

– – .

5

.

– 3-HETE ,

18-HODE – . ,

N. crassa, -. -

, 3-HETE 18-HODE, -

.

: . 1’2014

50

., .

-L-

CRYPTOCOCCUS ALBIDUS EUPENICILLIUM

ERUBESCENS . .

, , [email protected]

-L-

L- , ,

, -, , .

-L-

-, , ,

,

.

,

.

-L-:

Eupenicillium erubescens Cryptococcus albidus.

- -L-

. E. erubescens C. albidus -

, - TS Toyopearl

HW-60 Fractogel DEAE-650-s Sepharose 6B

-L- , -,

-,

-,

. , -

C. albidus E. erubescens, -

-L- , -

. ,

-L- E. erubescens -

, C. albidus. -

E. erubescens C. albidus -

-1,2- , -

, , -.

., .

STREPTOMYCES GLOBISPORUS 1912-HP7 –

, , [email protected]

-

S. globisporus 4Lcp 7. 4Lcp 7

.

2,6-3,5 37-51 -

.

. -

: . 1’2014

51

: - 4Lcp 7

,

; -

; - 7-10 -

- 44-48 -

(260 ., 28° ); -

10% , -

: -, .

,

4Lcp 7 -

, - 14,5

14,8 . , --

- 13-14,3 .

-

- 45,76 51,8 . , -

- 37 41

. -

,

4Lcp 7

.

., .,

.

.LACTOBACILLUS

», ,

[email protected] – -

, -

.

, i i -

i . -

, ,

.

, . --

. – , -, ,

i , .

--

. --

.Lactobacillus

« ». t +37°

MRS (Himedia) - ,

, , ,

: . 1’2014

52

. - (0,2 ).

520 . -

Lactobacillus plantarum MTCC 2621(I ). 11

.Lactobacillus 3 .

(U/ml; ±0,001) 24 48

L. rhamnosus LB3 IMB B-7038 - (0,019 i 0,03); L. bulgaricus LB51 - (0,009 i 0,013l); L. delbrueckii subsp. delbrueckii DSM20074 - (0,017 i 0,03 l). L. plantarum MTCC 2621 0,024 0,051 U/ml,

. , -

-. -

--

.

., .

BRASSICACEAE AMARANTHACEAE

.

. , , [email protected]

- ,

, .

-, -

, ,

.

.

-

Brassicacea Amaranthaceae

( 3 4). -.

. .

-: Brassicacea ( -, )

Amaranthaceae ( ).

– ,

-. -

. , , -,

. - ( )

– . Brassicacea, . Amaranthaceae, ,

. -

. -

,

: . 1’2014

53

.

. 1,5-2 .

.

. -

. Amaranthus -.

. ., . ., . .

. . , ,

[email protected]

-

.

, -. -

. , ,

-

, -

. :

-. -

- 2

60 . -

-

.

- ( ). -

,

, - (7,2),

(8,0) 1,25 40 .

6,0 - -

40 80 . -

10% -

, 106±9,3 .

, -

10% ,

-

, - -

-

.

., ., ., ., .,

., .,

: . 1’2014

54

., ., .

. . , , [email protected]

-

,

,

.

Pseudomonas - P. cepacia NU-327, P. fluorescens ONU-328, P. maltophilia ONU-329, -

,

. . P. fluorescens ONU-328 P. maltophilia NU-329

-, P. cepacia NU-327 – -

.

Pseudomonas -

. -

30 60 -

“ -29”. -

--

, . -

, -

.

30 45-52 %. 60

75-90 %.

, ,

. ---

- --

, ,

--

.

., ., ., .

,

ESCHERICHIA

COLI 25922

, , [email protected]

-.

, . ,

-

2-10 -, . , ,

, .

: . 1’2014

55

,

- Escherichia coli

25922. - ( ) -

. 3-12%

60-250 15-120 .

-

. , E. coli

< 0,2%,

- 1,95 . - Ct 2,1×105 × , 6×106

× 1,57×103 × ; -.

E. coli 3% 15 .

4,5 lg; 3% 15 . - 3,39lg, 12%

– 3,8 lg; 125 15 .

1,3 lg, 250 15 . – 4lg.

4-7 E. coli

10 . 1,36 lg, - 2,15 lg, -

250 1 . 0,47 lg.

, , - E. oli -

,

.

., ., .

, ,

[email protected] , -

. -

. :

-,

-. -

. - 14

50 . - 72

. 6%

1% . - (0,16 )

per.os 14 2-

. 72 14-

III .

. -

( 1,7+0,4 5,8+ 0,3

0+0 4,4 2 -). -

3 , -

: . 1’2014

56

. -

. -, - -

. -

Shigella Salmonella, .

14 -

.

. : 1)

--

; 2) -

.

., ., .

ALU- BACILLUS SUBTILIS LYS-42

-, ,

[email protected] ,

, . -

, .

,

. ,

-,

. , -

,

. , -

,

. -

,

.

,

, Alu-,

.

- 10

Tris-HCl (pH 7.5) .

Alu- Bacillus subtilis Lys-42

. -

60 .

, Alu-

-

. -,

Tris-HCl . -

-.

40 B 0.8%- -.

, -.

: . 1’2014

57

Alu- Bacillus subtilis Lys-42.

.

,

, [email protected]

70

« » ( .

/ . .

; .: ., .,

. .; . .: ., .

– .: , 2013. – 808 .). -

, ,

. -,

, -

. 2- ,

,

. . (1873), ,

,

--

.

, 1-2 , -

: ),

), ( ), ( ),

), ),

), - ( ).

, ,

, , ,

1876 . -

, , 1877 – -

-,

1883 . -,

.

. , -

, , ,

.

2-3 .

. .

-, ,

[email protected] , ,

, ,

: . 1’2014

58

-

.

,

,

. -

): ( – Agrobacterium radiobacter-204,

), ( – Enterobacter nimipressuralis-

32-3, ) - –

, , Bacillus

polymyxa ).

, -

(Lolium perenne L.) (Medicago sativa L.).

.

0-30 30-60 .

-, , -

,

. -,

, -

1,8-4,1 1,2-

2,2 . ,

,

.

2-4 1,5-2 . ,

, ,

. , -

.

-

.

., ., ., .

. . , ,

[email protected]

, -,

,

.

-,

. -

-,

. ,

: . 1’2014

59

, -

. --

P. eruginosa, ,

-

.

. -

, -

,

-.

--

. -

. , -

- 24 48

.

. -

--

.

., ., .

. . , ,

[email protected]

--

,

.

(II) (

--

). (

) -.

-

. ,

(II),

0.25 .

, , ).

13 ,

( 1 ). 1-4

(HiMedia Nutrient Agar, 800 ),

5-13 - ( 10% HiMedia

Nutrient Broth, 60-80 ). -

: . 1’2014

60

) ( )

1 4 – 100 , 3 – 200 ).

), (20-30

). ( ) 3-4

-

. , 15% - ) -

-,

. ,

,

(II),

.

., .

, ,

EXOPHIALA ALCALOPHILA GOTO ET SUGLY

, ,

[email protected] ( )

Exophiala -, ,

, -

, , -.

Exophiala -

, .

. ,

-

, -

. ,

Exophiala.

, ,

Exophiala .

, ,

, , , , , , , ,

, ( , ,

) E. alcalophila FCKU 304

« ». -

, E. alcalophila, -

MEA ( alt-extract agar), --

, .

30 28±1° . -

, , -,

E. alcalophila ). -

, , -

, , , -, , .

E. alcalophila, -

.

: > > >

> > > > .

: . 1’2014

61

., ., ., .

BRADYRHIZOBIUM JAPONICUM

, ,

[email protected] -

. --

, -, -

-

. -

,

.

.

(Glycine max (L.) Merr.) -,

(646) (604 ) B.japonicum

. . -

Agilent 2100 Bioanalyzer System (Agilent Technologies, Waldbronn, Germany).

,

-

, ,

, -

.

.

, -

B. japonicum, -

.

-, ,

, -

– , -

.

., ., ., .

BACILLUS

. . , ,

[email protected]

-

, -

. -

-

: . 1’2014

62

-

. ,

Xantomonas campestris pv. campestris 8003 -

B.subtilis 5/6, Bacillus sp. 41 Bacillus sp. A1, Pectobacterim carotovorum sabs. carotovorum

-1095 – Bacillus sp. 41.

: Agrobacterium tumefa-ciens 8628 B.subtilis 5/6 Bacillus sp. 41; P.carotovorum sabs. carotovorum -1095 – -

B.subtilis 5/6, Bacillus sp. 23/2; Clavibacter michiganensis 102

B.subtilis 5/6; X.campestris pv. campestris 8003 – Bacillus sp. 23/2. -

Pseudomonas syringae -1027

P.fluorescens 8573 - Bacillus

-.

, 2 (B.subtilis 5/6 Bacillus sp. 41)

-

, – Fusarium

graminearum 9G Cochliobolus sativus 10Z. , -

-

Bacillus. ) -

(15-51 × -1) Bacillus,

. , -

, -

(B.subtilis 5/6 Bacillus

sp. 41), -

-

.

. ., . .,

. ., . .

ANDIDA ALBICANS STAPHYLOCOCCUS AUREUS

, ,

[email protected] andida albicans

Staphylococcus aureus 20 % -

, , ,

27 % -.

, -

-. -

.albicans S.aureus.

. - 15 -

.albicans S.aureus,

. .albicans 885-

653 S.aureus 25923. ( ) -

-.

-

: . 1’2014

63

. . -

-

: – 32 , - – 5 ,

– 12,5 . -

.albicans S.aureus.

(0,0451±0,007) . , – 2,6

. . , -

.albicans S.aureus, – 2,6 . -

.

.

-

. ,

, [email protected]

-,

, . ,

, , , -

, , , -

,

-. , -

-

,

. ---

5 . , ,

. -

----

. , -

.

.

, . , -

, .

, -

, -.

.

5,5-11,4.

, -

. -,

0,9 % -

: . 1’2014

64

, ,

. --

.

., ., ., .,

, ., .

® »

, , [email protected]

( ) – , -

. -

« ® » ( )

. : -

(m=180-230 ). 5-14

(50 , ). (0,16 , ) 4

)

14 . 1, 14 56

. (MDA) -

-

; (S D) -

; Egr-1 Sp-1 .

. : 1- ,

- (4,5 ) SOD (1,1

), MDA (2,4 , <0,05), Egr-1 (1,5

, =0,02) Sp-1 (1,2 , =0,04)

. - 2,6 MDA,

4,6 ( <0,01)

SOD. -

2 -

( ) (Clostridium spp., Staphylococcus aureus),

Bifidobacterium, Lactobacillus, Propionibacterium .

14 56

.

-, -

(3,6 ; =0,02)

. --

56 . :

.

: . 1’2014

65

., .

, ,

, 2,4- N-

. . ,

[email protected] -

, .

, -

--

. -

. -

, : ( ,

) -. -

, -, ,

2,4- n-. -

.

, -

( --

),

. -

dI/dt ( ),

-. -

. Methylopila musalis

B-2646 . Alcaligenes xylosoxydans

subsp. denitrificans TD 2 -

. Chelativorans oligotrophicus LPM-4

-

. Rhodococcus erythropolis HL PM-1

2,4-. mamonas

testosterone BS 1310 (pBS 1010) n-

.

., ., .

. , ,

[email protected]

-.

-,

.

,

: . 1’2014

66

.

, ,

.

, ,

, , .

, --

. , .

. , -

-.

