why charmless sl. decays? analysis techniques overview of babar results (3 new results in 2005)

56
xclusive Charmless Semileptonic Decay xclusive Charmless Semileptonic Decay and Determination of V and Determination of V ub ub with BaBar with BaBar Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005) Form Factors Vub Prospects for 500 fb-1 Jochen Dingfelder , SLAC SLAC Experimental Seminar, June 9 th 2005

Upload: truong

Post on 31-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Jochen Dingfelder , SLAC SLAC Experimental Seminar, June 9 th 2005. Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005) Form Factors Vub Prospects for 500 fb-1. |V ub |/|V cb | band ( ±2 σ ) σ =12%. Why Charmless Semileptonic B Decays ?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

Exclusive Charmless Semileptonic DecaysExclusive Charmless Semileptonic Decaysand Determination of Vand Determination of Vubub

with BaBarwith BaBar

Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005) Form Factors Vub Prospects for 500 fb-1

Jochen Dingfelder , SLACSLAC Experimental Seminar, June 9th 2005

Page 2: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

22Jochen Dingfelder – SLAC Experimental Seminar

Study b u transitions Goal: Precise determination of |Vub|

Test CKM description of quark coupling and CP violation

Complementary constraint of UT to angle measurements;

try to reach similar precision as sin2.

Why Charmless Semileptonic B Decays ?

Why Charmless Semileptonic B Decays ?

|Vub|/|Vcb| band (±2σ) σ=12%

(|Vcb|) ≈ 2%

(|Vub|) ≈ 12%

Page 3: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

33Jochen Dingfelder – SLAC Experimental Seminar

Study b u transitions Goal: Precise determination of |Vub|

Test CKM description of quark coupling and CP violation

Complementary constraint of UT to angle measurements;

try to reach similar precision as sin2.

Why Charmless Semileptonic B Decays ?

Why Charmless Semileptonic B Decays ?

|Vub|/|Vcb| band (±2σ) σ=12%

(|Vcb|) ≈ 2%

(|Vub|) ≈ 12%

Constraintsw/o angles

Page 4: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

44Jochen Dingfelder – SLAC Experimental Seminar

Vub is best measured in charmless semileptonic decays B Xul

Factorization of leptonic and hadronic currents

Learn about electroweak interaction (coupling)

Learn about strong interaction study structure of B meson

allows tests of e.g. Lattice QCD

Why Charmless Semileptonic B Decays ?

Why Charmless Semileptonic B Decays ?

ll

u/du/d u/du/d

bb uu

BB0,0,±±

Vub

XXuu

So far B l and l have been measured (CLEO, Belle, BaBar (l) ). Also l (Belle) and l (CLEO) have been seen. Will present preliminary BABAR results from 2004-05 (82 fb-1 or 211 fb-1)

Page 5: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

55Jochen Dingfelder – SLAC Experimental Seminar

Inclusive Decays Large signal rate, high b

cl bkg

“Easy” to calculate (OPE/HQE)

Need Shape Function (b-quark motion inside B meson) . Constrain SF param. mb, 2 with b s or b cl

Exclusive Decays Low signal rate, better bkg

reduction and kinematic constraints

Need Form Factors F(q2) to describe the hadronization process u , …

Measurement as function of q2

Semileptonic B decays : The “Big Picture”

Semileptonic B decays : The “Big Picture”

|Vub|2 / |Vcb|2 ≈ 1 / 50

Page 6: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

66Jochen Dingfelder – SLAC Experimental Seminar

How Do We Detect These Decays ?

How Do We Detect These Decays ?

DIRC

DCH IFRSVT

CsI (Tl)

e- (9 GeV)

e+ (3.1 GeV)

BaBarBaBar

B Xu l+ l = e Good e, ID (p*l>1GeV) and hadron ID (e.g. /K separation reject kaon tracks) Reliable track and reco. (DCH,EMC) Angular coverage ≈ 92% of 4π in CMS (challenge for ν reco)

’s , ’s

• 5-layer SVT tracker

• 40-layer Drift CHamber dE/dx

• Novel RICH based on total internal reflection (DIRC)

• CsI(Tl) crystal calorimeter (e±, γ)

• RPC and LST chambers in flux return for muon ID

Page 7: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

77Jochen Dingfelder – SLAC Experimental Seminar

How Do We Detect These Decays ?

How Do We Detect These Decays ?

