well fdn design

78
Name of the River: Teesta Cl. 703.1 Design Discharge of Foundation: Catchment area = 12500 % increase in discharge = 19.2 % Q, Actual discharge = 19820 cumecs Design discharge for foundation design = 23619 cumecs Cl. 703.2 Mean Depth of Scour: Theoretical effective linear waterway = 1002.8 m Actual effective linear waterway = 947.8 m HFL = 86.288 m 20.9 0.425 mm 1.15 9.7 m Mean Scour Level = 76.573 m Cl. 703.3 Maxm. Depth of Scour for Design of Foundation: Cl. 703.3.1.1 Flood without seismic combination: 19.4 m ii) For abutments: 12.3 m 19.4 m Cl. 703.3.1.2 Flood with seismic combination: 17.5 m ii) For abutments: 11.1 m 17.5 m Cl. 703.3.1.3 Without flood with seismic combination: 15.5 m ii) For abutments: 9.9 m 15.5 m km 2 Db, Design dischrg for foundn/m width at eff linear wat dm, weighted mean dia of bed material = Ksf, Silt factor = 1.76 (dm) 1/2 = dsm, mean depth of scour below HFL = 1.34 (Db 2 /Ksf) 1/3 = i) For Piers = 2.0 dsm = (a) Approach retained/ lowest bed level whichever is deeper = 1.27 d (b) With scour all around = 2.0 dsm = i) For Piers = 2.0 dsm = (a) Approach retained/ lowest bed level whichever is deeper = 1.27 d (b) With scour all around = 2.0 dsm = i) For Piers = 2.0 dsm = (a) Approach retained/ lowest bed level whichever is deeper = 1.27 d (b) With scour all around = 2.0 dsm =

Upload: mitnath

Post on 24-Oct-2014

140 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Well Fdn Design

Name of the River: Teesta

Cl. 703.1 Design Discharge of Foundation:Catchment area = 12500% increase in discharge = 19.2 %Q, Actual discharge = 19820 cumecsDesign discharge for foundation design = 23619 cumecs

Cl. 703.2 Mean Depth of Scour:Theoretical effective linear waterway = 1002.8 mActual effective linear waterway = 947.8 mHFL = 86.288 m

20.9

0.425 mm

1.15

9.7 mMean Scour Level = 76.573 m

Cl. 703.3 Maxm. Depth of Scour for Design of Foundation:Cl. 703.3.1.1 Flood without seismic combination:

19.4 mii) For abutments:

12.3 m

19.4 m

Cl. 703.3.1.2 Flood with seismic combination:

17.5 mii) For abutments:

11.1 m

17.5 m

Cl. 703.3.1.3 Without flood with seismic combination:

15.5 mii) For abutments:

9.9 m

15.5 m

km2

Db, Design dischrg for foundn/m width at eff linear waterway =

dm, weighted mean dia of bed material =

Ksf, Silt factor = 1.76 (dm)1/2 =

dsm, mean depth of scour below HFL = 1.34 (Db2/Ksf)1/3 =

i) For Piers = 2.0 dsm =

(a) Approach retained/ lowest bed level whichever is deeper = 1.27 dsm =

(b) With scour all around = 2.0 dsm =

i) For Piers = 2.0 dsm =

(a) Approach retained/ lowest bed level whichever is deeper = 1.27 dsm =

(b) With scour all around = 2.0 dsm =

i) For Piers = 2.0 dsm =

(a) Approach retained/ lowest bed level whichever is deeper = 1.27 dsm =

(b) With scour all around = 2.0 dsm =

Page 2: Well Fdn Design

Design of Pier With Well Foundation

Basic Input Data

Left span on Pier = 110.00 m 10000Right span on Pier = 110.00 m 800Total width = 13.50 m

Carriageway width = 9.50 m 2400 4000Pier cap Rectangular top Dimension = 5.50 m x 11.00 m

Straight height of Pier cap = 1.00 m

Slant height of pier cap = 1.00 m 6000Pier wall Dimension = As per figure beside CS Area of Annular pier wall = 19.56 SqmFinished road level = 112.00 m Moment of Inertia = 36.95 m4Existing ground level = 82.00 m

EGL to FRL = 30.00 m

Superstructure depth = 7.50 m Volume of Pier Cap = 121.0 m3

Wearing course thickness = 0.10 m

Height of bearing & pedestal = 0.50 m

Bearing level = 104.40 m

Pier Cap top level = 103.90 m

Height of Pier column = 19.90 m

Depth of well foundation below well ca = 40.00 m

Well cap top level = 82.00 m

Depth of well cap = 2.50 m

Founding level = 39.50 m 45.42 m

HFL = 88.08 m

Scour Level(Normal) = 69.08 m Level of plane of rotation i.e, 0.2*D above base

Scour Level(Seismic) = 70.98 m

Page 3: Well Fdn Design

1.1 Dead Loads1.1.1 Dead Load of the superstructure

The longitudinal eccentricity is measured from the centre line of the pier to the centre of the bearing.

Load Due toMoment(Kn-m)

Long Trans

PSC Box 5113.5 0 0

Hence, total vertical load due to superstructure = 5114 T

1.1.2 Super imposed dead load on superstructure

Load Due to No. Weight (T)

2 1 220

1 1.98 217.8

3. Footpath 2 0.66 145.24. FPLL 2 0.6 132

Hence, total load due to super imposed dead load = 715 T

1.1.3 Dead load of the substructure

Weight of pedestals 6 no.s x 0.800 m x 0.800 m x 0.500 m x 2.5 T/m3 = 5 T

Weight of Pier Cap 1 no.s x 121.00 m3 x 2.5 T/m3 = 303 TWeight of Pier Column 1 no.s x 19.90 m x 19.56 m2 x 2.5 T/m3 = 973 T

Hence, total vertical load due to substructure = 1281 TAt Steining stress check level

1.1.4 Dead load of the Well foundation Normal SeismicDepth of well foundation = 40 m 15.88 17.02Dia of well = 11 m 11 11

2.087 m 2.087 2.087Say = 2 m 2 2

Dredge hole dia = 7 m 7 7Well Curb height = 3.894 m 3.894 3.894

Weight of Well cap = = 594 T 594.0 594.0Weight of Steining = = 5104 T 1695.1 1855.8

Vertical Load (T)

The super imposed dead load on the structure comprises of the Crash barriers, Railings, Footpath & Wearing course loading from the deck.