-

. ,

. ,

.

-. ,

, -

. ,

-

, .

. ., . .

. . , ,

[email protected]

. -

, -

. ,

-

: , -, , , -

.

. 7 -

Bacillus Bacillus subtilis

-7023, -

- Pseudomonas syringae pv. syringae 8511, Pseudomonas fluorescens 8573, Erwinia carotovora

: . 1’2014

67

8982, Xanthomonas campestri 80038, Clavibacter michiganensis subsp. michiganensis 102, Agrobacterium tumefaciens 8628.

--

. , Bacillus -

, -

. B. subtilis -

- Bacillus subtilis -

7023 Agrobacter

tumefaciens 8628, -

. -

Bacillus megaterium 2 B. pumilus 3.

, -

Bacillus subtilis -7023, -

.

., .

-

, , [email protected]

-

. , --

. ,

, .

Bradyrhizobium japonicum . -

(Glycine max), -

B. japonicum, 646 604 .

-,

. -

, -.

«Agilent

GC system 7890 » ( ) - 5975 . -

, , ,

, , 20-40 %

-,

-.

, -,

-

: . 1’2014

68

. -

, --

.

,

--

.

., ., ., ., .

EFSA

« », ,

[email protected] European Food Safety Authority (EFSA)

, . EFSA 2003

. EFSA , . -

. « -

», -

, --.

, -,

.

, -

-. , --

). ,

« » . -

, ,

. EFSA -

“ ” “ ”,

: (

). -

,

, -, , -

,

, --

.

. .

BACILLUS AMILOLIQUEFACIENS -7404,

. . . , ,

[email protected]

– -

: . 1’2014

69

.

- Bacillus,

.

- Bacillus

amiloliquefaciens –7404 Fusarium

graminearum Bipolaris sorokiniana .

B. amiloliquefaciens –7404 -

.

. ,

.

-

. --:

0,25% – ;

15% –

. ,

, , -

,

-. , , -

5 .

1 2.

. -

B. amiloliquefaciens –7404 ,

1 2. -

,

9,5 10,5 F. graminearum B. sorokiniana

.

., ., ., .

. . , ,

[email protected]

-, -

. --

- Meloidogine incognita -

in vitro -

0,5; 1; 2; 3; 4 24 . , 79

- 30

, 24 .

. ,

:

: . 1’2014

70

Cochliobolus, Alternaria, Fusarium

ladosporium – , , (

11 14 )

Clavibacter michiganensis, Pseudomonas syringae pv.

oronafaciens, P. syringae pv. trofaciens, P. savastanoi pv. glycinea,

P. corrugata, Xanthomonas campestris pv. vesicatoria, Pantoea agglomerans, -

- (

20 28 ).

-,

. ,

, -.

-

16S rRNA 1461 . ,

99,0 % - Amycolatopsis orientalis

AJ400711).

-. , -

, 4 « -,

». -

, Actinomycetales, Pseudonocardiaceae, Amycolatopsis, Amycolatopsis orientalis.

. .

, ,

[email protected] , -

, -

, .

-,

--.

, -

-

. ,

-,

,

. , -

. 0–30

25-28 %.

: . 1’2014

71

10–20 , 23–26 . ./ . -

, , 0–30

10-12 %. -

10-20

12-19 %.

-

. , 0-10 -

20-28 %, 10-20 - 25-32 %, 20-30 - 17-24 %. -

- 25-28 %,

12-19 %, - - 17-28 %.

, .,

., .

PSEUDOMONAS AERUGINOSA

, ,

[email protected] Pseudomonas aeruginosa –

-,

--

, . ,

, P. aeruginosa -

.

Escherichia

coli -906, Staphylococcus aureus -918, Micrococcus luteus Ac-469 -

Pseudomonas aeruginosa B-900. -

E.coli, S.aureus, M.luteus

P.aeruginosa 1:1. 1 .

-. -

(OriginLab 8,0). , P.aeruginosa -

-

(R=0,970). E.coli

14,71%,

(R=0,976). S.aureus

P.aeruginosa 33,8%; 50%

25%. -

- (R=-0.5),

, , ,

. M.luteus -

P.aeruginosa 11,5%.

(R=0,88), .

:

(R=0,976),

: . 1’2014

72

- 139%.

-

Micrococcus -.

., .

«

», , [email protected]

-

, -, -

.

,

-.

-,

(Glycine max Moench).

,

30 , 60 , 90 100 2 15 ,

30 , 45 100 2, (Glycine max

Moench.), .

-

: – ( ), -

– , – -

( ), - – , -

– . -

,

-.

.

,

30 2

70% 78,3% -

. .

,

, --

.

. ., . ., . ., . ., . ., . .

. . . , ,

[email protected] -

(NNIS)

: . 1’2014

73

, - 16%

. -,

, , .

,

. :

,

. -

, , -,

S. aureus (n130) (n120). -

. ,

( 1,10±0,86 ) S. aureus; 4,53±2,03 – E. coli. -

, S. aureus ( 1,45±0,81 );

E. oli 5,88±2,62 ).

- S.

aureus ( 31,5±4,3 ); E. coli – 20,20±10,41 .

- S. aureus

8,04±4,24 ; E. coli – 14,93±14,47 , -

-.

, -,

-.

., ., ., .

.

, ,

[email protected]

-

, -

. --

« » --

– -

). ,

(n=210 ) 2+ Fe2+ -

) - 16 –26 %. -

Rhodococcus erythropolis -7277 Dietzia maris -7278

17,6 %, Gordonia rubr pertinct

-5005 Rhodococcus erythropolis -7012 – 13,6 %

. R. erythropolis

-7277 D. maris -7278 «Biot c»

) 30 1,0 %

4

: . 1’2014

74

2+ Fe2+ 1 -, 0,7

., – 500 ., – 1,5

2

, . ,

1000 5,4 109,

2,0 , – 87,8 %. -

48

0,5 % 5 %

. pH

6,8-7,2. -

« -»,

,

.

., .,

., ., .

;

, ,

[email protected]

-

,

.

-. :

, -

,

.

-.

50 .

-

, --

. 3-

4 5 3 .

100% :

80% ,

107 /1 .

-: Candida albicans,

Staphylococcus saprophyticus, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Citrobacter diversus. 80%

: . 1’2014

75

-,

(

106-107 ). -

, -

, , 102-

103/ . ,

.

., ., .

. . , ,

[email protected]

-.

( -, ), ,

, --

.

.

-.

--

-. 6

, -

( ) ( ). -

.

- –

70-120 . , 10 -

-.

-.

, -,

,

. ,

.

., ., ., .

BACILLUS . .

, , [email protected]

, , -

. Bacillus

, -

. -

. , , 4-

,

: . 1’2014

76

B. subtilis -7023,

. ,

,

- B. subtilis -

7023 . 12 ,

: B. megaterium (3), B. subtilis

(3), B. cereus var. mycoides (3), B. pumilus (3). -

280 (240 ) 48

-,

. ,

-

B. megaterium 2,1 (67,7 – 67,3 ).

B. megaterium 9 -

. - B. subtilis 11

43,7 , B. subtilis -7023 – 31,7 , B. subtilis 13 –

16,3 . B. cereus v. mycoides . 10 16

20 , B. cereus v. mycoides .14 – 13,6

. C B. pumilus

B. pumilus 7, 55,2 -

. -

B. pumilus 3 4 24,3 15,3 .

, - Bacillus

-,

-

, .

., .

. .

, , [email protected]

--

, -

. --

-,

. ,

, -

(P. syringae pv. atrofaciens) (Xanthomonas translucens) -

. P. syringae pv. atrofaciens, ,

.

Pseudomonas -,

-. -

P. savastanoi pv. glycinea (

) X. axonopodis pv. glycines ).

P. syringae pv. tabaci Curtobacterium flaccumfaciens pv.

flaccumfaciens.

: . 1’2014

77

, P. syringae, Pectobacterium carotovorum subsp. arotovorum, Pantoea gglomerans, C. flaccumfaciens. ,

Clavibacter

michiganensis subsp. michiganensis,

. C.

michiganensis subsp. michiganensis

14- 18.

– P. xanthochlora - P. marginalis

16S .

,

Pectobacterium, Xanthomonas Pseudomonas.

P. syringae

, . -

, --

.

. 1, . 2

: ,

1 ;

2 . . , ,

[email protected]

,

--

, --

, -. -

--

, -, -

,

. ---

, -

. -

, ), --

, -. 95%

, -

,

. --

- -,

,

. - –

, ---

, -

: . 1’2014

78

(

, , ).

--

( , ), -

, -

. -

, , --

-.

, .,

.

PSEUDOMONAS AERUGINOSA ATCC 9027

, ,

[email protected] ,

,

. ,

, -

. -

, -,

.

, -

, ,

.

Pseudomonas aeruginosa ATCC 9027.

. -

( ) -

0,2% - 25%. 3% 6,25% 15-120 .

10 . 6%

. ,

Pseudomonas aeruginosa 9027 12,5%. Ct

4,6×105 ./ . -

3% 15 .

2,5 lg, 6,25 % 15 . – 3,5 lg.

. - 5×108

3 ,

5,56 lg , 7 - 7,1 lg .

10 6% .

.

- .

: . 1’2014

79

, Pseudomonas

aeruginosa ATCC 9027 ,

.

. ., ., ., .,

, , [email protected]

,

. - ( )

) ---

, Clostridium difficili..

. , ,

. :

.

, 180-230 . 5 .

– (H2O per.os), -

(50 ) 14 , 14 -

, 14 (0,16 ).

( ) 72

. , 20-

.

Bifidobacterium, Lactobacillus,

Propionibacterium ,

.

( 1,7±0,4 5,8±0,3 lg 0 4,4±0,2 ).

Shigella Salmonella.

Clostridium,

. - 14

. : 1) 14

-

Clostridium ; 2)14- ( )

-.

. ., ., ., .

. . . ,

[email protected]

, -

,

: . 1’2014

80

, .

, --

9.048-89 .

-

» ( 1) -. -

. ,

-,

100%,

25% . -

) -

Chaetomium globosum Stachybotrys chartarum. ,

C. globosum

90%), S. chartarum -

-.

55 18

Zygomycota Ascomycot -

. 2005 .

10 , S. chartarum.

2010 . 29 14

, Alternaria Chaetomium.

-

2010 . - 31

15 , -. Alternaria

.Penicillium. .Ascotricha

, . -

, (43,75%)

-

2010 .

., ., .

« . . -

», , [email protected]

, - ( )

,

. -

, -

. 36 17-55 ( ,

, -

) . -

.

( -). -

(72,22 % ) (77,8 %).

55,6 % , -

: . 1’2014

81

– 50,0 %, - – 27,8 %. ,

E. coli (50,0 %) Klebsiella ssp. (11,9 %). 66,67 %

Candida. -

7,37±0,15 lg . ,

, (6,78 0,12 lg ),

(6,58 0,16), (3,87 0,16 lg ).

S. aureus (4,50 0,12 lg ) KON (4,48 0,18 lg ).

E. coli 2,19 0,13 lg , Klebsiella ssp. – 3,64 0,04 lg , Candida – 3,24 0,11 lg

. ,

, -

.

. 1, . 2

VITEK COMPACT-2

1 « . .

»; 2

« -», ,

[email protected]

. -

,

.

, -,

Vitek-2 Compact. - 40 38 .

. :

– 10, – 9, – 9,

– 6, – 3, – 1. : P. aeruginosa (19 ), . baumanii (7), K. pneumoniae (3), S. marcesc ns (2), E. aerogenenes (3), E. coli (2), E. faecalis (3), S. aureus (1).