DIRC

DCH IFRSVT

CsI (Tl)

e- (9 GeV)

e+ (3.1 GeV)

BaBarBaBar

B Xu l+ l = e Good e, ID (p*l>1GeV) and hadron ID (e.g. /K separation reject kaon tracks) Reliable track and reco. (DCH,EMC) Angular coverage ≈ 92% of 4π in CMS (challenge for ν reco)

’s , ’s

• 5-layer SVT tracker

• 40-layer Drift CHamber dE/dx

• Novel RICH based on total internal reflection (DIRC)

• CsI(Tl) crystal calorimeter (e±, γ)

• RPC and LST chambers in flux return for muon ID

Page 8: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

88Jochen Dingfelder – SLAC Experimental Seminar

How Do We Detect These Decays ?

How Do We Detect These Decays ?

DIRC

DCH IFRSVT

CsI (Tl)

e- (9 GeV)

e+ (3.1 GeV)

BaBarBaBar

B Xu l+ l = e Good e, ID (p*l>1GeV) and hadron ID (e.g. /K separation reject kaon tracks) Reliable track and reco. (DCH,EMC) Angular coverage ≈ 92% of 4π in CMS (challenge for ν reco)

’s , ’s

• 5-layer SVT tracker

• 40-layer Drift CHamber dE/dx

• Novel RICH based on total internal reflection (DIRC)

• CsI(Tl) crystal calorimeter (e±, γ)

• RPC and LST chambers in flux return for muon ID

Page 9: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

99Jochen Dingfelder – SLAC Experimental Seminar

How Do We Detect These Decays ?

How Do We Detect These Decays ?

DIRC

DCH IFRSVT

CsI (Tl)

e- (9 GeV)

e+ (3.1 GeV)

BaBarBaBar

B Xu l+ l = e Good e, ID (p*l>1GeV) and hadron ID (e.g. /K separation reject kaon tracks) Reliable track and reco. (DCH,EMC) Angular coverage ≈ 92% of 4π in CMS (challenge for ν reco)

’s , ’s

• 5-layer SVT tracker

• 40-layer Drift CHamber dE/dx

• Novel RICH based on total internal reflection (DIRC)

• CsI(Tl) crystal calorimeter (e±, γ)

• RPC and LST chambers in flux return for muon ID

DIRC /K separation

Page 10: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1010Jochen Dingfelder – SLAC Experimental Seminar

How Do We Detect These Decays ?

How Do We Detect These Decays ?

DIRC

DCH IFRSVT

CsI (Tl)

e- (9 GeV)

e+ (3.1 GeV)

BaBarBaBar

B Xu l+ l = e Good e, ID (p*l>1GeV) and hadron ID (e.g. /K separation reject kaon tracks) Reliable track and reco. (DCH,EMC) Angular coverage ≈ 92% of 4π in CMS (challenge for ν reco)

’s , ’s

• 5-layer SVT tracker

• 40-layer Drift CHamber dE/dx

• Novel RICH based on total internal reflection (DIRC)

• CsI(Tl) crystal calorimeter (e±, γ)

• RPC and LST chambers in flux return for muon ID

EMC

Page 11: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1111Jochen Dingfelder – SLAC Experimental Seminar

No Tag: High statistics

High backgrounds and cross-feed Fully reconstruct signal side ( reco.)

Semileptonic Tag: Reconstruct B D(*) l and study recoil

- Full reconstruction of D(*)

- Partial reconstruction of D* (only l, soft) Two tag-B kinematics incomplete

Hadronic Tag: Fully reconstruct hadronic decay of one B:

B D(*) + (+,0,K+,K0) ≈ 1000 modes know kinematics of other B

Tagging MethodsTagging Methods

l-

Y(4S)Y(4S)

l-

Y(4S)Y(4S)

D

l-

l-

Y(4S)Y(4S)

D

Page 12: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1212Jochen Dingfelder – SLAC Experimental Seminar

Tagging Methods: Event Yields

Tagging Methods: Event Yields

0.5130.1l+

12.410.440.22 l+

1530.5100.13 l+

S/Bevts fbS/Bevts fbS/Bevts fbDecay

0.5130.1l+

12.410.440.22 l+

1530.5100.13 l+

S/Bevts fbS/Bevts fbS/Bevts fbDecay

1,100,000 evt fb10,000 evt fb4,000 evt fb

No tagD(*) l tagBreco tag

1,100,000 evt fb10,000 evt fb4,000 evt fb

No tagD(*) l tagBreco tag

Advantages of Tagging: Determine tag-B charge, flavor, momentum constraints for signal B Separating the two B decays reduce combinatorics / cross-feed Reduce non-BB (continuum) background looser cuts full phase space

BUT: Significantly lower signal rates !