Unit Weight (T/m)

1. Crash Barriers +Railing

2. Wearing Course

The substructure comprises of bearing, pedestal, pier cap & pier shaft. Summary of loads due to self weight of the substructure :

Steining thickness, h = Kd Öl =

Page 4: Well Fdn Design

Weight of Bottom plug = = 571 TWeight of Well curb = = 289 TWeight of Top plug = = 42 T 42.3 42.3Weightdue to sand fill = = 2446 T 775.2 853.9

Weight of water above well = = 459 T 458.9 458.9

= 4743 T 2388.8 2499.7

= 4150 T 1795.1 1906.1

= 5356 T = 1770 T = 1899 T

= 4762 T = 1177 T = 1305 T

Moments due to tilt & ShiftMoment due to shift = 1114.0 TmTilt moment of well cap = 178.7 TmTilt moment of Steining = 671.9 TmTilt moment of bottom plug = 4.16 TmTilt moment of well curb = 4.11 TmTilt moment of top plug = 12.19 TmTilt moment sand fill = 241.9 TmTilt moment DL+SIDL+SUB = 3777 Tm

TOTAL = 6004.1 TmTilt moment LL 168 Tm

Depth of grip below scour level = 29.58 m

Well foundation Bouyancy wrt HFL =

Well foundation Bouyancy wrt LWL =

Total dead weight of well

in LWL Condition =

Total dead weight of well

in HFL Condition =

Page 5: Well Fdn Design

At Steining stress check level

IRC: 78-2000For well in cement concrete, Kd = 0.03

Page 6: Well Fdn Design

For One Lane 70R loading::

Determination of Maximum reaction Case ::

Impact Factor = 8.80 % Impact Factor C/C of expansion gap 110 C/C of expansion gapOverhang on both side 1.2 Overhang on both sideSpan 107.6 Span.

30.00 185.0 49.5 031.4 185.0 51.9 034.4 185.0 57.1 035.8 185.0 59.5 037.9 130.6 44.6 039.4 130.6 46.4 0 Total Reaction at Pier43.4 87.0 34.1 073.4 185.0 124.1 0 Braking load on two spans74.8 185.0 126.5 077.8 185.0 131.7 079.2 185.0 134.1 081.3 130.6 97.2 0 Longitudinal moment 82.8 130.6 99.1 086.8 87.0 69.2 0 Transverse eccentricity

116.8 185.0 0.0 177.4118.2 185.0 0.0 175.0 Transverse moment121.2 185.0 0.0 169.8122.6 185.0 0.0 167.4 Left Span Braking Load124.7 130.6 0.0 115.6 Right Span Braking Load126.2 130.6 0.0 113.8130.2 87.0 0.0 72.6160.2 185.0 0 102.8161.6 185.0 0 100.4164.6 185.0 0 95.2166.0 185.0 0 92.8168.1 130.6 0 63.0169.6 130.6 0 61.1173.6 87.0 0 37.5203.6 185.0 0 28.2205.0 185.0 0 25.8208.0 185.0 0 20.6209.4 185.0 0 18.2211.5 130.6 0 10.3213.0 130.6 0 8.4217.0 87.0 0 2.4247.0 185.0 0 0.0248.4 185.0 0 0.0251.4 185.0 0 0.0252.8 185.0 0 0.0254.9 130.6 0 0.0

Initial Position of Load

Load Value

Reaction at A

Reaction at B

Page 7: Well Fdn Design

256.4 130.6 0 0.0260.4 87.0 0 0.0290.4 185.0 0 0.0291.8 185.0 0 0.0294.8 185.0 0 0.0296.2 185.0 0 0.0298.3 130.6 0 0.0299.8 130.6 0 0.0303.8 87.0 0 0.0333.8 185.0 0 0.0335.2 185.0 0 0.0338.2 185.0 0 0.0339.6 185.0 0 0.0341.7 130.6 0 0.0343.2 130.6 0 0.0347.2 87.0 0 0.0377.2 185.0 0 0.0

Total Reaction 1124.9 1544.6

Determination of maximum Longitudinal moment Case ::

0 185.0 187.01.37 185.0 184.74.42 185.0 179.45.79 185.0 177.1 Total Reaction on pier7.92 130.6 122.49.44 130.6 120.6 Braking load13.4 87.0 77.243.4 185.0 112.4 Longitudinal moment on pier

44.77 185.0 110.147.82 185.0 104.8 Transverse moment49.19 185.0 102.551.32 130.6 69.752.84 130.6 67.956.8 87.0 42.186.8 185.0 37.8

88.17 185.0 35.591.22 185.0 30.292.59 185.0 27.994.72 130.6 17.196.24 130.6 15.2100.2 87.0 7.0130.2 185.0 0131.57 185.0 0134.62 185.0 0135.99 185.0 0

Maximum longitudinal moment on the pier generated when only one span is loaded & generates maximum reaction due to one span loading

Initial Position of Load

Load Value

Reaction at A

Page 8: Well Fdn Design

138.12 130.6 0139.64 130.6 0143.6 87.0 0

Total Reaction 1828.4528 kN

Page 9: Well Fdn Design

= 8.80 %1101.2

107.6

2669.4 kN

Braking load on two spans 426.4 kN

503.6 kNm

1.905 m

5085.3 kNm

Left Span Braking Load 317.6 kNRight Span Braking Load 426.4 kN

Page 10: Well Fdn Design

1829 kN

426.4 kN

Longitudinal moment on pier 2194.8 kNm

3484.2 kNm

Page 11: Well Fdn Design

For two lane Cl-A loading ::

Determination of Maximum reaction Case ::

Impact Factor = 8.80 % Impact Factor C/C of expansion gap 110 C/C of expansion gapOverhang on both side 1.2 Overhang on both sideSpan 107.6 Span