P. aeruginosa -:

47,4 % , – 80,0 %, – 100%. -

, , , – 15,8%

; – 10,5%. P. aeruginosa -

– -, , -, , -

I – IV ( , ,

, , -, , ,

), ( - 5,3 % ),

(15,8 % ). 7 A.

baumanii 1

2 – .

: . 1’2014

82

(K. pneumoniae, S. marcesc ns, E. aerogenenes, E. coli)

- ( , , -, ) – 80% 100%,

-, 1

K. neumoniae,

.

, .

.

.

(CRO42-,

CO2+, NI2+, CU2+, HG2+)

, , [email protected]

-,

.

,

.

(CrO42–),

(Ni2+, Co2+) -

, . , ,

(Cu2+ Hg2+). --

- ( – 4030 ), -

( ).

- ( ).

(100 ) , Nutrient

Broth ( HiMedia Laboratories Pvt. Ltd.) -

. K2CrO4, Ni(NO3)2×6H2O,

CoCl2×6H2O, Hg(NO3)2 ). -

, -, -

. -

». ,

-. ,

2 - 3 -

-

(0,1 – 10 ). :

50 Hg2+, 500 Co2+ Ni2+, 1000 Cr(VI), 20 000 Cu2+

; 100 Hg2+, 500 Co2+ Ni2+, 1500 Cr(VI) 5000 Cu2+

-. -

-, « -

» .

, ---,

: . 1’2014

83

-

« » .

., .,

., ., ., ., .,

., ., .

, , [email protected]

,

-.

,

.

:1. (Cf) - 50 / , , 2.Cf " " (Sym) - 0,16 /

, 4 Cf ).

14 . --. -

.

: -

, NO

. 14- Cf

:

Clostridium (lg 0,5±0,1 2) -

E.coli . -

, ,

, -

( ). Cf

64%,

NO .

-

, . -

Cf Sym --

Clostridium. -

48%, .

, -

, -. -

.

: . 1’2014

84

.1, .2

®

1 . , ,

, ; 2

, ,

[email protected] -

-,

.- . ,

( , ),

-,

.

- E ®

- Lactobacillus:

L.plantarum 20 L.casei 6, - Lactococcus lactis 4/6,

, Fusarium, -

Aspergillus, -.

, -

(E.coli, S. aureus, P.aerogenosa, S.typhimurium)

3 (

28 30 ), ,

®, 35 . E ®

, . E ®

A.candidus, A.fischeri 15 - 22 ,

L.casei 6, - A.flavus - 14 , L.plantarum

20, , .

A.pulvinus 27 ,

L.plantarum 20 L. casei 6 .

- A.avenaceus

F.moniliforme. (E ®)

: A.avenaceus - 12,5 , F.moniliforme, F.sulphureum

28 . , ---

, -, ,

, -.

E ® -,

,

. ®,

. ., .

, ,

[email protected]

--

, -, .

, , -

: . 1’2014

85

, , . -

: --

- ( ).

(« -

»), ( ») (

). - 40

, -, , -

. 10 ,

. -

-, ; . -

.

S.aureus (50%), E.coli (30%), P.auruginosa (40%), .faecals, K.pneumoniae ( 20%), P.vulgaris, C.albicans A. calcoaceticus ( 10%). 7 -

1,5 .

7 . -

,

, , . -

. , -

.

. . , -

-

,

.

., ., .

», [email protected]

. , ,

, -. -

,

. -, , -

, , , , -

, , .

-, , -

, -.

– -,

, , ( « »,

, . ). -,

-.

: . 1’2014

86

Neisseria sp., Staphylococcus aureus, Candida albicans, Enterobacter sp., Escherichia coli. -

.

-.

108 . ./ .

18-24 37±10° . 3- .

,

Staphylococcus aureus Escherichia coli.

25 . -

Enterobacter Neisseria.

. ,

,

,

.

., ., .

" "

-

, ,

[email protected]

-,

. : -

« -»

. , ,

. -

, -, , ,

. ,

» - 8 -

.

-.

--

. ,

.

, -.

2-3

,

Clostridium. -

.

1-2 . -,

-. -

,

: . 1’2014

87

, , , -

, E.coli -

-,

3 , Staphylococcus aureus

-.

-

. , -

--

.

., ., .

. . .

, , [email protected]

-

-.

. (Sorhus arvensis L.)

(Taraxacum officinale Wigg.) -

22 , -

.

, .

,

-. , -

: (Convolvulus arvensis L.),

(Elytrigia repens (L.), (Equisetum arvense L.),

(Setaria pumila (Poir.) Schult.) -

– (Triticum aestivum, 93), (Avena sativa, ) (Glycine max ) ).

, -

,

. -

, , -

, , ,

Rhodosporidium diobovatum Newell & I.L. Hunter. 342 ,

, -

, Rhodotorula sp. 345

342 ,

Rhodotorula, .

,

, -,

: . 1’2014

88

-.

., .,

. ., . . ,

, ,

[email protected] -

, .

-,

.

,

.

: (Prunus cerasifera), (Vaccinium myrtilus L),

( Rúmex confértus), (Anethum graveolens), (Prunus domestica), (Petroselinum crispum), (Raphanus sativus).

,

(P. mirabilis, S. aureus MRSA, S. pneumoniae, E. cloaceae, K. pneumoniae, K. oxytoca, P. aeruginosa); (S. enterica, S. flexneri, L. monocytogenes, EPEC E. coli),

(S. mitis, S. mutans, S. pneumoniae)

(E. coli 058, E. faecalis, E. faecium);

(L. acidophilus, L. delbrueckii, L. casei, L. fermentum, B. subtilis 8130, B. subtilis 090, B. dentium). , -

E. faecalis.

P. eruginosa, MRSA, S.

enterica, P. organi . S.

ureus, L. monocytogenes,

S. dysenteriae. -,

E.coli, B.subtilis, E.cloacae.

-.

- -

,

, ,

.

.

., ., ., .

CHLOROBIUM LIMICOLA -8

, ,

[email protected]

,

-. -

: . 1’2014

89

. -

.

- C. limicola -8

.

C. limicola -8. -

C. limicola -8.

0,05 0,5 .

.

GSB.

C. limicola -8

4, 5 6 . ,

,

.

5 -, -

. -

C. limicola -8.

-

. 0,05, 0,125

0,5 - 0,5, 2 3,2

, .

. -

. , -

C. limicola -8

,

.

., ., ., .

S. EPIDERMIDIS

,

[email protected]

, -

,

, -.

, ,

, . --

. ,

-, -

. S.

: . 1’2014

90

epidermidis .

,

-

. ,

-

S. epidermidis 1×106 50 , -

– 1×109 50 . -

,

S. epidermidis,

,

Staphylococcus – 3,5 , --

– 2,3 .

Enterobacteriaceae – 2,5 -

1,2 – -.

-

.

.

. .

, , [email protected]

-

0,05-5

. , ,

--

Cr( )3. -

( ) 100 1 -

-

-, -

, --

.

, -

. -

h, .

-

.

-

,

100 -

. --

: . 1’2014

91

-

-.

.

. . 1, . . 1, . . 2, . . 2

1

. . , , , ;

2 , , [email protected]

-

,

-, , -

-, . , -

Sphingobacterium multivorum Ochrobactrum antropi

( , -

), , Bacillus

amyloliquefaciens -

.

S 802 (Sphingobacterium multivorum, 109), B 100/13 (Bacillus amyloliquefaciens, 107), S 804 (Ochrobactrum antropi, 109) S 802 + S 804 + B 100/13 1 : 1000.

-

-.

, (2

100 ). – -,

.

10-16% 0,05), -

S 804 -.

12-25% , , -

S 802 .

, -

--

,

, -.

-

, - Sphingobacterium

multivorum, Bacillus amyloliquefaciens Ochrobactrum antropi, -

-.

: . 1’2014

92

., ., ., .

«

», , [email protected]

. , --

,

, . , -

-,

,

.

,

, -

.

,

-, -

. -

, -

:

, -

, -, ,

, -

, -, -

, . --

.

-, -

.

. ,

-

, , ,

-.

., .,

.

-

" " , ,

[email protected]

Candida

-,

: . 1’2014

93

. Candida -

15 % -, 72 %

, 8 % 15 %

-.

.

Candida. -

Candida albicans, -

Candida albicans Candida non-albicans 36% 64%.

-

, C.glabrata(45%), C.tropicalis(35%), C krusei(30%). ,

Candida

2008-2013 . 6,5%.

-

(16,5%) (13,6%).

0,9 %, - 5,4%. -

Candida spp.

, .

9 Candida

C.albicans 74,2%. Candida,

, :

C.albicans, C.tropicalis, C.glabrata, C.parapsilosis, C.sake C.lusitaniae.

C.albicans - 44%,

C.tropicalis 22%. ,

, - C.albicans

94%, C.tropicalis, C.glabrata C.sake

. , Candida

-,

, -

.

., ., .

. , ,

[email protected]

,

. --

. , ,

.

, , ,

, . ,

,

. -

.

,

: . 1’2014

94

.

--

, .

-.

11,4 % 10,2 %

17,5 % 19,6 % , 4,6 5,4

.

, -

, ,

. 16,2 % 18,7 %

21,9 % 23,1 %

6,1 5,9 .

. -

, --

.

., ., ., .

BACILLUS ,

, . , [email protected]

,

Bacillus , -

, -

-, .

,

. -

Bacillus

-, ,

. 16

Bacillus .

1970-77 . --

, - - -

. ,

-

Staph lococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Serratia marcescens, Micrococcus luteus.

: . 1’2014

95

Escerichia coli ATCC 25922 .

--

andida albicans andida tropicalis, andida utilis.

Cryptococcus albidus. -

.

86-98% 10

spergillus sclerotium, Paecilomyces lilacinum, Fusarium culmorium.

Penicillium italicum,

. , ,

andida. 10 -

: .sclerotium, P.lilacinum, F.

culmorium. ,

Bacillus subtilis.

. ., . ,

,

. . . , ,

[email protected] :

Cr3+ Cr6+. Cr3+ .

Cr6+ .

,

, . -

Cr6+ Cr3+.

-:

., ,

, . ( 40 ).

5 37 .

Cr6+ Cr3+, -

. - Cr6+ -

-.

, , -, -

-. -

, -

. , -

, . . ,

. , , -

, -. ,

. - 60%,

.

5 ,

.

, -. ,

, ,

.

: . 1’2014

96

, --

. .,

., ., ., ., .

. .

, , [email protected]

, , , ) . .

. ,

-,

-: ,

, ,

.

Penicillium chrysogenum (60% – 80% - ),

Aspergillus niger (60% 60%), Stachybotrys chartarum (40% 40%), Ulocladium atrum (20% 60%).

-

: – , - –

Acremonium, Aspergillus, Chaetomium, Geotrichum, Penicillium, Stachybotrys, Trichoderma, Ulocladium

gomyc ; – , --

( - ) –

Cladosporium, Alternaria, – -,

– Fusarium,

Botrytys, Phoma i -. -

, : Cladosporium

cladosporioides, C. herbarum, C. sphaerospermum, Scopulariopsis brevicaulis, Ulocladium chartarum,

Trichoderma, , , , :

spergillus ochraceus, A. terreus, A. ustus, A. versicolor, Stachybotrys chartarum.

-,

-. , («

»), , -

.

-

, --

.

., ., ., .,

., ., .