× 4 ×10

×1/3 ×1/3for l

Page 13: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1313Jochen Dingfelder – SLAC Experimental Seminar

Hadro

Hadro

nic

nic

TagsTags

Page 14: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1414Jochen Dingfelder – SLAC Experimental Seminar

Tag side: fully reco. B PB sig = -PB tag

Signal side: Plep > 1 GeV

fully constrained : M2miss < 0.5

GeV2

Pro:Pro: Clean sample, almost bkg free

Loose cuts keep full phase space

Con:Con: Very low signal rate !

Hadronic Tags: B (, ) l

Hadronic Tags: B (, ) l

Decay modes

l -

l

l

l

l

l

l

a0 l (≈100%

)

a00l (≈100%

)

Variety of signal modes studied !

+lb cl

M2miss

82 fb-

1

Page 15: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1515Jochen Dingfelder – SLAC Experimental Seminar

Hadronic Tags: B (, ) l

Hadronic Tags: B (, ) l

B± l

l

l

’l

±→ωlν

Mhad [GeV/c2]

2.7 ± 1.2 ± 0.0513.9± 4.2’ l-

1.25 ± 0.55 ± 0.249.3 ± 3.30 l-

1.04 ± 0.39 ± 0.1615.7 ± 4.30 l-

3.5 ± 1.1 ± 0.0720.1 ± 5.1+l-

0.91 ± 0.28 ± 0.1415.5 ± 4.10 l-

0.89 ± 0.34 ± 0.1211.0 ± 3.9+ l-

BF x 104No. eventsDecay

2.7 ± 1.2 ± 0.0513.9± 4.2’ l-

1.25 ± 0.55 ± 0.249.3 ± 3.30 l-

1.04 ± 0.39 ± 0.1615.7 ± 4.30 l-

3.5 ± 1.1 ± 0.0720.1 ± 5.1+l-

0.91 ± 0.28 ± 0.1415.5 ± 4.10 l-

0.89 ± 0.34 ± 0.1211.0 ± 3.9+ l-

BF x 104No. eventsDecay

Systematics dominated by MC

statistics

Plus competitive limits for , a0,a +

82 fb-

1

Page 16: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1616Jochen Dingfelder – SLAC Experimental Seminar

Semilepto

Semilepto

nic Tag

nic Tag

Page 17: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1717Jochen Dingfelder – SLAC Experimental Seminar

Tagging efficiency measured with “Double Tags” (two D(*)l)

Semileptonic Tag MethodSemileptonic Tag Method Reconstruct B D(*)l and study

semileptonic recoil

Correct sl. decay |cosBY| < 1, bkg broader

( tag side: cosBY, signal side: cosB,l )

cos2B < 1 for signal, bkg flat

D(*)ldeca

ys

Page 18: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1818Jochen Dingfelder – SLAC Experimental Seminar

Cut-and-count analysis in cosB,l and mD

Signal region: -1.1 < cosB,l < 1.0

Subtract mD sidebands remove cominatoric background

Subtract other background using MC normalized in -20 < cosBl < -1.5

B+ 0lwith SL Tag : Signal Extraction

B+ 0lwith SL Tag : Signal Extraction

82 fb-

1

45 0l

Page 19: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

1919Jochen Dingfelder – SLAC Experimental Seminar

Extract signal yields by binned fit to cos2B in 3 bins of q2

:

q2 = (pB – p)2 , (q2) ≈ 0.7 GeV2

Fit parameters = signal and background normalizations

B0 +l with SL Tag : Signal Extraction

B0 +l with SL Tag : Signal Extraction

Mainly B0B0

bkg

211 fb-1

21 +l

26 +l

14 +l

≈ 30% l X-feed

Page 20: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2020Jochen Dingfelder – SLAC Experimental Seminar

Tag only l+ and p-soft from D*-

D0-soft

D* momentum pD* = f (soft)

Tag side mass: M2 = (pB - pD* -

pl)2

Partial SL (D*l Tag: B l Partial SL (D*l Tag: B l

Signal side: Look for l- +hard

Check consistency of remaining particles (X) with D0 decay (multivariate discriminator)

Signal yield from fit to signal side m

2B(B0->-l+) = (1.46 ± 0.27 ± 0.34 ± 0.03FF) × 10-4

BB bkgl

82 fb-

1

q2>16 q2<8 8<q2<16

MX

Page 21: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2121Jochen Dingfelder – SLAC Experimental Seminar

No No Tag

Tag

Page 22: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2222Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Page 23: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2323Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Page 24: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2424Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Page 25: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2525Jochen Dingfelder – SLAC Experimental Seminar

Neutrino “Quality Cuts”: Net charge: |Q| ≤ 1, miss > 0.6

rad

limit losses due to acceptance

Missing mass: |M2miss/2Emiss| < 0.4

GeV2

Neutrino ReconstructionNeutrino Reconstruction

B0 lMC

no addKL

add.L

add.

