x-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 long wave ir visible uv x-rays gamma rays wavelength (nm)...

34
X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Upload: julian-gorbet

Post on 01-Apr-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

1012 106 103 10 1 10-1 10-3

Long Wave IR Visible UV X-rays Gamma rays

wavelength (nm)

Frau Röntgen's handFrau Röntgen's hand

Page 2: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

1012 106 103 10 1 10-1 10-3

Long Wave IR Visible UV X-rays Gamma rays

wavelength (nm)

X-raysX-rays

Page 3: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray tubeX-ray tube

water inlet

filament (cathode)

target (anode)

x-ray window

focusing cup

Page 4: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

water inlet

filament (cathode)

target (anode)

x-ray window

focusing cup

X-ray tubeX-ray tube

Page 5: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Page 6: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

White radiation

Produced upon "collisions" with electrons in target

Any amount of energy can be lost up to a max. amount

Continuous variation of wavelength

Characteristic radiation

Specific energies absorbed

Specific x-ray wavelengths emitted

Wavelengths characteristic of target atom type

White radiation

Produced upon "collisions" with electrons in target

Any amount of energy can be lost up to a max. amount

Continuous variation of wavelength

Characteristic radiation

Specific energies absorbed

Specific x-ray wavelengths emitted

Wavelengths characteristic of target atom type

Page 7: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Mechanism

Decelerating charges give off radiation

Mechanism

Decelerating charges give off radiation

Page 8: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Mechanism

Decelerating charges give off radiation

Mechanism

Decelerating charges give off radiation

Page 9: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Mechanism

Decelerating charges give off radiation

Mechanism

Decelerating charges give off radiation

Page 10: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Mechanism

Decelerating charges give off radiation

Mechanism

Decelerating charges give off radiation

Page 11: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Mechanism

Decelerating charges give off radiation

Mechanism

Decelerating charges give off radiation

Page 12: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Typical tube spectrumTypical tube spectrum

Page 13: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-rays - vary tube voltageX-rays - vary tube voltage

Inte

nsi

ty

Wavelength

E ≈ hc/Kedge

E >> hc/Kedge

E > hc/Kedge

Iconts = AiZV~2

Ichar = Ai(V-Vcrit)~1.5

Page 14: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

More electron transitionsMore electron transitions

Page 15: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Cu spectrumCu spectrum

Page 16: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Al spectrumAl spectrum

Page 17: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Au L spectrumAu L spectrum

Page 18: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-raysX-rays

Moseley's law - energy vs. atomic numberMoseley's law - energy vs. atomic number

Page 19: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Sealed tubes - Coolidge typecommon - Cu, Mo, Fe, Cr, W, Ag

Sealed tubes - Coolidge typecommon - Cu, Mo, Fe, Cr, W, Ag

Ka = (2 Ka1 + Ka2)/3Ka = (2 Ka1 + Ka2)/3

Page 20: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Sealed tubes - Coolidge typecommon - Cu, Mo, Fe, Cr, W, Agintensity limited by cooling requirements (2-

2.5kW)(~99% of energy input converted to

heat)

Sealed tubes - Coolidge typecommon - Cu, Mo, Fe, Cr, W, Agintensity limited by cooling requirements (2-

2.5kW)(~99% of energy input converted to

heat)

Page 21: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Intensity changes with take-off angleIntensity changes with take-off angle

But resolution decreases with take-off angleBut resolution decreases with take-off angle

Page 22: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Page 23: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Other X-ray sourcesOther X-ray sources

Rotating anode

high power - 40 kWdemountablevarious anode types

Rotating anode

high power - 40 kWdemountablevarious anode types

Page 24: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Other X-ray sourcesOther X-ray sources

Synchrotron need electron or positron beam orbiting in a

ringbeam is bent by magnetic field

x-ray emission at bend

Synchrotron need electron or positron beam orbiting in a

ringbeam is bent by magnetic field

x-ray emission at bend

Advantages

10-4 - 10-5 radians divergence (3-5 mm @ 4 m)

Advantages

10-4 - 10-5 radians divergence (3-5 mm @ 4 m)

high brilliancewavelength tunablehigh brilliancewavelength tunable

Page 25: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Other X-ray sourcesOther X-ray sources

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Page 26: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Other X-ray sourcesOther X-ray sources

Synchrotron need electron or positron beam orbiting in a

ringbeam is bent by magnetic field

x-ray emission at bend

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

high signal/noise ratio

Synchrotron need electron or positron beam orbiting in a

ringbeam is bent by magnetic field

x-ray emission at bend

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

high signal/noise ratio

Page 27: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Page 28: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

X-ray sourcesX-ray sources

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Synchrotron

Advantages

10-4 - 10-5 rad divergence (3-5 mm @ 4 m)

high brilliancewavelength tunable

Page 29: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

CollimationCollimation

Page 30: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

Monochromatization

-filters – materials have atomic nos. 1 or 2 less than anode

50-60% beam attenuationplacing after specimen/before detector

filters most of specimen fluorescenceallows passage of high intensity & long

wavelength white radiation

Monochromatization

-filters – materials have atomic nos. 1 or 2 less than anode

50-60% beam attenuationplacing after specimen/before detector

filters most of specimen fluorescenceallows passage of high intensity & long

wavelength white radiation

X-raysX-rays

detectordetectorfilterfilter

specimenspecimen

Page 31: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

Monochromatization

-filters – materials have atomic nos. 1 or 2 less than anode

50-60% beam attenuationplacing after specimen/before detector

filters most of specimen fluorescenceallows passage of high intensity & long

wavelength white radiation

Monochromatization

-filters – materials have atomic nos. 1 or 2 less than anode

50-60% beam attenuationplacing after specimen/before detector

filters most of specimen fluorescenceallows passage of high intensity & long

wavelength white radiation

Page 32: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

Monochromatization

Crystal monochromators – LiF, SiO2, pyrolytic graphite

critical – reflectivity ex: for MoK, LiF 9.4% graphite 54 %

Monochromatization

Crystal monochromators – LiF, SiO2, pyrolytic graphite

critical – reflectivity ex: for MoK, LiF 9.4% graphite 54 %

Page 33: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

Monochromatization

Crystal monochromators – LiF, SiO2, pyrolytic graphite

critical – reflectivity ex: for MoK, LiF 9.4% graphite 54 %

resolution – determines peak/bkgrd ratio & spectral purity best - Si – 10"

graphite – 0.52°

Monochromatization

Crystal monochromators – LiF, SiO2, pyrolytic graphite

critical – reflectivity ex: for MoK, LiF 9.4% graphite 54 %

resolution – determines peak/bkgrd ratio & spectral purity best - Si – 10"

graphite – 0.52°

Page 34: X-rays 10 12 10 6 10 3 10 1 10 -1 10 -3 Long Wave IR Visible UV X-rays Gamma rays wavelength (nm) Frau Röntgen's hand

Beam conditioningBeam conditioning

Monochromatization

Monochromator shape

usually flat – problems with divergent beams

concentrating type – increases I by factor of 1.5-2

Monochromatization

Monochromator shape

usually flat – problems with divergent beams

concentrating type – increases I by factor of 1.5-2