. . , ,

[email protected]

--

.

: . 1’2014

97

, ,

-

. --

( ), -

-. .

. -

« » -

. - -

, - -,

.

-,

. , ,

-

.

-

» « ».

--

. , -

,

OSB- , ,

( -) ,

-, 90%

(29±2)° .

DVD-

. -,

-

, , Ascomycota, -

.

., , ., ,

. .

-

. . , , ;

. , ,

[email protected]

-

- – -

, ,

-.

- -.

--

: . 1’2014

98

,

Fusarium sambucinum – , ,

Mycelia sterilia – , -

-

-. -

2-3 --

, - 40–

42 . -

-, -

, , ,

.

45%, -

70% (4,2--4,4%).

,

, , -.

. -

-, , ,

. -

, -

, – .

-

. -

, .

-, -

-.

. ., . .

PSEUDOMONAS

. , ,

[email protected] -

, -.

,

-, , -

.

- Pseudomonas

. -

Pseudomonas chlororaphis (ONU 304, ONU 305, ONU 306), P. fluorescens ONU 303, P. aeruginosa (ATCC 15692, ATCC 27853, ATCC 10145).

:

; , 5 % -; . -

: . 1’2014

99

7 25 37 .

24

. ,

,

Levitch M.E. -

. -,

P. eruginosa ATCC

15692 P. fluorescen ONU 303. , P.

chlororaphis P. aeruginosa ATCC 10145, P. aeruginosa ATCC 27853

. -

-

-.

, --

. -

P. eruginosa - P.

fluorescens P. chlororaphis. , , -

-

.

-.

.

-

. ,

[email protected] -

, ,

40 . 10 ,

-, -

.

-

-.

: E.coli,

E.cloacea, K.pneumonia, A.baumanii, P.aeruginos .

. 60

, , - 28(46,66%), -

. ,

E.coli - (55,55%), E.cloacea - (41,66%), K.pneumonia - (38,09%).

-

, - .

P.aeruginosa - (69,23%), , - A.baumanii - (39,63%).

, ,

. 46,66%

: . 1’2014

100

-, 44,89% -

.

-

.

., ., .

, ,

[email protected] -

, -

.

, (l gP).

,

( ) -

. - 4- -

- - ( ) -

( )- 46 : 4- -3,5- -4H-1,2,4- ( ), 5- 4- -1,2,4- -3- ( ), 4,5- -4H-1,2,4-

-3- ( ), 5- -1,3,4- -2-

( V), 1- 1- -6- (V),

(VI), 2- -4,6-

)-1,3,5- (VII), 1,2,4- -3- -

(VIII). .

( ) ( ).

-

: ACD Log P: Version 6.0,

Interactive log P calculator (www.molinspiration.com/cgi-bin/properties). ,

(logP -3,52 -1,89),

, .

- VI (logP -0,29 1,28) -

. , VI

.

2- -2-(1,2,3,4--6- )-

(logP -1,99) - - 120

- 21,7±1,7 , -

. (logP -

0,22 2,23), (logP 5,96-7,03), IV (logP 4,00-4,96), V (logP 5,06-6,52), VII (logP 1,32-2,52), VIII (logP -0,20

0,86) .

: . 1’2014

101

. 1, . 1, . 2

ZF40

ERWINIA CAROTOVORA SUBSP. CAROTOVORA

1 . . , ,

2 , ,

[email protected] Erwinia carotovora subsp. carotovora

.

, -

. ZF40 ( -

)

--

. ,

E.

carotovora. --

ZF40. ZF40 ,

– . -

, ZF40

Mu,

E.coli -

, .

-

)

Erwinia carotovora subsp. arotovora

ZF40. 5000 ,

3 , -

( 10-4).

-

, -. -

-

ZF40.

., .

. .

, , [email protected]

-, ,

, , ,

.

, , -. -

, --

: - ( 64 16 8 )

(

156 ) ,

: . 1’2014

102

. ,

, ,

(800 ), , , -

. -

, , ,

, ,

. -,

, -

.

500

-

-

, --

. -

-.

.1, .1, .2,

.2 .

.2, .1, .1

1 , ;

2 , ,

[email protected]

, .

-,

,

, , ,

.

--

,

5 --

137Cs.

,

. ,

: . 1’2014

103

( ). -

Cladosporium cladosporioides, -

-. ,

-,

.

-

,

.

., .

”, ,

[email protected] :

. 2012-13 . 732

159 . -

, , -

«bioMerieux» ( )

VITEC2 COMPACT. 159 -,

13,4%.

97,9 %, 2,1% .

(52,9% ) -

S. epidermidis S. aureus.

S.epidermidis 19

14 ( 5 % ). -

. S. aureus

(4 ),

.

Pseudomonas sp., E.coli Acinetobacter baumanii.

.

Candida parapsilosis, 10,2 %

. -

, MRSE – 17,4%, MRSA – 4,4%

. - 4,4

% , 21,7% , --

– 17,4% 47,8 % .

--

.. -

.

: . 1’2014

104

., ., ., .

AZOTOBACTER CHROOCOCCUM

AZOTOBACTER VINELANDII

, , [email protected]

--

-

.

Azotobacter -

. . chroococcum

. vinelandii, . -

Azotobacter

-. ,

25° ,

, . ,

Azotobacter -

1,25

0,11 , 12,7 .

--

8,4 . ,

1,3

20 40

5,5 1,25 .

1,9–3,9 . -

, A. chroococcum A.

vinelandi , 15 ° .

. -,

40 20 3,7 2,17

, 10,3 10,4

. Azotobacter

4,5–5 .

--

4 3% 10% -

.

.

SACCHAROMY ES CEREVISIAE

..

. , ,

[email protected] ,

– -

, « »

: . 1’2014

105

(“dancing bodies”). , , -.

-

S. cerevisiae.

S. cerevisiae Y-517 -

( ) . . .

.

-,

DAPI (Sigma, USA). ,

» .

-

.

(40,68 , 30 )

8,2 . 2

« » .

- lag- . -

, « » .

(KCl, KNO3, ) -

,

-

.

S. cerevisiae -

. ,

-.

.

RHODOCOCCUS ERYTHROPOLIS

, [email protected]

-,

, -

, ).

. ,

-, -

---

. -

R. erythropolis -.

, -

. , -

, , , -

, -. -

: . 1’2014

106

,

= 8–12 ) ,

, -

( = 4-6 ).

= 1 .

R. erythropolis -23 -

. -

, ( 2,0 ),

(2,0 ) (0,5 )

28,6, 71,4 85,7 %,

,

R. erythropolis -23

.

-

21-52%, 15-76%.

-

.

., ., .

, , [email protected]

--

. ---

,

. -

,

, ( ), ,

. -

, ,

. ) –

,

, -, -

. ,

( )

,

. --

, -

. - –

-.

.

)

: . 1’2014

107

(Cr, Cu, Pb) .

: 28% (1 ) 37% (5 ) ,

. -

18-26% . ,

, (Cr, Cu,

Pb).

.

. .

, , [email protected]

( )

.

,

,

, . ,

,

4

). -

-1, -

-.

- ( ),

-.

14 ,

. , -

. Aspergillus, M. racemosus T. viride C. cladosporioides, C. sphaerospermum

S. chartarum, . ,

-1

938 – 7500 ppm, - – 59-

234 ppm. 1875 – 30000

ppm 59-467 ppm, -

. , 1

,

,

. -

1 -, .

: . 1’2014

108

. 1, . 2

1 , . , ;

2 . , ,

[email protected]

-, -

. -

-

, -

. , , -

-

. -

, -,

. -

, , . :

Pseudomonas syringae 8511, Pseudomonas fluorescens 8573, Pectobacterium carotovorum 8982, Xanthomonas campestris pv. campestris 8003 , Clavibacter michiganensis 102, Agrobacterium tumefaciens 8628

, : Dickeya chrysanthemi 8683, Clavibacter michiganensis subsp. sepedonicus 7757, Pectobacterium carotovorum 8982, Pectobacterium carotovorum 8682, Ralstonia

solanacearum 9049 . -

-

12 , -. ,

-

, « ».

+ .,

.

Pseudomonas fluorescens,

. ,

, ,

Clavibacter michiganensis Agrobacterium tumefaciens, , -

.

. ., ., . .

-

. . ,

, , ,

[email protected] ,

- 26 ) - 20 -

, :

: . 1’2014

109

, , ,

, -,

. -

, , ,

- (12

). , , -

5,67±0,18 lg 2 ,

. -

2,3 ,

2 3 ( < 0,05 ).

, -

-.

.

.

8 , 4

-.

: Moraxella spp., Enterococcus spp., Neisseria spp., Actinomyces spp.

-, ,

. , --

,

-

. -

.

. .

STAPHYLOCOCCUS AUREUS

, ,

[email protected]

-

. -,

, -. , -

, Staphylococcus aureus –

-, , ( -), , , -,

. -

.

1% – ) ( ), -

+370 48-72 .

-, ,

: . 1’2014

110

, , .

,

,

. 48 -

S- -

, 24

. 48

,

.

, 0,6-1,0 , .

Staphylococcus aureus -

.

- 72

+370 , -

.

., .

AZOTOBACTER -

-

. ,

[email protected]

-

,

.

,

( -

, ) ,

(

, ) ,

-.

-

-. -

-

. ,

Roundup. -

Bradyrhizobium japonicum -6035.

--

. 5-6

B. japonicum -6035

- 19 %

( , ).

Azotobacter

: . 1’2014

111

.

7,8 % . ---

: – 13,7

%, – 14,5 %.

. 5-6 -

--

18,3 %,

. -

( -)

Azotobacter 17,5 %.

-:

- – 5,6 %, -

– 8,9 %. , -

, -

, Roundup -

.

: . 1’2014

112

: . 1’2014

113

PLENARY SESSION

Skivka L.M.

IMMUNOGENIC CELL DEATH IN HEALTH AND DISEASES

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

[email protected] In adult multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death. Abnormalities in cell death mechanisms is involved in the patho-genesis of the number of diseases. The failure of cells to undergo apopto-sis participates in the pathogenesis of several human proliferative disorders: malignant transformation, autoimmune diseases, some latent viral infections. A variety of diseases are associated with accelerated rates of cell death: severe -thalassaemia and Parkinson's diseases, polycystic kidney disease and fulminant hepatitis, myocardial infarction and stroke. The immune system is routinely exposed to dead cells during normal cell turnover, injury and infection. The mechanisms our immune system use to deal with dead and dying cells are complex. It is commonly assumed that the immuno-logical consequences of cell death follow a classical dichotomy of immu-nogenic versus non-immunogenic (or even tolerogenic) cell loss. Dying cells release and expose at their surface molecules that signal to the immune system. Potential immunogenic signals emanating from dying cells include proteins that appear at the surface of stressed and dying cells (such as calreticulin and heat shock proteins), lipid moieties that flip from the inner plasma membrane leaflet to the outer leaflet (such as phosphatidylserine), proteins that are released into the

supernatant of cells (such as HMGB1), as well as nucleic acids and their degradation products (oligonucleo-tides, nucleotides, nucleosides, urate) that appear in the extracellular space. Such damage-associated molecular patterns (DAMPs) released from or exposed at the surface of dying cells can drive the pathogenesis of a wide range of inflammatory diseases (acute pancreatitis, gout, chronic obstructive pulmonary disease etc). Main mechan-isms to discriminate between immuno-genic and nonimmunogenic forms of cell death; increasing numbers of endogenous danger signals of the host origin associated with inflammation-related diseases; the use of DAMPs as biomarkers for the diagnosis of inflammatory events in vivo and monitoring of the efficacy of cancer treatment are discussed in the lecture.