39.67 29.4 10.5 0.040.77 29.4 10.8 0.043.97 124.0 49.3 0.045.17 124.0 50.7 0.0 Total reaction at Pier49.47 74.0 33.2 0.052.47 74.0 35.3 0.0 Due to 2 lane Cl-A Loading55.47 74.0 37.3 0.058.47 74.0 39.4 0.0 Longitudinal moment78.47 29.4 21.1 0.079.57 29.4 21.4 0.082.77 124.0 94.0 0.083.97 124.0 95.4 0.0 Transverse eccentricity88.27 74.0 59.9 0.091.27 74.0 61.9 0.0 Transverse moment94.27 74.0 64.0 0.097.27 74.0 66.1 0.0 Left span braking load117.27 29.4 0.0 28.0 Right span braking load118.37 29.4 0.0 27.7121.57 124.0 0.0 113.5122.77 124.0 0.0 112.1127.07 74.0 0.0 63.9130.07 74.0 0.0 61.8133.07 74.0 0.0 59.8136.07 74.0 0.0 57.7156.07 29.4 0.0 17.5157.17 29.4 0.0 17.2160.37 124.0 0.0 68.7161.57 124.0 0.0 67.4165.87 74.0 0.0 37.2168.87 74.0 0.0 35.2171.87 74.0 0.0 33.1174.87 74.0 0.0 31.0194.87 29.4 0.0 6.9195.97 29.4 0.0 6.6199.17 124.0 0.0 24.0200.37 124.0 0.0 22.6204.67 74.0 0.0 10.5207.67 74.0 0.0 8.5210.67 74.0 0.0 6.4213.67 74.0 0.0 4.4

Initial Position of

Load

Load Value

Reaction at A

Reaction at B

Page 12: Well Fdn Design

233.67 29.4 0.0 0.0234.77 29.4 0.0 0.0237.97 124.0 0.0 0.0239.17 124.0 0.0 0.0243.47 74.0 0.0 0.0246.47 74.0 0.0 0.0249.47 74.0 0.0 0.0252.47 74.0 0.0 0.0272.47 29.4 0.0 0.0273.57 29.4 0.0 0.0276.77 124.0 0.0 0.0

Total Reaction 750.2 831.7

Determination of Maximum Longitudinal moment Case ::

0 29.4 29.71.1 29.4 29.44.3 124.0 120.55.5 124.0 119.1 Total reaction at Pier9.8 74.0 68.112.8 74.0 66.0 Due to 2 lane Cl-A Loading15.8 74.0 63.918.8 74.0 61.9 Longitudinal moment38.8 29.4 19.139.9 29.4 18.8 Braking Load43.1 124.0 75.744.3 124.0 74.4 Transverse moment48.6 74.0 41.451.6 74.0 39.354.6 74.0 37.357.6 74.0 35.277.6 29.4 8.578.7 29.4 8.281.9 124.0 31.083.1 124.0 29.687.4 74.0 14.790.4 74.0 12.793.4 74.0 10.696.4 74.0 8.5

116.4 29.4 0.0117.5 29.4 0.0120.7 124.0 0.0121.9 124.0 0.0126.2 74.0 0.0129.2 74.0 0.0132.2 74.0 0.0135.2 74.0 0.0

Maximum longitudinal moment on the pier generated when only one span is loaded & generates maximum reaction due to one span loading

Initial Position of

Load

Load Value

Reaction at A

Page 13: Well Fdn Design

155.2

Total Reaction 1023.59

Page 14: Well Fdn Design

= 8.80 %1101.2

107.6

1581.9 kN

Due to 2 lane Cl-A Loading 3163.9 kN

195.6 kNm

1.45 m

4587.6 kNm

351.9 kN472.5 kN

Page 15: Well Fdn Design

1023.59 kN

Due to 2 lane Cl-A Loading 2047.2 kN

2456.6 kNm

472.5 kN

2968.4 kNm

Page 16: Well Fdn Design

Left Span110 m

Summary of Load Cases for Live load ::

Load Case Load TypeReaction Total

BrakingLeft

(T) (T)

Maximum Reaction case1 70R Both Span 267 322 CLASS A 2 Lane Both span 316 35

Maximum Longitudnal Moment Case1 70R Right Span 183 02 CLASS A 2 Lane Right span 205 0

Maximum Transverse Moment Case1 70R Right Span 267 322 CLASS A 2 Lane Right span 316 35

Calculation for the horizontal load on Structure ::

Maximum Reaction case

Braking LoadCo-officient of friction 0.05

Reaction due to Dead Load & SIDL Reaction due to Live load

Hence, total reacion

Therefore, Horizontal forceor

Maximum Horizontal force on structure for maximum Reaction case

Maximum Longitudnal Moment Case

Braking LoadCo-officient of friction 0.05

Reaction due to Dead Load & SIDL Reaction due to Live load

Hence, total reacion

Therefore, Horizontal forceor

Page 17: Well Fdn Design

Maximum Horizontal force on structure for maximum Reaction case

Maximum Transverse Moment Case

Braking LoadCo-officient of friction 0.05

Reaction due to Dead Load & SIDL Reaction due to Live load

Hence, total reacion

Therefore, Horizontal forceor

Maximum Horizontal force on structure for maximum Reaction case

Page 18: Well Fdn Design

Right span110 m

BrakingLongitudinal MomentTransverse MomentRight

(T) (T-m) (T-m)

43 50 50947 20 459

43 219 34847 246 297

43 50 50947 20 459

Normal Seismic47 T 9 T

5697 T 5697 T316 T 63 T

6013 T 5760 T

325 T 293 T

-254 T -279 T

325 T 293 T

Normal Seismic47 T 9 T

5697 T 5697 T205 T 41 T

5902 T 5738 T

319 T 292 T

-248 T -278 T

Page 19: Well Fdn Design

319 T 292 T

Normal Seismic43 T 9 T

5697 T 5697 T267 T 53 T

5964 T 5750 T

320 T 292 T

-256 T -279 T

320 T 292 T

Page 20: Well Fdn Design

Calculation for the Water Current force :

Mean Velocity of water current 4.5 m/sK for Piers having circular or semi circular ends 0.66