Mmiss/2Emiss (GeV)

= 70 MeV

Landau: 280 MeV

pmiss resolution

|pmiss| - |p| (GeV)

Tail due to losses

Page 26: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2626Jochen Dingfelder – SLAC Experimental Seminar

Neutrino “Quality Cuts”: Net charge: |Q| ≤ 1, miss > 0.6

rad

limit losses due to acceptance

Missing mass: |M2miss/2Emiss| < 0.4

GeV2

Neutrino ReconstructionNeutrino Reconstruction

B0 lMC

no addKL

add.L

add.

Mmiss/2Emiss (GeV)

Scale neutrino momentum, so that E=0 Improves q2 resolution

w/o E=0

= 70 MeV

Landau: 280 MeV

pmiss resolution

|pmiss| - |p| (GeV)

Tail due to losses

Page 27: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2727Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Page 28: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2828Jochen Dingfelder – SLAC Experimental Seminar

p*h

Signal ()

b cl

p*l p*l

Background SuppressionBackground Suppression

Continuum Suppression:Off-res. data statistics

lowNeed to rely on MCMinimize impact of

continuum bkg L2 = pi*cos2i * < 1.5

GeV Suppress 80% b c l

b c l Suppression:Need to suppress largecharm bkg in lchannel kinem. cuts on p*l ,p*h

(for l we can keep nearly whole phase

space)

L2

costhr costhr

Signal ()

qq

Selection efficiencies: ≈ 3% for l, ≈ 1% for l

b c l

Page 29: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

2929Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Before we fit the signal, we

should check that selection / reconstructionreally work!

Page 30: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3030Jochen Dingfelder – SLAC Experimental Seminar

Select high statistics and high purity control sample Perform same selection as for b ul signal (except b cl suppression)

Cross-check MC modeling of signal decays Study modeling of dominant charm background component (D*)

Two modes for B D*-l+ D0-l+ : D0 K+- , D0 K+- 0

.

“Proof of Principle”: B D*l Control Sample

“Proof of Principle”: B D*l Control Sample

K+-0 K+-0

M2miss/2Emiss

(GeV)Ge

V

K+-0

Signal

other D*D/

D**

q2

(GeV2)

Efficiencies of cuts agree between data and MC within a few %.

Page 31: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3131Jochen Dingfelder – SLAC Experimental Seminar

Harsh suppression of b cl background e+e- qq background

Untagged B l, B lAnalysis Strategy

Untagged B l, B lAnalysis Strategy

Fit all 4 signal modes simultaneously (+, 0, +, 0)

Max-LH fit of signal and background in E, mES, and q2

Neutrino Reconstruction: Reconstruct from full event & ensure

good reco. quality

Select signal decay candidates: Y = hadron () + lepton (e/)

ll

u/du/d u/du/d

bb uuBB0,0,±± XXuu

Y = / + l

Page 32: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3232Jochen Dingfelder – SLAC Experimental Seminar

Fit all signal modes simultaneously

Float , ±, 0 in each q2 bin

5 (3) q2 bins for l (l)

Use isospin relations: (B0 -l+) = 2(B+ 0l+)

(B0 -l+) = 2 (B+ 0l+)

One free parameter for b cl

Total: 9 free parameters

Fit in E-mES and q2Fit in E-mES and q2

Coarse binning

in Sideband Region

Fine binning

in Signal Region

Binned max.-likelihood fit, including MC statistics (Barlow & Beeston)

X-feedXu

fixed

l

qq fixed

cl

l

Page 33: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3333Jochen Dingfelder – SLAC Experimental Seminar

Results forl: Fitted E and mES

Results forl: Fitted E and mES

76 fb-

1

Sum of 396 l, 137 0l

5 bins for l3 bins for l

Page 34: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3434Jochen Dingfelder – SLAC Experimental Seminar