., .,

. .

,

, ,

[email protected]

-, -

-

. -,

--

. ,

: . 1’2014

114

-

« -»

-», «

» - « ».

, -, .

100% ( -

) 100% - ( -

-).

-

-

,

.

,

- in situ

-. -

- ---

. ,

. , -

-

, -. -

-

.

., ., ., .,

.

« . .

. » , , [email protected]

: ( ),

-

( ). : 120

. :

, - -

; -

; -,

.

(HLA) - I ,

II . -

, -

. HLA I

: . 1’2014

115

(HLA B-14, HLA B-8 HLA B-35) HLA II (HLA DQA1*0103,

HLA DRB1*03 HLA DRB1*11)

-

, -

, -

. ,

-

( 45 )

-).

., .

.

, , [email protected]

-.

- 15 – 30%.

4–6 , .

10 40 . -: 50% -

, 30% - , 15% -

, 5% - . -: -

,

1-),

– , - -

( ), (

), (

), ( ). -

( ) - , --.

, --

. (ECP) –

, -

3).

.

, ECP .

-

-, -

.

, ,

, -

. )

-

, --

: . 1’2014

116

. ECP -

-. -

ECP

-.

) - , -

. -

,

. -

, 1% -

.

. -,

,

. -

, , ,

, , -

, , -

.

-. ECP

- ( -

, -, ),

.

---

. , --

( , , ,

), --

. :

, -

Ig , IgG, IL-5; -

, -

, -

,

ECP; -

( , ); --.

: -

, ,

, .

: . 1’2014

117

., ., ., .,

., .

”, ,

[email protected]

-

-.

( )

88 ,

, 73 ,

( )

( ), 65 - , 120

.

- 256 . 500 -

. , -

HLA- HLA-A*24;

HLA-B*08; HLA- B*35; HLA- B*51; HLA-C*03; DRB1*11 DQ 1*05:01; DQB1*03:03, -

- HLA- A*24; C*06; DQ 1*05:01; DQB1*06:01.

HLA- *24 HLA-*33; HLA-B*35 HLA-B*49;

DRB1*11; DQA1*05:01; DQB1*03:01; DQB1*03:03 -

HLA- B35; DRB1*11;

DQA1*05:01; DQB1*03:01

-. -

,

,

, -

(HLA-A*24, B*35, DRB1*11, DQA1*05:01),

-

, -

.

., .

IgE

, -, ,

», ,

[email protected]

( ) - IgE,

- IgE -

, -

. .

, (Hemophilius influenzae) -

(Staphylococcus

: . 1’2014

118

aureus). ,

-,

, TSST-1 (

), - ( , , 1-3, D, , )

. -

, - (SEA, SEB)

- ( ).

190

24 50 , 91 99 . 30 .

IgE SEA i SE -

ImmunoCAP (Phadia, ).

, 18,5%

IgE SEA 22,1% SEB. IgE SEA 12,4±0,3 kU/L,

SEB 15,6±0,2 kU/L. -

SE SEB -. - IgE SEA 16,

9%, SE 19,6% 10,6±0,4 kU/L 11,4±0,3

kU/L . , -

IgE --

. -,

-.

. .

:

« . . .

», ,

[email protected]

.

, ,

,

-. -

R.L.Walford 1964

-.

,

– , -, ,

--

(Inflammaging).

--, --

: . 1’2014

119

, -,

, ---

, -.

.

. , ,

[email protected] -

, -

.

.

, -

. 8-12

186 25-55 -

, 8

11+/-1,2 ( - - 17+/-3,7 ),

-

.

, , -

«STAT-FAX-303»

DIACLON Research ( ). , -

---

-12 , .

, 65%

,

, -

,

. ,

-

,

.

.1, . 1, .2,3, .2

1 « , »,

2 « », , 3

. , ,

[email protected]

-

: . 1’2014

120

( ) . ,

, -

.

( ) -

, . 238 (23-35

) . 123 -

- ( ), 115 –

300-400 -

-.

-

-,

-.

( )

. --

. - ( )

: CD56 CD158 ,

CD4 CD8 , -

HLA DR CD8 NK , NK NK

, CD158 CD8 NK .

, 3 , --

( 43,4 %, – 21,4 %, p<0,01),

– -

( 30,4 %, – 9,5%,

p<0,01). (1 2)

( - ( -

1-2 : 50,9 % 42,8 %, – 45,7 % 44 %;

- 33,9 % 28,5 %, -

– 37,1% 32,3%). , -

-

.

ORAL/POSTER PRESENTATION

Degen A.S., Topol I.O., Kamyshny A.M. FEATURES OF AN EXPRESSION OF

THE T-BET AND GATA3 TRANSCRIPTIONS FACTORS IN EXPERIMENTAL PATHOLOGY

Zaporozhye State Medical University, Zaporozhye, Ukraine

[email protected] Introduction. The great interest represents studying of adaptive immune system, especially tight regulation of the type 1 inflammatory response, at the development of chronic social stress (CSS) and autoimmune disease, such as type 1 diabetes mellitus. The dim of research: To study the peculiarities of T-bet and GATA3 transcriptions factors expression in gut-associated lymphoid tissues (GALT) of rats with experimental STZ induced diabetes mellitus (EDM) and pentoxifilline (PTX) administration and CSS and modulation of the composition of intestinal microflora. Methods: Structure of population of T-bet+ and

: . 1’2014

121

GATA +-cells has been studied by the analysis of serial histological sections using the method of indirect immunofluorescense with monoclonal antibodies to T-bet and GATA3 of rat. Results: It has been established that diabetes development was accompanied with 45-72 % ( <0,05) increase in quantity of T-bet +-cells in lymphoid structures of ileum, with 21-44 % ( <0,05) decrease in total density of GATA3+-lymphocytes, insignificant decrease in concentration of T-bet and did not influence on concentration of GATA3 in T-helpers. PTX administration of diabetic animal reduces quantity T-bet+-cells in mucous membrane of villus (on 24-30 %, <0,05), does not influence on density of Th2 in villus, change their number in ILF, reduce concentration of T-bet by the 4th week of development of T1DM at the absence of changes in concentration of GATA3 in immunopositive cell. Development of CSS is associated with an increase of the total number of lymphocytes expressing T-bet in GALT rats with the most pronounced in lymphocyte-filled villi (LFV) (in LFV – on 46%, CSS1 and 92%, CSS2, <0,05). Conclusions: The expression augmentation with T-bet and GATA3 ileum immunopositive cells can influence on differentiation of subsets of T-helpers and their proinflammatory cytokines production, thus acting as one of triggers of diabetes development and progression.

Galkin O.Yu. OPTIMIZATION OF CONDITIONS

FOR THE ISOLATION AND PURIFICATION OF HUMAN IGE

National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine

[email protected] To solve many problems in

immunology and molecular medicine are needed in purified preparations of immunoglobulins (Ig). IgE is used as immunogen for immunization and to create immune sorbents designed to remove cross-reacting antibodies and affinity purification of polyclonal anti-Ig sera. Purified IgE is used as standard antigen in the test-kits for IgE quantitative definition and in the tests for anti-IgE antisera evaluation. Following differences between properties of different Ig isotypes and other sera proteins are used for creation of scheme of isolation and purification of human Ig: molecular weight, affinity for proteins A and G, isoelectric point, solubility in different conditions. That is why following methods are used (in various combinations): gel filtration, affinity and ion exchange chromatography, dialysis, precipitation by salts and organic solvents. The aim of the study was to develop improved methods of isolation and purification of human IgE, suitable for use in highly sensitive immunoassay methods. Based on the available bibliographic data and our own experience it has been theoretically synthesized and experimentally tested the following scheme of isolation and purification of human IgE: 1) removal of serum human IgG using affinity chromatography on protein G; 2) removal of serum human IgA and IgM using immunoaffinity sorbents based on anti-IgA and anti-IgM monoclonal antibodies that were at our disposal; 3) the allocation of human IgE in comparative experiments using sephacryl S-300 and superdex 200; 4) control the quality of the IgE antibodies by means of Ouchterlony double immunodiffusion and electrophoresis

: . 1’2014

122

in polyacrylamide gel (reducing conditions). Using the proposed scheme has allowed to obtain high purity human IgE fraction. Obtained human IgE is suitable to be used for immunization and highly sensitive methods of immune analysis. Yield of human IgE after all phases of purification has been about 42% of the initial amount of immunoglobulin E in serum.

Kiyamova R. G.1 Kostianets .I.1 Dyachenko L.V.2, Lytovchenko A.S.2,

Filonenko V.V1. TUMOR-ASSOCIATED ANTIGENS AS MOLECULAR MARKERS FOR BREAST CANCER DIAGNOSTICS

1 Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

[email protected] Breast cancer is the most widespread cancer type in women. Many breast tumors with high histological tumor grade, mitotic index and proliferation rate which overrepresented among the so-called interval breast cancers (eg, cancers arising between annual mammograms) cannot be detected by currently existing methods, in particular mammography. In a view of above mentioned facts an urgent need exists for creation and development of new alternative methods to improve breast cancer diagnostics and prognosis. Over the last few years emerging evidence suggests that tumor-associated antigens (TAAs) and their cognate autoantibodies serve as molecular markers of human malignancy. The principle of the immunological detection of molecular changes in tumor cells by autoantibodies allowed us to identify 41 autoantigens from medullary breast

carcinoma (MBC) tumors by SEREX (serological analysis of recombinant tumor cDNA expression libraries) approach. Large-scale allogenic screening of breast cancer antigens with sera of breast cancer patients of different histological types and sera of healthy individuals allowed us to reveal that 6 TAAs including RAD50, PARD3, SPP1, SAP30BP, NY-BR-62 and NY-CO-58 had higher immunogenicity in sera of breast cancer patients compare with sera of healthy individuals. Combination of these 6 TAAs in a single panel with Roc-analysis may differentiate cancer patients and healthy individuals with 70% of sensitivity and 91% specificity. This panel of 6 TAAs could be considered as the base for creating of serological test-system for non-invasive breast cancer diagnostics in future. The sensitivity of proposed panel can be increased by extending of TAA panel. Analysis of immunogenicity of additional TAA identified by SEREX screening in sera of breast cancer patients is currently in progress.

Nikulina V., Garmanchuk L., Senchylo N., Nikolaienko T.

ADHESION POTENTIAL, PROLIFERATION AND THE

GLUCOSE ABSORPTION LEVEL OF THE HELA CELLS UNDER THE

INFLUENCE OF TEICHOIC ACID Taras Shevchenko National University of

Kyiv, Kyiv, Ukraine [email protected]

The modern researches reveal anticarcinogenic influence one of major bacteria cell wall components – teichoic acids (TA). It was shown that TA of cell wall of some bacterium is responsible for enhancement of hypersensitivity reaction and able to

: . 1’2014

123

activate cell cytotoxicity, supreses antibody synthesis in big concentrations. Many researchers underline particular role of toll-like receptors (TLRs) which recognize different bacterial structures and induct antitumor effect. This receptors are expressed on surface of different cell types including different types of tumors. The interaction TA and LTA with specific receptors results in activation of links of antitumor immunity. Our previous studies on transplantable Lewis lung carcinoma have revealed antitumor and antimetastatic effects of the bimetallic complex of copper and cadmium in a combined application with teichoic acid obtained from St. aureus Wood 46, but study of application of TA alone was not conducted. The aim of our study was the exploration of the TA influence on an adhesion potential, proliferation and the glucose absorption level of the Hela cells under standard culture conditions. The change of adhesion potential of HeLa cells was detected. This parameter was about 10% lower on exponential phase of growth and 20% higher on stationary phase. The glucose absorption level was lower by 30% in presence of TA on exponential phase of growth and 70% higher on stationary phase. The changes in proliferation rate were shown under the influence of TA, proliferation on exponential phase was increased by 40%, when proliferation on stationary phase was decreased by 35% in comparison with control, according to data of counting in presence of trypan blue. In conclusion, earned data indicated the rise of malignant degree of tumor cells after the influence of the teichoic acid. Also, in our previous

studies we have revealed that TA in combined application is capable of altering the adhesive characteristics of tumor cells, which may be caused by its effects on TLRs. Definition of antitumor efficacy of TA needs further investigations in combination with classic treatment agents.