40.5

27.54

19

Point of Deepest Scour

69.08

Water Current Force on Pier:

= 52 x 0.66 x (40.5+22.32)/2 x (88.08-80) x 4.2

In Transverse direction = (cos 20)^2 x 29.82 = 26.33 t

Acting at a distance (From well Cap top) = (((88.08-82) x 27.54 x 6.08/2) + (0.5 x (40.5-27.54)6.08x(2/3) x6.08))/(6.08 x 0.5(40.5+27.54)))

= 3.23 m

In Longitudinal direction=52 x 1.5 x (40.5+22.32)/2 x (88.08-80) x 10

In Longitudinal Direction = (sin 20)^2 x 161.34

Wate Current force on Well := 52 x0.66 x 22.32/2 x (80-70.08) x 12

In Transverse direction = (cos 20)^2 x 67.17 = 59.31 tIn Longitudinal direction = (sin 20)^2 x 67.17 = 7.86 t

Acting at a Distance (From well Base ) = 38.19 m

Calculation for the Water Current force in Seismic Case :

Page 21: Well Fdn Design

40.5 HFL

26.1 Well Cap top17.1

Scour level in seismic ca 70.98

Water Current Force on Pier:

= 52 x 0.66 x (40.5+20.3)/2 x (88.08-80) x 4.2

In Transverse direction = (cos 20)^2 x 29.19 = 25.78 t

Acting at a distance (From well Cap top) = (((88.08-82) x 26.1 x 6.08/2) + (0.5 x (40.5-26.1)6.08x(2/3) x6.08))/(6.08 x 0.5(40.5+26.1)))

= 3.26 m

In Longitudinal direction=52 x 1.5 x (40.5+20.3)/2 x (88.08-80) x 10

In Longitudinal Direction = (sin 20)^2 x 157.93

Wate Current force on Well := 52 x0.66 x 22.32/2 x (80-70.08) x 12

In Transverse direction = (cos 20)^2 x 54.3 = 47.95 tIn Longitudinal direction = (sin 20)^2 x 54.3 = 6.35 t

Acting at a Distance (From well Base ) = 38.83 m

Normal case At RLLongitudnal force pier base = 18.87 t 85.23Transverse force pier base = 26.33 t 85.23

Longitudnal force well base = 7.86 t 77.69Transverse force well base = 59.31 t 77.69

Seismic caseLongitudnal force pier base = 18.47 t 85.26Transverse force pier base = 25.78 t 85.26

Page 22: Well Fdn Design

Longitudnal force well base = 6.35 t 78.33Transverse force well base = 47.95 t 78.33

Page 23: Well Fdn Design

HFL88.08

Well Cap Top82.00

= 52 x 0.66 x (40.5+22.32)/2 x (88.08-80) x 4.2 = 29.82 t

= (((88.08-82) x 27.54 x 6.08/2) + (0.5 x (40.5-27.54)6.08x(2/3) x6.08))/(6.08 x 0.5(40.5+27.54)))

= 161.34 t

= 18.87 t

= 67.17 t

Page 24: Well Fdn Design

88.08

82.00

= 29.19 t

= (((88.08-82) x 26.1 x 6.08/2) + (0.5 x (40.5-26.1)6.08x(2/3) x6.08))/(6.08 x 0.5(40.5+26.1)))

= 157.93 t

= 18.47 t

= 54.30 t

Page 25: Well Fdn Design

Basic Wind Speed at the bridge location 50 m/s

Hourly mean wind speed & wind pressure ( for basic wind speed of 50 m/s)

H Bridge situated In for 33m/s basic speed Bridge situated In ( for 50 m/s basic wind speed )Plain terrain Terrain with obstructions Plain terrain

Vz (m/s) Pz ( N/m2) Vz (m/s) Pz ( N/m2) Vz (m/s) Pz ( N/m2)

<10 27.8 463.7 17.8 190.5 42.12 1064.5115 29.2 512.5 19.6 230.5 44.24 1176.5420 30.3 550.6 21 265.3 45.91 1264.0025 30.85 570.4 21.9 288.75 46.74 1309.4630 31.4 590.2 22.8 312.2 47.58 1354.9150 33.1 659.2 24.9 370.4 50.15 1513.31

Wind load on deck superstructure ::

Transverse wind force FT = Pz x A1 x G x CD

G = Gust factor = 2CD = Drag Co-efficient 1.44A1 = Exposed area of Deck Superstructure as seen in elevation

Exposed area 957 m2

Hence, transverse wind force on Deck Superstruct 3734.4 kNActing at 26.75 m from pier base

Wind load on Live Load ::

Exposed Area 198G=Gust factor 2

1.2

Hence, transverse wind forces 643.85 kNActing at 31.5 m from pier base

Longitudinal force on LL 160.96 kNActing at 31.5 m from pier base

Wind load on Pier ::

For Pier Cap porrtion

Exposed Area 9.5 m2

0.8G = Gust factor = 2

m2

CD= Drag co-efficient

CD = Drag Co-efficient =

Page 26: Well Fdn Design

Hence, transverse wind force on Pier cap 19.9 kNActing at 20.9 m from pier base

For Pier column (Height from 15-20m)

Exposed Area 19.8

1.4G = Gust factor = 2

Hence, transverse wind force on Pier 70.08 kNActing at 17.43 m from pier base

For Pier column (Height from 10-15m)

Exposed Area 19.8

1.4G = Gust factor = 2

Hence, transverse wind force on Pier 65.23 kNActing at 12.48 m from pier base

For Pier column (Height Upto 10m)

Exposed Area 40

1.4G = Gust factor = 2

Hence, transverse wind force on Pier 119.22 kNActing at 5 m from pier base

Total Transverse wind load on the pier 465.3Total transverse moment at pier base due to wind forces 12322.3Total transverse moment at Well Base due to wind forces 32096

CD = Drag Co-efficient =

CD = Drag Co-efficient =

CD = Drag Co-efficient =

Page 27: Well Fdn Design

Bridge situated In ( for 50 m/s basic wind speed )Terrain with obstructions

Vz (m/s) Pz ( N/m2)

26.97 437.3329.70 529.1631.82 609.0433.18 662.8834.55 716.7137.73 850.32

1101.27.5

5.5

11

9.94

Page 28: Well Fdn Design

10

T Longitudinal force 16.10 TTmLongitudinal moment well base 11912 Tm TmLongitudinal moment pier base 5071 Tm

Page 29: Well Fdn Design

Forces and Moments due to Seismic Force:

i) The span is less than 15 meter.

ii) The total length of the bridge is less than 60 meter.