Results forl: Fitted E and mES

Results forl: Fitted E and mES

5 bins for l3 bins for lSum of 95 l, 98

0l

76 fb-

1

Page 35: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3535Jochen Dingfelder – SLAC Experimental Seminar

Light-Cone Sum Rules :

Valid for q2 < 14 GeV2

Ball/Zwicky quote 10-13% error at q2=0

Lattice QCD :

Unquenched calculations by HPQCD, FNAL

Valid for q2 > 15 GeV2

11-13% error at high q2

Use parametrizations (e.g. Becirevic-Kaidalov) to extrapolate to full q2 range

Quark models: ISGW II (no error quoted)

B l Form FactorsB l Form Factors

Theo. FF uncertainties enter twice:

(1) FF shape acceptance

(2) FF normalization extraction of Vub

222

02 3

2 3

( )

24( )F

ub

Gd BV f qp

dq

2

220

2 32 3

( )

24( )F

ub

Gd BV f qp

dq

Page 36: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3636Jochen Dingfelder – SLAC Experimental Seminar

Fitting the Form-Factor ShapeFitting the Form-Factor Shape

HPQCD’04 : = 0.42 ± 0.07 , FNAL’04 : = 0.62 ± 0.05

Fit Becirevic-Kaidalov (BK) Parametrization to data:

f(0) = norm. factor, = shape parameter

Result of BK-Fit consistent with unquenched LQCD:

l

ISGW II

LCSR

LQCD

= 0.60 ± 0.15BK-Fit to BABAR data

Page 37: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3737Jochen Dingfelder – SLAC Experimental Seminar

Recent LQCD and LCSR calculations agree

well with BABAR B l data

ISGW II shows marginal agreement

Measured q2 DistributionMeasured q2 Distribution

l

ISGW II BK Fit

Improved Data-MC

agreement in kinematic

distributions, e.g.,

hadron momentum.

P*

Page 38: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3838Jochen Dingfelder – SLAC Experimental Seminar

Current Measurements of B l as Function of q2

Current Measurements of B l as Function of q2

More data will help!

M. Moriihep-ex/0505070

Page 39: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

3939Jochen Dingfelder – SLAC Experimental Seminar

Constraining Form-Factor Parametrizations

Constraining Form-Factor Parametrizations Form factor contains soft-overlap () and hard-scattering (H) contributions:

BK param. is approximation that neglects H study more general parametrization: with

Richard Hill, hep-ph/0505129 :

< 1 limits hard scattering contribution Simple Pole Model (only B* pole) ruled out with 99.99% CL Single Pole Model not ruled out ( ∞, 1, (1-) fixed )

68% CL Limits

HPQCD

FNAL

Experiment

=1

=0

bb uu

BB Hard gluon

Page 40: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4040Jochen Dingfelder – SLAC Experimental Seminar

04

B l Form FactorsB l Form Factors

l

Good agreement with all FF calculations

Statistical and systematic errors still too large to measure three FFs

For vector mesons we need 3 FFs, e.g. A1,A2,V much more difficult !

Ball & Zwicky ‘04

Page 41: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4141Jochen Dingfelder – SLAC Experimental Seminar

Theory Uncertainty: Dependence on FF shape

Theory Uncertainty: Dependence on FF shape

Acceptance effect due to harsh kinem.

cuts for l

Effect of l FF on BF small.

Some effect of X-feed from l

“Do we have a model-independent BF measurement?”

Page 42: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4242Jochen Dingfelder – SLAC Experimental Seminar

Experimental Systematic Uncertainties

Experimental Systematic Uncertainties

Page 43: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4343Jochen Dingfelder – SLAC Experimental Seminar

Experimental Systematic Uncertainties

Experimental Systematic Uncertainties

Detector effects: Track, Photon, KL efficiencies and resolutions (losses, bkg, …)

Page 44: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4444Jochen Dingfelder – SLAC Experimental Seminar

Experimental Systematic Uncertainties

Experimental Systematic Uncertainties

Relative contributionsto charm bkg have large uncertainties:

B D, D*, D**, … BF

Detector effects: Track, Photon, KL efficiencies and resolutions (losses, bkg, …)

DD*

*

D*

All

Page 45: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4545Jochen Dingfelder – SLAC Experimental Seminar

Experimental Systematic Uncertainties

Experimental Systematic Uncertainties

Relative contributionsto charm bkg have large uncertainties:

B D, D*, D**, … BF

B ul Hybrid

M(Xu)

Detector effects: Track, Photon, KL efficiencies and resolutions (losses, bkg, …)

DD*

*

D*

All

Page 46: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4646Jochen Dingfelder – SLAC Experimental Seminar

Experimental Systematic Uncertainties

Experimental Systematic Uncertainties

Comparison off-resonance data with continuum MC.