Palyvoda K.O., Oliinyk O.S.,

Lugovskaya N.E., Kolibo D.V., Lugovskoy E.V., Komisarenko S.V.

GENERATION AND CHARACTERISATION OF

RECOMBINANT SINGLE CHAIN VARIABLE FRAGMENT ANTIBODIES

AGAINST PRO186-LEU197 PROTEIN C REGION

Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine,

Kyiv, Ukraine [email protected]

Protein C also known as blood coagulation factor XIV is a vitamin K-dependent serine protease which is a major component of human blood anticoagulation system. Anti-protein C antibodies have been reported as a tool for protein C level measure in human plasma under normal and pathological conditions. For this purpose single-chain fragment variable (scFv) antibodies are preferred than traditional monoclonal antibodies due to their greatly reduced size and ease of genetic manipulation. The aim of this research was to obtain and characterise recombinant scFv antibodies specific to Pro186-Leu197 protein C region. Pro186-Leu197 protein C region was chosen because of its low homology to other plasma proteins and high immunogenicity. Pro186-Leu197 peptide was synthetized following the methodology of peptide synthesis in solid phase and conjugated to keyhole limpet

: . 1’2014

124

hemocyanin (KLH) or bovine serum albumin (BSA). A phage display immune library of immunized with Pro186-Leu197 protein C region-KLH conjugate mice was generated. The library was screened against Pro186-Leu197 protein C region-KLH and -BSA conjugates and one scFv producer clone was isolated. The results showed that obtained scFv antibodies could specific bind both Pro186-Leu197 protein C region-BSA conjugate and activated protein C. ScFv recognized target antigen in Western blotting, but only under non-reducing conditions. Isolated clone DNA sequence was subcloned into expression vector for easily scFv isolation. Thus, in the present study scFv antibodies against Pro186-Leu197 protein C region were obtained. Our data indicate that these scFv are suitable for ELISA, Western blot analysis and immuncytochemistry and may be applied in protein C research and possibly for new diagnostic systems design.

Siryk G.1, Fedorchuk O.2, Malanchuk O.3, Skivka L. 1

PHYSICAL ACTIVITY AT DIFFERENT DAYPARTS CHANGES

CIRCULATING PHAGOCYTES FUNCTIONS

1Taras Shevchenco National University of Kyiv, Kyiv, Ukrain

2R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology,

Kyiv, Ukrain 3Institute of Molecular Biology and

Genetics, Kyiv, Ukrain [email protected]

An ever-growing volume of peer-reviewed publications speaks to the recent and rapid growth in both scope and understanding of exercise immunology. Regular exercise and

physical activity provide many health benefits and are encouraged by medical professionals for the prevention of illnesses. Nevertheless, it is known that exercise can have both positive and negative effects on immune function, depending on the intensity and duration of physical activity. Immune cells have diverse responses to acute exercise or long-term training at moderate and high intensities. The present study focuses on the effects of moderate exercises performed in different day parts on circulating phagocytes functions in healthy adult men. Six healthy volunteers were recruited; blood samples were obtained before and after standardized bout of moderate physical activity which was performed at noon and at midnight. ROS (reactive oxygen species) generation and phagocytosis were estimated by flow cytometry. The reaction of circulating phagocytes on the bout of exercises which was performed in the day time differed from that on exercises which was performed at night. We also registered some differences in the reactions of monocytes and neutrophils on moderate exercises. Phagocytic activity of monocytes and neutrophils had increased after physical activity which was performed in the day time and at night. Standartized bout of moderate exercises which was performed in the day time caused the decrease of ROS generation by both monocytes and neutrophils whereas physical activity at night was associated with the increase of oxidative metabolism of circulating phagocytes.

: . 1’2014

125

., ., ., .,

.

IN VITRO

, . .

, , [email protected]

,

. --

-, -

. -

, .

---

. (50 ) -

(5 ) . :

(50 ) (5 )

-

-4 in vitro. : , ,

. ,

:

- N- ,

80±10 N- 60±4 (

H-Score) . -

- Twist 50%

-4 .

-

pgp,

. --4

CD44 — ,

.

, (5

), ,

-.

., .,

., ., .

SMUDGE-

,

. . , [email protected]

-

( ),

, CD38 ZAP-70. ,

,

: . 1’2014

126

. -

, - –

smudge- .

Smudge- – ,

. , smudge-

. --

, 5-

( ) -. : -

-

smudge- . ,

22 15 -

).

-

- -. -

,

( =633 , – 25 2).

smudge-

.

smudge-

. , - smudge-

1%-52% ( – 9,95%), – 0%-10,8% ( – 4%). -

smudge- . ,

Smudge- -

.

.

, . TLR-9, TLR-

2

, [email protected]

-

-. ,

--

, -

. 59

, 46 23 -

( 3

, -

).

. --

TLR-2 TLR-9 real-

: . 1’2014

127

time PCR house-keeping GAPDH.

-

one-way ANOVA.

TLR-2

0,744 ( - 0,355-2,0),

1,36 0,558-

2,91), 0,109 ( 0,001-1,82).

TLR-9

--

( -

0,778(0,302-2,0), 1,27(0,558-

2,91), - 0,42(0,001-1,82),

0,029). TLR-9 , -

CpG -

Th1 , Th2. TLR-9

-. -

, -, -

, - TLR

.

., ., ., ., .

. -

. . , ,

[email protected]

- ( ) -

. , , -

, , -

-,

, -:

-, -

-.

-

.

, -

, -

. , -,

,

. , ,

, -

: . 1’2014

128

-.

-,

, -

. -

, -

, ,

. ,

, -

( 50%) ; , ,

,

-.

., ., .

C159T CD14

«

. . », ,

[email protected]

, CD14 , 5

5q31-q33,

, IgE. 159

CD14

IgE -.

- CD14

(C159T) . -

331 .

285 -. -

CD14 (C159T)

--

. -

-

2.

-.

- 34% (n=97), –

51% (n=146), – 15% (n=42), ( 2=

0,839, =0,657) – 32 %, n=105; – 51%, n=169,

– 17%, n=57).

=1,104, =[0,879-1,386], 2=0,72, p=0,395)

. -, -

, - CD14 (C159T)

-.

: . 1’2014

129

.1, .1, . 2

-

MALDI-TOF

. 1 . .

, , 2

. , , [email protected]

-.

, --

.

, -

.

: - (

),

,

.

MALDI-TOF,

- Micrococcus lysodeikticus -

.

, --

. -

MALDI-TOF

-.

,

1:1, 1:2, 2:1. -

--

. -

.

., .,

., .

, , [email protected]

, -

-

. -

: , -, -

-. -

,

.

-

: . 1’2014

130

-,

-

. --

, -

-

( ).

-

, . --

. --,

. --

-, , ,

, -

,

. -

: , --

-, -

, .

., ., .

-3

,

, ,

[email protected] (human

beta-defensins, hBDs) ,

-

. --3 (hBD-3)

hBDs,

-

.

hBD-3. -

GST- -,

-S- -

E.coli. hBD-3

,

hBD-3. -

pGEX-2T-hBD-3 -

.

E.coli

: . 1’2014

131

BL21DE3 pGEX-2T-hBD-3 -

. -hBD3

-

Sep-Pak 18 (Water, ).

7–22% -.

-

5 , --3 .

-hBD3 -

Pseudomonas aeruginosa - Bacillus subtilis.

,

-hBD-3 B.subtilis,

P.aeruginosa. ,

-3 ,

5 , -.

.1, .1,

.2, .1, .1, .1

1 , ,

2 , ,

[email protected] .

-

.

( )

. -

CD4+CD25+FoxP3+, ,

--

.

) - –

37 ( 37) . -. -

120 . 37

. -

5 : 0,2 2 7-

1 3 , . ,

» -,

0,2 106 3 4

- 3 . . ,

, -

.

,

, , (

< 0.01). - 2

CD4+CD25high ( =0,038)

: . 1’2014

132

. 6

TGF- ( =0,008)

. .

-, « »

.

-

.

., ., .,

., .

, .

, , [email protected]

:

. -

, , ,

.

-

, .

: -

. :

- 0,2 1,0

6 ;

,

-

),

( ) - ( ).

:

-. -

, 0,2 1,0 -

- 2,96 1,8

.

, 0,2 1,0 , -

21,3% 55,7% ) -

( 40%

). : -

. -

, -. -

,

-

.

: . 1’2014

133

., ., .,

., .

, .

, , [email protected]

: - ( ) –

-

, .

, –

-.

, --

. : --

LLC/R9. : -

« »,

18-20 3. 0,03

per os --

.

-. : LLC/R9

-,

, -, -

. -, « »

LLC/R9,

,

-

31%, (p<0.05), 54.4%

66.8% (p<0.01), ,

116% (p<0.001). « -»

: -

43% 41%, <0.05), – 10% (p<0.05).

« »

45% 60%, (p<0.01). : -

» -

-

, , -

, -

.

,

,

" ", , [email protected]

-, -

, .

: . 1’2014

134

-

, -,

, -

-.

, --

, -,

-,

,

, ,

, -. -

. -

-

.

, -,

0,1 -

. -

-

.

-. ( -

) ,

,

. --

, , -

, .

.1, .2, .2

1 , , 2 .

, , [email protected]

-

. ,

, -, , , .

-

-. 6

( 18-23 ).

:

: . 1’2014

135

– .

-

.

:

.

--

( ) ). 4

, ( ) -

. - ( ) -

.

. 4

, . -

--

-.

., .,

., ., .

, , [email protected]

( )

, -

. -

, , .

-, -

2010-

11 . 3 .

6 .

. -

( – 6 ), (6 ) -

« » ,

50% . (6 )

- ( «Roundup Ready»).

-, , -

. -, -

- ( ) ( ).

-.

-

, -

.

. --

: . 1’2014

136

,

. (6 .)

, -

: -

, . :

-

6 ,

--.

., .,

.

, ,

-, ,

[email protected]

--

.

, , , ,

. ( ) -

. ,

-

, -,

,

. -

. : ,

, ,

.

, , -

, .

,

. .

: -, , ,

. ,

--

. – ” -

.

,

, -,

. -,

,

-,

. -

e ,

(7.0 – 9.0).

: . 1’2014

137

“ ” –

.

1., 1., .1, .,

.2, .3

1 , ,

2 “ . . .

”, , 3 ,

, ,

[email protected] -

-, -

. , -, -

, -

,

-.

,

-.

- in vitro

-, -

, .

-. -

, -

-

,

in vitro,

. -

-,

,

- , -

,

- - ,

,

-.