Zone = V

Span Length = 30.00 > 15

Total Length = 90.00 > 60

Soil Condition at Pile Cap Bottom Level = Hard

Seismic Analysis Required - "Yes", "No" = YES

Hence the bridge is to be designed for Seismic Forces.

Since the bridge is in Zone- V ,vertical component of the seismic force is to be considered to act simultaneously for the design.

= 0.666667

Horizontal seismic force =

Where = Seismic Force to be resisted

D.L = DL of the from the superstructure & substructure upto the scour level

L.L = Live Load

= Horizontal Seismic Coefficient

= (z/2) x (Sa/g) / (R/I)

Z = Zone Factor

I = Importance Factor

= 1.50 Important Bridge

= 1.00 Other Bridge

R = Reduction Factor

= 4.00

(Considering ductile detailing)

F applied at centre of mass of superstructur L =

Dist. of top of pier cap where 1mm x =

deflection required

DL from superstructure:

S.No Item Vertical Load (t)

1 Longitudinal Girders 5114.00

2 Crash Barrier 220.00

3 Wearing Coat 217.800

4 Deck Slab + Cross girder 0.00

5 Hand rail 0.00

5 Footpath 145.20

As per IRC :6-2010 included for seismic force calculation, no calculation of seismic force is required for structures in Zone -II & Zone -III, if the two conditions stated below are satisfied simultaneously.

AV x Ah

Feq Ah x (D.L + L.L)

Feq

Ah

Page 30: Well Fdn Design

5697.00

Youngs Modulus E = 5000 x (40) ^ 0.5 / 1000

Moment of Inertia I =

F = 6 * E * I / (x^2 * (3L - x))

F =

Fundamental time period T = 2 x (D / (1000 x F)) ^0.5

where D =

= DL from the superstructure =

= Live Load =

T =

Average Response Acceleration Coefficient Sa/g = 1.36 / T

For medium soil Sa/g = 2.5 (0.00 <= T <= 0.55)

= 1.36/T (0.55 <= T <= 4.00)

Taking Sa / g = 1.288

Horizontal Seismic Coefficient = 0.18 x 1.28753099728255 x 4 / 1.5

Vertical Seismic Coefficient Vh =

F req. to produce 1mm 'd' at top of pier

D1 + D2

D1

D2

Ah

Page 31: Well Fdn Design

Since the bridge is in Zone- V ,vertical component of the seismic force is to be considered to act simultaneously for the design.

DL of the from the superstructure & substructure upto the scour level

Zone No. Zone factor

V 0.36

IV 0.24

III 0.16

II 0.10

= 29.9 m

= 21.9 m

As per IRC :6-2010 included for seismic force calculation, no calculation of seismic force is required for structures in Zone -II &

Page 32: Well Fdn Design

5000 x (40) ^ 0.5 / 1000 = 31622777 KN/m^2

= 36.95 m^4

6 * E * I / (x^2 * (3L - x)) = 215584 KN/m

= 215.58 KN/mm

2 x (D / (1000 x F)) ^0.5

56970.00 KN

3163.89 KN

= 1.056 sec

= 1.288

(0.00 <= T <= 0.55)

(0.55 <= T <= 4.00)

0.18 x 1.28753099728255 x 4 / 1.5 0.087

0.058

Page 33: Well Fdn Design

Seismic cases for pier base Check Seismic cases for Foundation CheckSeismic Case :: Longitudinal Direction

Sl. No. Load due to

1 Dead load of Superstructure 444.92 104.4

2 SIDL 50.72 104.4

3 Pedestal+Cap 26.74 95.3

4 Pier Column 84.67 91.95

Total seismic force (Longitudinal Direction) 608.00 102.10 Total seismic force (Longitudinal Direction)

Seismic Case :: Transverse Direction

Sl. No. Load due to

1 Dead load of Superstructure 444.92 108.15

2 SIDL 50.72 112.00

3 Pedestal+Cap 26.74 95.3

4 Pier Column 84.67 91.95

5 Live load (Max. Re.) 5.51 113.2

Total seismic force (Transverse Direction) 613.00 105.64 Total seismic force (Transverse Direction)

Sl. No. Load due to

1 Dead load of Superstructure 444.92 108.15

2 SIDL 50.72 112.00

3 Pedestal+Cap 26.74 95.30

4 Pier Column 84.67 91.95

5 Live load(Max. Long) 3.56 113.20

Total seismic force (Transverse Direction) 611.00 105.62 Total seismic force (Transverse Direction)

Sl. No. Load due to

1 Dead load of Superstructure 444.92 108.15

2 SIDL 50.72 112.00

Horizontal load (T)

Acting at (m)

Horizontal load (T)

Acting at (m)

Horizontal load (T)

Acting at (m)

Horizontal load (T)

Acting at (m)

Page 34: Well Fdn Design

3 Pedestal+Cap 26.74 95.30

4 Pier Column 84.67 91.95

5 Live load(Max.Trans) 4.64 113.20

Total seismic force (Transverse Direction) 612.00 105.65 Total seismic force (Transverse Direction)

Seismic Case :: Vertical Direction

Sl. No. Load due to

1 Dead load of Superstructure 296.61

2 SIDL 41.47

3 Pedestal+Cap 17.82

4 Pier Column 56.45

5 Live load (Max. Re.) 3.67

Total Vertical seismic force 417.00

Sl. No. Load due to

1 Dead load of Superstructure 296.61

2 SIDL 41.47

3 Pedestal+Cap 17.82

4 Pier Column 56.45

5 Live load (Max.Long) 2.37

Total Vertical seismic force 415.00

Vertical load (T)

Vertical load (T)