Mainly low q2 (secondary leptons)

Relative contributionsto charm bkg have large uncertainties:B -> D, D*, D**, … BFs

B ul Hybrid

M(Xu)

Detector effects: Track, Photon, KL efficiencies and resolutions (losses, bkg, …)

DD*

*

D*

All

Page 47: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4747Jochen Dingfelder – SLAC Experimental Seminar

Branching Fraction Measurements

Branching Fraction Measurements

BABAR

CLEO

B l B l

Page 48: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4848Jochen Dingfelder – SLAC Experimental Seminar

Consistency Check : Isospin Symmetry

Consistency Check : Isospin Symmetry

Measure B0, B+ separately:

Test isospin constraint

Consistent with 2 within stat. error

Page 49: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

4949Jochen Dingfelder – SLAC Experimental Seminar

uubb

Page 50: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5050Jochen Dingfelder – SLAC Experimental Seminar

Extraction of VubExtraction of Vub

No FF norm.uncertainty

available

BABAR’s choice

LCSR q2 <15 GeV2, LQCD q2 > 15 GeV2 or Extrapolation

to whole q2 range

388.0

52.0 10)11.0

24.014.082.3(||

LQCDFF

syststatubV4%

6%

7% exp.

Extraction of |Vub| relies on FF norm. in distinct q2 regions

Theory error dominates:11-13% in restricted q2 ranges

15-17% for whole q2 range

Page 51: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5151Jochen Dingfelder – SLAC Experimental Seminar

“Historical” discrepancy between incl. and excl. Vub results:

Inclusive Vub or Exclusive Vub ?Inclusive Vub or Exclusive Vub ?

Incl. and excl. |Vub| have moved closer together!

It’s important to do exclusive analyses because theoretical uncertainties are complementary.

Incl. BABAR average, BLNP, SF from b clC’

Excl. BABAR untagged B lFNAL’04 FF (CKM’05)

CLEO l

New

DFN

, S

F B

elle b

s

Page 52: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5252Jochen Dingfelder – SLAC Experimental Seminar

Need help from theory: Uncertainty on |Vub| dominated by theory error!

Reliable error estimate for l FF needed for and BF and |Vub|

Progress in LQCD for l : theo. error 5-6% (how long will it take?)

We could reach total error of ≈ 8% in exclusive Vub in the near future …

ProspectsProspects Error on BF will decrease through:

more precise measurements of b cland b ul (res & non-res) BF, FF

improved track and neutral reconstruction ( reco.)

more data prospects for 500 fb-1 :

40% 27%

16%

Page 53: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5353Jochen Dingfelder – SLAC Experimental Seminar

BABAR has three new, competitive BF and Vub measurements for B l

and one for B l

Untagged analysiswith recocurrently has best precision.

Tagged analyses (semilep. tag, Breco tag) will become very powerful with

more data (“crossover point” >≈ 500 fb-1).

Results of untagged analysis are:

Consistent with previous measurements

Statistically more accurate

Less dependent on theoretical predictions

- First “real” measurement of the FF shape for B l

- Uncertainties for B l still too large

Current uncertainty of exclusive Vub : ≈ 15% (dominated by theory error)

could improve to 8% in the near future !?

ConclusionsConclusions

Page 54: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5454Jochen Dingfelder – SLAC Experimental Seminar

ρ

|Vub|/|Vcb| band (±2σ) σ=5%

Probing New Physics (?)

Page 55: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5555Jochen Dingfelder – SLAC Experimental Seminar

Backup Slides

Page 56: Why charmless sl. Decays? Analysis Techniques Overview of BaBar results (3 new results in 2005)

06/09/006/09/055

5656Jochen Dingfelder – SLAC Experimental Seminar

Belle SL Tag: B π () l νBelle SL Tag: B π () l ν

140/fb

2-dimensional fit to (Mx,xB2) distribution:

extract normalization for signal land l, Xu l and BB background PDF from MC, constraint on total B (BXu l ) Extract yield from Mx distribution for 3 different q2 bins

4

4

10)30.085.078.054.2()(

10)03.020.028.075.1()(

FFsyststat

FFsyststat

B

B

xB2 = 1-cos2B