.1, .2,

.3, . 1

1 . . , ,

2 . , ,

3 ,

. . , , [email protected]

)

.

, . -

: . 1’2014

138

, ,

-

.

--

. -

--

. 41

: 29 12 .

-, -

--

( ),

. 33 (80,4%)

. -

--

. -

. , 8 (19,5%) –

. -

,

-, .

---

.

.

«

», , [email protected]

- -

, -

.

-

. , -

-

.

-, -

. 21

( ), ; 28

) 37 ( ), -

. - 20 -

. ,

: . 1’2014

139

.

( , - ( ).

, -,

. ,

, ,

. -

, -

.

: --

; -

; - (

), - Ig G, Ig M

, .

., .,

.

. "

", , [email protected]

( ) -

– -

. -

. - Fe Cu

-

in vitro.

- 1

, ( ) ) .

Fe Cu - 40 20 ,

100-200 . -

1,0 0,062 .

-: - -

Fe -

1,0 0,5 ,

; -

Fe 1,6; 1,3 1,2 1,0–0,5–0,25

,

; - -

Cu

; - -

Cu 6,3%; 4,2% 6,9%

: . 1’2014

140

0,5–0,25–0,125 ,

-.

, Fe 40

Cu 20 –

-

. (100-200 ) -

, Fe -,

, Cu -

.

., ., .,

., ., ., ., ., .

,

« »)

, , [email protected]

. ,

400 ,

, ,

.

« »:

, , , ,

,

. -

Balb/c.

. -

.

-.

-

. -

-. -

-

.

. -

» - « » « ».

». -

, -

, -.

« »

. --

: . 1’2014

141

, » “ ”. -

,

--

. . .

CD8 NK

« ,

», , [email protected]

-

-.

CD8 NK

. -

CD8 NK 654 IVF .

CD8 NK 90 -

NK . -, NKCD8

(>60%) (OR 2.85 p=0.053) (<40%)

(OR 3.565 p=0.018). ,

– CD8 NK

(OR 5.6 p=0.0007). -

N CD8 -

CD8 N CD8 . 654

CD8 N

13% 86%.

N IR CD158a

N CD8 --

. CD8 N HLA-DR N

CD3+, CD3+CD8+, CD3+CD4+ NKT CD3+CD56+ CD56++

. CD8 N NK

CD158a . CD8

N

-. -

CD8 -

. , - CD8 N

N .

: . 1’2014

142

. , ., .

,

-

« . .

» , ,

[email protected]

-

, . -

,

, .

( ) . -

, 5 .

- d=10±0,1

. -

. -

500 . 2, 5,

9- -. 1-

, (16

) 1- .

-

. 2- ,

(16 )

1- . 3- -

, (3-6 )

1- . 4- -

, (16 ) -

24- . , -

, - 24-

( ), -

, -

. (4-8- ), -

, ,

. (14-18- )

, ,

-.

., .,

. .

NF-KB TLR-4

-,

[email protected] . -

-

: . 1’2014

143

, 1 .

. TLR-4 NF-kB -

(TLR-4+, NF-kB+)

- ( )

) -

( ). .

.

0,15% 15

/ , - --

50 / . TLR-4 NF-kB

. - t- . -

<0,05. .

-

- TLR-4+

( 2 45%, <0,05), NF-kB+ (

26% 25%, <0,05) . -

- 34%

<0,05) , -

TLR-4 . .

TLR-4 NF-kB

.

., ., .

,

-1

. , ,

[email protected]

, -

-. -

-.

,

, -, – -

-1 (MCP-1) . -

- 125-145 , .

, 10

- 30 . -

, 12 125 , .

. . , ,

. -1 -

FlowCytomix

(eBioscience). -

. -1

: . 1’2014

144

215-420 . ,

, -1

-.

-1

– 650 , 530 10- .

24

: 1100 ,

900 . -

: 850-730 .

50-80 ( ).

.

-,

100-150 , - 7

. ,

, .

., .

. . . , ,

[email protected] ,

-,

.

-

( ). –

. -.

- 15

. .

. -

t- . -. -

-, -

17,0±1,6 , -

– 21,0±2,0 (p<0,05). -

--

.

- – 20,5±2,5 (

– 12,1±3,4

; p<0,05). -

– 22,2±1,8

– 9,3±3,3 ; p<0,05). -

,

: . 1’2014

145

-,

-, -

, -. -

. , -,

.

.

., . .

6 IN

VITRO

,

. . . , , [email protected]

. , -

-.

. -

,

). . -

- ( )

6

in vitro. .

-6 .

6

(« », , )

20 . -, -

( 1=446

2=660 ) - 2,6 2.

187,2 2 .

-

– 14 %) - (88%)

(93%), --

92%. , -

--

. . ,

-,

.

., ., ., ., .

-

», , [email protected]

-,

. -

: . 1’2014

146

-

, . -

. « « -

» «Dia-HCV III», -

. 96-

, -

– -.

, -,

-, IgG .

-

– (50 Tris-HCl, 0,15 Nacl, pH 8,0) (50 -

, 9,2). -

Brij ( 0,1-0,01 %) SDS ( 1-0,01 %),

. -

,

0,025 % SDS. -

68 --

. 58 ,

-. -

«Anti-HCV Mixed Titer

Performance Panel PHV 206» (BBI, ) 100 %.

, 0,025 % SDS

-

«Dia-HCV III».

.

., ., ., , ., .

-

«DIA-HBCORE-AB»

», , [email protected]

( ) -

. -

2 . , 0,6-1,2

. . - HBc,

. ,

HBc, ,

,

. -, -

(IgM IgG) HBc. -

: . 1’2014

147

, -

. HBcore -

E. coli BL21(DE3)CodonPlus-RIL, 24

HBcAg.

HBcore -

. ,

HBcore -.

-

- 95 %. -

«DIA-HBcore-Ab» --

. - HBcore

, ---

, .

HBcore, . -

,

« -HB », « -HBcore- » ( ) «Vitrotest Anti-HBcore» ( ).

HBcore,

-.

.

, , [email protected]

-

. . 1, .2, .2 , 1., .2 1

2 -

, .

. , .

. :

,

. -

57/ Black

) 300 . 16

e

. per os (500 25 )

( ) . 36

(20- )

, 500

, , .

: . 1’2014

148

– ,

( ). -

, 500

,

, .

25 (

)

, (80% 65%

- )

(6,4±2,7/ 13,9±4,5/ – ).

-.

--

.

., .

, , [email protected]

XXI ! -

, 2-3 10

, .

-.

, -

. 2008

14 910 600 -. -

,

: 10 30 %

, 10 – 28 % ,

- 15 - 31 %. :

45% - 8

; 40 % -

8 -;

--

. -. -

: :

, ; - ( ,

, , -): , -

, ): , -

: , , , , , ,

(

): . –

. -

( , ) –

-,

30 % -

, -

: . 1’2014

149

.

- 1-

. , -

. -

- (

, , , ,

, .). -

– - ( ., 2004).

-. -

. -

- 1- .

: - : 1. -

- 72,4%; 2. - 67,2%; 3. -

- 63,2%; 4. -

78,1%; 5. - - 43,8%; 6. -

– 65%; 7. - – 70%.

. : -

: 1. - – 35,5%; 2.

- 19,5%; 3. - - 17%; 4. -

- 27%; 5. –

35%; 6. – 40%. : : -

1 3- 0,005 2-3 ; - 3 7 - 0,01 2

; - 7 12 - 0,01-0,015 2-3 ; -

12 - 0,025 2-3 .

10-15 . .

: 25-50 3-4 .

75 . -

200 . 10-20 . -

. : -

-: , ,

, , -

, , , ,

, .

-

,

. --

: I. --

,

(PAF),

. II.

: . 1’2014

150

--

,

-. III.

, , -

, . -

– . : 2,4,6,8– –

2,4,6,8– (3,3,0) -3,7. :

. : – 300 , 500 . -

: -. ®

. : 0,3 (300 ) 3 0,5

(500 ) 2 . : – 3

– 10 . – 2 –

3 . -

. ® -

– -.

: ®

: -

; -;

. ® : ,

; -

; -

; -

.

® : , , ,

. - -1- 1-

. -

. - :

I. ,

: ( , -

, .), -; , -

. II .

, -,

, ,

, -;

, ( -, -

).

. :

. : 50-100 2-3

. – 400 .

5-15 . N.B.

. : 0,050 (50 ) -

20 . : . :

. - -

: - – 87 %

: . 1’2014

151

-) - – 80 %.

,

. ,

-

.

: - -

- –

-

– -. -

-, .

- , -

-.

. ,

-,

, . --

-.

, ,

, ,

-

-

-.

.

IN

VITRO IN VIVO «

», , [email protected]

( Fe) --

, -

, , . ,

Fe ,

.

Fe in vitro in vivo . -

Fe 40 -

. . . Fe

IgG, -

in vitro;

, 1 24

- Fe.

, in vitro Fe

1 ,

Fe 24

. IgG Fe 0,1; 0,01; 0,001

, ,

35, 15 1 . Fe 0,5

86,9 % . 1

Fe -

: . 1’2014

152

( 6,5% 17,2%).

24 ( 25,5%

22,8%). Fe -

, -

-.

1 24 Fe

-

( 7,3 12,8 ) - ( 5,9 11,4 ),

-,

. -,

, Fe

in vitro ,

.

., ., ., .,

., .

«

», , [email protected]

, ,

,

95-98% . ,

,

, -

,

.

--

-

,

.

( -). 50 -

. ,

. -

½ ,

. -

, ( , -

) 1,5-1,7 ,

-.

. ,

10% (5 50 )

,

, -

. ,

-

: . 1’2014

153

, .

, -

.

., ., .

« . . . », ,

[email protected]

( ),

-,

( ). ,

( ) -

. --

, -

. :

--

.

. --

. - 5- , 8-

. .

- 1

.

-. -

-

10% 10-12-

, .

6-8-

, 12-15-

, -

28-30- .

-, -

,

.

., .

« . . .

», , [email protected]

, , ( ) -

-

: . 1’2014

154

-

. ,

. ,

,

.

( )

.

: 1- 3-

3- , 21- . - . 1-

1- 3-

-

, 3- ; 2- : 0,5

-

24- (21 ),

0,3 -

DMEM 0,2 % 10 % . ,

- 6-

0,94±0,05 , 10-

0,78 ±0,05 , 14- 0,16±0,08 .

3-

, - (21 )

6- 1,0 ±0,04 , 10-

0,93±0,01 , 14- 0,66±0,06 ,

, 3- -

, , -

24- .

, - 3–

24-

, 24-

. , ,

-

, , -

, - .

, , ,

-6, .

., ., ., .,

, .

«

», , [email protected]

-

: . 1’2014

155

. ,

-

-.

-

,

,

. , --

,

-. -

, ---

, - 5 : -,

, -, -

-.

-

- 3 :

;

; --.

-

,

. , - ( , -

) , -,

,

, . -

.

- ( )

-, -

, , . -

-

.

. ., . ., . .

,

, [email protected]

-

, . ( . ., 2006)

: ( 6 ) — -

; ( 7-9 ) —

: . 1’2014

156

;

10 ) — , -,

-.

,

. ,

(1,076-1,077 ) (1,087 ), , -

( ) . , -

,

. -:

( , n=10) (

, n=10). -

, : ( 8,4 ,

[Q1; Q3] — 43,0 [31,5; 59,8] %), ( 8,7-10,8 , 45,0 [31,8; 57,0] %)

( 11,1 , 10,0 [7,5; 12,3] %). -

-

. -

( <0,05, )

(7 [6; 8] %) ,

- (39,0 [36,5; 40,0] %).