Page 35: Well Fdn Design

Sl. No. Load due to

1 Dead load of Superstructure 296.61

2 SIDL 41.47

3 Pedestal+Cap 17.82

4 Pier Column 56.45

5 Live load (Max Trans) 3.10

Total Vertical seismic force 416.00

Vertical load (T)

Page 36: Well Fdn Design

Seismic cases for Foundation CheckSeismic Case :: Longitudinal Direction

Sl. No. Load due to Acting at (m)

1 Dead load of Superstructure 556.15 104.40

2 SIDL 63.40 104.40

3 Pedestal+Cap 33.42 95.30

4 Pier Column 105.84 91.95

Total seismic force (Longitudinal Direction) 759.00 102.24

Seismic Case :: Transverse Direction

Sl. No. Load due to Acting at (m)

1 Dead load of Superstructure 556.15 108.15

2 SIDL 63.40 112.00

3 Pedestal+Cap 33.42 95.30

4 Pier Column 105.84 91.95

5 Live load (Max. Re.) 6.88 113.20

Total seismic force (Transverse Direction) 766.00 105.67

Sl. No. Load due to Acting at (m)

1 Dead load of Superstructure 556.15 108.15

2 SIDL 63.40 112.00

3 Pedestal+Cap 33.42 95.30

4 Pier Column 105.84 91.95

5 Live load(Max. Long) 4.45 113.20

Total seismic force (Transverse Direction) 764.00 105.59

Sl. No. Load due to Acting at (m)

1 Dead load of Superstructure 556.15 108.15

2 SIDL 63.40 112.00

Horizontal load (T)

Horizontal load (T)

Horizontal load (T)

Horizontal load (T)

Page 37: Well Fdn Design

3 Pedestal+Cap 33.42 95.30

4 Pier Column 105.84 91.95

5 Live load(Max.Trans) 5.81 113.20

Total seismic force (Transverse Direction) 765.00 105.65

Seismic Case :: Vertical Direction

Sl. No. Load due to

1 Dead load of Superstructure 370.77

2 SIDL 51.84

3 Pedestal+Cap 22.28

4 Pier Column 70.56

5 Live load (Max. Re.) 4.59

Total Vertical seismic force 521.00

Sl. No. Load due to

1 Dead load of Superstructure 370.77

2 SIDL 51.84

3 Pedestal+Cap 22.28

4 Pier Column 70.56

5 Live load (Max.Long) 2.97

Total Vertical seismic force 519.00

Vertical load (T)

Vertical load (T)

Page 38: Well Fdn Design

Sl. No. Load due to

1 Dead load of Superstructure 370.77

2 SIDL 51.84

3 Pedestal+Cap 22.28

4 Pier Column 70.56

5 Live load (Max Trans) 3.87

Total Vertical seismic force 520.00

Vertical load (T)

Page 39: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 7426 344

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 7314 338

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 7376 339

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 7426 360

5 Case 2 + Wind Load 7314 354

6 Case 3 + Wind Load 7376 355

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7298 919

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7298 494

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7590 494

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7275 918

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7275 493

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7565 493

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7288 918

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7288 493

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7579 493

Determination of loads at Pier Base ::

Vertical Load (T)

Determination of loads at Well Base ::

Page 40: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 12782 352

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 12670 346

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 12733 347

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 12782 352

5 Case 2 + Wind Load 12670 346

6 Case 3 + Wind Load 12733 347

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12685 1077

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12685 546

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13303 546

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12662 1076

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12662 545

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13026 545

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12675 1076

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12675 545

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13039 545

Load Cases

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 12782 362

Vertical Load (T)

Determination of Resultant loads at Well Base ::

Vertical Load (T)

Resultant Hor Force(T)

Page 41: Well Fdn Design

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 12670 356

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 12733 357

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 12782 362

5 Case 2 + Wind Load 12670 356

6 Case 3 + Wind Load 12733 357

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12685 1119

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12685 1001

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13303 624

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12662 1118

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12662 999

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13026 623

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 12675 1118

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 12675 1000

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 13039 623

Page 42: Well Fdn Design

Transverse Force(T)

26 345 7361 544

26 339 7452 382

26 340 7279 594

492 609 12432 12866

492 606 12523 12704

492 606 12350 12916

210 943 18849 4523

639 807 10294 14665

210 537 10294 4523

209 942 18872 4473

637 805 10317 14577

209 535 10317 4473

209 942 18833 4528

638 806 10278 14660

209 536 10278 4528

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Page 43: Well Fdn Design

Transverse Force(T)

86 362 22275 3928

86 356 22112 3766

86 357 21982 3978

86 362 34187 36024

86 356 34024 35862

86 357 33894 36074

304 1119 67482 16477

840 1001 34150 51958

304 624 34150 16477

303 1118 67462 16386

838 999 34130 51730

303 623 34130 16386

303 1118 67423 16463

839 1000 34091 51886

303 623 34091 16463

28791

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Resultant Moment(Tm)

Page 44: Well Fdn Design

28603

28511

55836

55606

55671

75637

68348

44090

75596

68147

44032

75576

68256

44030

Page 45: Well Fdn Design

LOAD FACTOR

DL+SIDL 1.0

LIVE LOAD 1.0

BRAKING 1.0

WATER CURRENT 1.0

WIND 1.0

SEISMIC 1.0

Page 46: Well Fdn Design

Co-efficient of Active Earth Pressure

For a Vertical wall α = 90Soil Property,

Φ = 30δ = 20

Sloping Angle of backfill, β = 0

therefore,

0.297

Co-efficient of Passive Earth Pressure

therefore,

6.105

**The Co-efficients for Active & Passive earth pressure has been determined using Coulomb's Earth Pressure Theory.

ka = sin2(α+Φ)

(sin2α*sin(α-δ)(1+√(sin(Φ+δ)*sin(Φ-β)/(sin(α-δ)*sin(α+β)))2

ka =

kp = sin2(α-Φ)

(sin2α*sin(α+δ)(1-√(sin(Φ+δ)*sin(Φ-β)/(sin(α+δ)*sin(α+β)))2

kp =

Page 47: Well Fdn Design

Determination of Capacity Of Well Foundation as per IRC 45-1972 ::

Check for Case Number Case 11Input Data:

Total Vertical Load acting at the Base of the WellNet External horizontal load acting on the well at Scour levelNet applied external moment about the base of the wellBulk Density of soilAllowable Bearing Capacity of soil

Angle of Internal Friction ( Φ ) Angle of Wall Friction (δ)

Coefficient of Active Earth PressureCoefficient of Passive earth Pressure

Elastic Analysis:

Depth of well below Scour Level (D) = 29.58 m

= 10.08 m (Shape Factor for Circular well is 0.9)

= 21740.71 m4

= 772.40 m4

= 1µ' = tan δ = 0.3640α = Diameter/ (π*D) = 0.1184

Therefore, I = = 24386.44 m4

CHECK:Applied horizontal load on Well = 999.1 TH > M ( 1+ µµ')/r - µW

r = 16.59 mµ = tan Φ = 0.5774

therefore, H should be greater than - 2339.6 T OK

&

L = Projected width of the soil mass offering resistancce multiplied by appropriate value of shape factor

Iv = Moment of inertia of the projected area in elevation of the soil mass offering resistance

Ib = Moment of inertia of base about the axis normal to direction of horizontal forces passing through its CG

m = KH/K

I = Ib + m. Iv ( 1+ 2µ'α)

Page 48: Well Fdn Design

&

H < M ( 1- µµ')/r + µW

Therefore, H should be less than = 10555.1 T OK

Check for elastic state:

RHS Value 4.65LHS Value 2.79 OK

Determination of base pressure :

= (W-µ'P)/A + M B/(2I)

= (W-µ'P)/A - M B/(2I)

P = M/r = 4107.74A= Area of base of well = 95.03 m2

Therefore, = 133 T/m2 OK

& = 102 T/m2 OK

mM/I < γ (Kp-Ka)

σ1

σ2

σ1 =

σ2

Page 49: Well Fdn Design

OK OK

Case Vertical Load (T) Horizontal Load (T)

Case 1 12782 362= 12662.2 T Case 2 12670 356= 999.1 T Case 3 12733 357= 68146.9 Tm Case 4 12782 362= 1.8 T/m3 Case 5 12670 356= 170 T/m2 Case 6 12733 357

Case 7 12685 111930 Case 8 12685 100120 Case 9 13303 624

Case 10 12662 11180.297 Case 11 12662 9996.105 Case 12 13026 623

Case 13 12675 1118Case 14 12675 1000Case 15 13039 623

(Shape Factor for Circular well is 0.9)

Page 50: Well Fdn Design

Moment (Tm)

287912860328511558365560655671756376834844090755966814744032755766825644030

Page 51: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 8216 430

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 8076 422

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 8154 424

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 8216 450

5 Case 2 + Wind Load 8076 442

6 Case 3 + Wind Load 8154 444

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 8056 1149

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 8056 617

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 8421 617

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 8027 1148

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 8027 616

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 8390 616

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 8043 1148

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 8043 616

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 8407 616

Determination of loads at Pier Base ::

Vertical Load (T)

Determination of loads at Well Base ::

Page 52: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 14108 440

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 13968 432

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 14046 433

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 14108 440

5 Case 2 + Wind Load 13968 432

6 Case 3 + Wind Load 14046 433

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13987 1346

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13987 682

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14759 682

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13958 1345

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13958 681

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14412 681

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13974 1345

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13974 681

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14429 681

Load Cases

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 14108 453

Vertical Load (T)

Determination of Resultant loads at Well Base ::

Vertical Load (T)

Resultant Hor Force(T)

Page 53: Well Fdn Design

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 13968 445

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 14046 446

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 14108 453

5 Case 2 + Wind Load 13968 445

6 Case 3 + Wind Load 14046 446

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13987 1398

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13987 1252

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14759 780

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13958 1397

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13958 1249

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14412 779

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 13974 1397

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 13974 1250

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 14429 779

Page 54: Well Fdn Design

Transverse Force(T)

33 431 9201 680

33 424 9315 477

33 425 9099 742

615 762 15539 16083

615 757 15654 15880

615 758 15438 16145

262 1179 23562 5653

798 1009 12867 18331

262 671 12867 5653

261 1177 23590 5592

796 1007 12896 18221

261 669 12896 5592

262 1178 23541 5660

797 1008 12847 18324

262 669 12847 5660

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Page 55: Well Fdn Design

Transverse Force(T)

107 453 25243 4277

107 445 25083 4075

107 446 24913 4339

107 453 40133 44397

107 445 39973 44195

107 446 39803 44459

379 1398 76436 18707

1050 1252 38700 59093

379 780 38700 18707

379 1397 76419 18597

1047 1249 38683 58822

379 779 38683 18597

379 1397 76370 18690

1048 1250 38634 59010

379 779 38634 18690

32417

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Resultant Moment(Tm)

Page 56: Well Fdn Design

32227

32103

66662

66405

66488

85507

77452

49799

85464

77216

49736

85439

77347

49733

Page 57: Well Fdn Design

LOAD FACTOR

DL+SIDL 1.10

LIVE LOAD 1.25

BRAKING 1.25

WATER CURRENT 1.25

WIND 1.25

SEISMIC 1.25

Page 58: Well Fdn Design

Determination of Capacity Of Well Foundation as per IRC 45-1972 ::

Check for Case Number Case 15Input Data:

Total Vertical Load acting at the Base of the WellNet External horizontal load acting on the well at Scour levelNet applied external moment about the base of the wellBulk Density of soilAllowable Bearing Capacity of soil

Angle of Internal Friction ( Φ ) Angle of Wall Friction (δ)

Coefficient of Active Earth PressureCoefficient of Passive earth Pressure

Ultimate Resistance Method:

Check that:

LHS Value = 151.83 T/m2RHS Value = 751.00 T/m2 OK

D/B = 2.69 Q = 0.64

= 35188.1 Tm

Side resisting moment

= 121220.2 Tm

= 18507.4 Tm

Hence, Total Moment about the plane of rotation

W/A < σu/2

Determination of Base resisting moment Mb at the plane of rotation

Mb = Q W B tan Φ

Hence, Base resisting moment Mb = ( For circular well, a shape Factor of 0.6 Should be multiplied)