(54,0 [53,8; 56,5] %) (p>0,05)

. -

-.

.

- -4 ,

. .

[email protected]

-,

Th2- ,

–IgE. , -

-

. -

- ( )

( ) -

-4 - . -

122 - ( ) -I. 40

( ) -1 .

, -

28,6±1,2

,

: . 1’2014

157

24,5±13,3 , 2

. -

-4

-4 . ,

-4 4,5

75,7±18,5 , ,

, -4 3,5 -

64,8±5,4 . ,

, -

h2 . 1 -

», « -

» -4 - . -

.

., ., ., .,

., ., ., .,

.

, ,

[email protected] ,

10 65 %. 30 % -

.

-

. ,

, : -

, , -. --

. --

. -

-

. 9

15 ), -: - ,

; - ,

.

, sIgA

,

-.

sIgA

-. , ,

, , -

, ( sIgA

2 ). ,

,

,

: . 1’2014

158

-

, 40% -

, -. ,

sIgA .

.

., ., .

-123

« ,

», , [email protected]

) – ,

- ,

.

,

. -.

--

.

- 123 - ("Burst

test"). -,

-

-123 - - -

-123). --

(fMLP), - E.coli,

– – ( ). –

.

.

R848( ) –

7/8, -, ). -

-

-). ,

85,6% 82,6%, .

- E.coli - 98,7%.

, -

-

20,6% - E.coli, 12,1% 17,8%

. R848

.

,

, --

.

: . 1’2014

159

.

-

-

. .

, , [email protected]

NO,

, .

NO ,

-

(LAR).

: 1

(100 (OVA) 100 Al(OH)3) 5

(100 OVA 10 Al(OH)3).

0,1% OVA 0,9% NaCl -

OVA sIgG ELISA

. NO -

( ) -

(Beckman Coulter — EPICS C)

DAF-2DA. -

0,2% Trypan Blue Neubauer. , OVA sIgG -

12 — 20 -

.

OVA sIgG - 2

, OVA,

- 0,9% NaCl. -

, DAF-2DA -

OVA 2,6

DAF-2DA

0,9% NaCl. ,

-,

,

, -

, - NO -

LAR

0,9% NaCl, OVA

sIgG .

.

80 « »

, ,

[email protected]

1933 . -,

, , 1933

1951 -.

-

: . 1’2014

160

. 1951

.

1953

– -

.

1000 , 6

-.

(1970-1971) -

-

. 1972 1974 -,

-

. 1983 . .

.

-

-. 1986

-

-

-

.

, --

, -. -

-

-, .

. «

» --

.

., ., ., .,

.

,

», ,

[email protected]

-, -

--

-

. --

, --

VEGF .

, VEGF

,

( / 25 :

: . 1’2014

161

75 ) 2646 / 2162 : 2756 .

, (rP = 0726)

VEGF –

” ( = 0.027).

: Var1 = 20.46*Var4 – 75.93, Var1 – -

VEGF , Var4 – –

“ ”. VEGF -

1 -

( >0,05), -

>0,05), . VEGF

( >0,05).

VEGF

>0,05), (p= 0,165),

(p= 0,543), (p=0,472).

VEGF -

, -. , -

,

VEGF -.

- VEGF .

.1, .2

1

, , 2

, [email protected]

---,

,

.

, -

. -,

, -, ,

,

. -

--

, -

.

-,

-.

: . 1’2014

162

,

- .

, -, ,

.

, -

. , -

-

,

.

., .

,

, ,

[email protected]

.

1986 .

-137 -90, ,

. ,

-

, .

, ,

, --

, .

:

,

-, 1995

2013 . - 5 .

,

-

, -

, -, .

, -

, -,

1995 2013 , .

. -

CD3+ CD4+,

CD4+/CD8+ -

. , -

. ,

: . 1’2014

163

-. -

-, ,

, -

.

., ., ., .

», ,

[email protected] ,

. ,

-.

- ,

. .

74 -

15 82 , – 21-

, 13 – 40 – . -

52 . -1 , 2, 4, 6,

10, 13, -a -

« », « », «Diaclone».

Statistika 6,0.

,

-

,

.

, .

: 1. -,

-

. 2. , ,

. 3. --

.

., ., ., .

, , [email protected]

, - Mollicutes

-, -

. , , -

, ,

, ., -

-.

-

: . 1’2014

164

, -

, -,

.

-,

. , -

-. ,

Acholeplasmataceae. , -

, ,

, --

. --

, -

, - – “ laidlawii – axanthum” “

laidlawii – oculi” --

, -

. , -

-. , -

-

– -, -

-

.

., .

CD45RA/CD45ROCD4+ ,

«

. . », ,

[email protected]

. , ,

-.

CD45 CD4+ -

-.

CD4+CD45RA-CD45R0+

CD4+CD45RA+CD45R0- -

. -

CD4+CD45RA-CD45R0+

in vitro.

CD45RA CD45ROCD4+ -

.

.

: . 1’2014

165

: - 10-16 , - 30-85 .

-.

CD45RA CD45ROCD4+

.

,

, .

(>1:32) : 42,9% - 1,2 , 14,3% - 3

; – 33,3% , 8,3% - 2,3 .

14 . -

CD45RA CD45ROCD4+

: 33,67%-CD4+CD45RA-

CD45R0+ , 61,49% - CD4+CD45RA+CD45R0- .

-: 67,46% - CD4+ -

, 27,1% - CD4+ . : 1)

; 2)

-

CD45RA CD45ROCD4+ -

.

., ., ., .

, ,

[email protected] -

( ) , ,

( )

( ), ,

, .

140 -

. -

, , , --

. -

CD4- CD8

CD16- .

( -1 , -8, - ).

( ) ( )

-: (Hirudo verbana,

Carena, 1820), (H. medicinalis, Linnaeus, 1758) (H. rientalis, S. Utevsky et Trontelj, 2005) ,

, . -

, -.

, -

-,

-

, --.

: . 1’2014

166

-

: -, , -

, , ,

. 5 : - (11,8 %

), , ( -

, 85,7; 2,0 0,3 % ), - –

(0,2 % ). -

.

" », ,

[email protected] -

-, -

. 90 % -

. -

: Esherichia.coli

,

, , Staphylococcus

aureus, Streptococcus agalactiae

. , -

.

. 20

.

- (Himedia,

). -

"Lachema" ( ). -

RIDASCREEN FAST Lysozym Biopharm ( ). -

33 , S. aureus

(n=5), Staphylococcus spp. (n=10), S. agalactiae (n=12), Enterococcus spp. (n=6).

-.

, -

( 0,02 ) -

. 3- ,

-. , ,

,

.

-

.

.

: . 1’2014

167

., .

,

, [email protected]

,

.

-

. -

. (SVC) -

, Rhabdoviridae

Rhabdovirus.

SVC -

, ( )

( ).

,

(32,3% <0,001). -

- 30,3%.

.

. -

, -.

. ( )

.

-.

, ,

.

, -

. ,

, . -

,

, .

.1, .2,

.2

1986-87 .

1 , ,

2 “ ”,

, [email protected]

,

,

.

: . 1’2014

168

.

( ) 137 ( ) .

4 (D)

: - (0<d<d<d<d2 cSv, . -

, --

. CD4, CD8, NK

. -

. -

CD3-19+ -

2 Sv. -.

CD3+HLA-DR+

, - 10 Sv. .

,

-

-.

., .

, ,

[email protected]

-

-,

), --

. -

.

. --

, , -

. ,

) ( ) .

-,

-

. -

.

, --

.

, –

. --

,

.

: . 1’2014

169

.

Fomes

fomentarius »,

2002 . , ,

. « » -

, ,

.

,

.

.2 .2, .1 .2,

.1 .1

PSEUDOMONAS AERUGINOSA

ARABIDOPSIS THALIANA

1

, , 2

, , [email protected]

( )

-.

, --

. -, -

-

, -

.

( 0,85 %

) Pseudomonas

aeruginosa - -8614 -9096

Arabidopsis

thaliana (Col-0 wt) , -

(Jin) (Nah G) .

100 .

P. syringae -8511.

8614 (145–

275 %), - ( 26–69

% Nah G 62–88 % Jin).

8614 .

9096

. - 9096

Col-0 wt,

. ,

: . 1’2014

170

, , .

., .,

., ., ., ., .,

. « »,

,

, , [email protected]

-, -

. -

. -

1 ).

2

( -), -

. -

« », , -

.

Wistar, 4 : - ; -

, , - , -

« », V - , « -

».

50 14 ; « » 0,16

, 4 , 14

. -, -

, -

, N -

. , -

-, -

1-,

-.

, « »

, --

, .

. - « »

-,

, -

.

: . 1’2014

171

., ., .

- " " , ,

[email protected] , 13,3 .

15 .

. ,

, 36 000 86

000 – . 2013 18735 -

, 7424

. ,

:

– 925 ; - – 4647 ;

-- 3860 ; -

– 4658 ; – 3431 . -

. -

, :1 9370 , -

( ) 264

(2,8 %) , :

– 38 (14,4%); -

– 54 (20,5%); -

– 50 (18,9%); - - 92 (34,8 %);

- 30 (11,4%) .2. 9365 -

( -)

461 (4,9%) ; :

-78 (16,9%); -

– 120 (26%); - –

104 (22,6%); – 126 (27,3%); -

33 (7,2%). 3. 7424 (

) 30 (0,4%)

; : - 10

(33,3%); - - 8 (26,7%); -

– 4 (13,3%);

- 6 (20%); - 2 (6,7%).

-

.

, ,

.

.1,2, . 1, . 1, . 1,

. 1,2, . 2

1 , , 2

, , [email protected]

: . 1’2014

172

. ,

, -

. --

. 32

-II . -

-, .

4 : ,

, - 3

. - CD3, CD4, CD8, CD20,

CD16, HLA-DR

. : , ,

CD16+ -

3 52% -

, -, -

, 21% (p<0,05). --

, 3

3 (p<0,05).

, , -

2 (p<0,05). : -

.

: . 1’2014

173

: . 1’2014

174

ORAL/POSTER PRESENTATION

. . «

»

,

, [email protected]

, . -

. ,

, -

,

. -

, , a

,

.

--

. -,

-

: -; -

,

; -

. ,

,

, , - ( -, ,

, , , , ,

, , -, .),

,

,

. ,

»

.

, -

-.

.

« »

«

», [email protected]

-

, ,

, .

: . 1’2014

175

,

---

.

« », -

-

. -

, -

, . « -» -

) - 6.051401 « -

». 4 « »

108 . -: -

, -, ,

in vitro ( ,

-),

-. -

,

: . . -

6.0514 « » / . , . , .

. – .: « », 2011. – 36 .;

:

« -» / . , .

, . . – .: « », 2004. – 40 . -

---

.

.

. , ,

[email protected] ,

- -

.

--

,

. ,

. ,

,

, -

, -

. -

: . 1’2014

176

, ,

.

,

. ,

. ,

, ,

. -

, ,

,

.

, .

, -,

, -,

.

.

, ,

.

, , ,

-.

.1, .2

1 , ,

2

, [email protected]

-, ,

,

,

- – -

( ), .

-

, –

-.

-,

, , -

-

, ,

-,

-.

-

, --

: . 1’2014

177

, , -

« » , -

( ,

, .)

( -, - -

.) , ,

). ( -

, , , ,

-, - )

, ,

, , .

-

.