Ms = 0.10 γ D3 (Kp-Ka) L

Ms =

Determination of resisting moment due to friction at front & back faces (Mf) about the plane of rotation

Mf = 0.11 γ (Kp-Ka) B2 D2 sinδ

Mf =

= 0.7* (Mb+Ms+Mf)

D28
As per geotech report
Page 59: Well Fdn Design

Therefore total resisting moment = 122441 TmApplied moment = 49733 Tm

Page 60: Well Fdn Design

Determination of Capacity Of Well Foundation as per IRC 45-1972 ::Ok 72708

= 14428.9 T= 779.1 T= 49732.6 Tm= 1.8 T/m3= 140 T/m2

3020

0.2976.105

Case Vertical Load (T)

Case 1 14108Case 2 13968

Case 3 14046Case 4 14108Case 5 13968Case 6 14046Case 7 13987

Case 8 13987Case 9 14759

Case 10 13958Case 11 13958Case 12 14412

D/B Q Case 13 139740.5 0.41 Case 14 139741 0.45 Case 15 14429

1.5 0.52 0.56

2.5 0.64

( For circular well, a shape Factor of 0.6 Should be multiplied)

Determination of resisting moment due to friction at front & back faces (Mf) about the plane of rotation

Page 61: Well Fdn Design

Ok

Page 62: Well Fdn Design

Horizontal Load (T) Moment (Tm)

453 32417445 32227

446 32103453 66662445 66405446 66488

1398 85507

1252 77452780 49799

1397 854641249 77216779 49736

1397 854391250 77347779 49733

Page 63: Well Fdn Design

Steining Stress check (As RCC Hollow circular section)

( Refer Chapter 25 of book by V.K.Raina)

Load case = Case 15

Outer InnerDiameter of Section considered = 1000 600 CmClear Cover for reinforcement = 7.5 7.5 CmTotal cover = 10.3 10.3 Cmmodular ratio = 10Assume neutral axis depth (x) = 110.0Vertical Load (t) 13039.0Moment (tm) 44030.3

X / d = 0.10 0.20

A = 0.88 0.76B = 0.04 0.11C = 0.00 0.00

X ' = 440 228A1 = 40000 39600I = 0 0

Aeff = 19294

e' = 444.23e - e ' = -106.55

Ieff = 3400894772.58609

Neutral axis depth below Cgeff = -1654.26

Assumed value was = 334.23

So the difference = -1988.49

Compressive stress in concrete = 653.0 Kg/cm2

Tensile stress in steel = 10573 Kg/cm2

Normal CasePermissable stress in concrete = 116.7 Kg/cm2

CASE 1-3Permissable stress in Steel = 2400 Kg/cm2

Wind CasePermissable stress in concrete = 155.2 Kg/cm2

CASE 4-6Permissable stress in Steel = 3192 Kg/cm2

Page 64: Well Fdn Design

Seismic casePermissable stress in concrete = 175.0 Kg/cm2

CASE 7-15Permissable stress in Steel = 3600 Kg/cm2

Page 65: Well Fdn Design

Reinforcement DetailsOuter 32 mm dia 200 nos 160849.5 1608.5 cm2 205.5429Inner 25 mm dia 100 nos 49087.4 490.9 cm2 129.6952

Table From V K Raina ( Pg - 391 )x/d A B C0 1 0 0

0.1 0.88 0.04 00.2 0.76 0.11 00.3 0.65 0.2 0.020.4 0.52 0.3 0.05

Case Vertical Load (T) Moment (Tm)

Case 1 12782 28791 2.252 2.094 -0.158Case 2 12670 28603 2.257 2.118 -0.140Case 3 12733 28511 2.239 2.089 -0.150Case 4 12782 55836 4.368 5.240 0.871Case 5 12670 55606 4.389 5.290 0.902Case 6 12733 55671 4.372 5.262 0.890Case 7 12685 75637 5.963 5.117 -0.846Case 8 12685 68348 5.388 4.735 -0.653Case 9 13303 44090 3.314 2.953 -0.361Case 10 12662 75596 5.970 5.129 -0.842Case 11 12662 68147 5.382 4.731 -0.651Case 12 13026 44032 3.380 3.036 -0.345Case 13 12675 75576 5.963 5.119 -0.843Case 14 12675 68256 5.385 4.734 -0.651Case 15 13039 44030 3.377 3.031 -0.346

A = 78.41 m2Z = 144.60 m3

P/A+M/Z = 470.79 T/m2P/A-M/Z = -138.221 T/m2

Page 66: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 7426 344

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 7314 338

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 7376 339

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 7426 360

5 Case 2 + Wind Load 7314 354

6 Case 3 + Wind Load 7376 355

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7298 919

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7298 494

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7590 494

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7275 918

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7275 493

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7565 493

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 7288 918

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 7288 493

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 7579 493

Determination of loads at Pier Base ::

Vertical Load (T)

Determination of loads at Well Base ::

Page 67: Well Fdn Design

Load Cases Longitudinal Force(T)

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 9196 352

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 9085 346

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 9147 347

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 9196 352

5 Case 2 + Wind Load 9085 346

6 Case 3 + Wind Load 9147 347

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9228 1077

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9228 546

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9846 546

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9205 1076

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9205 545

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9568 545

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9218 1076

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9218 545

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9582 545

Load Cases

Load Combination for Normal Load Case ::

1 Case 1 : DL+SIDL+FPLL+LL1+WCF 9196 362

Vertical Load (T)

Determination of Resultant loads for steining stress check ::

Vertical Load (T)

Resultant Hor Force(T)

Page 68: Well Fdn Design

2 Case 2 : DL+SIDL+FPLL+LL2+WCF 9085 356

3 Case 3 : DL+SIDL+FPLL+LL3+WCF 9147 357

Load Combination for Wind Load Case ::

4 Case 1 + Wind Load 9196 362

5 Case 2 + Wind Load 9085 356

6 Case 3 + Wind Load 9147 357

Load Combination for Seismic Load Case ::

7 Case 1 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9228 1119

8 Case 1 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9228 1001

9 Case 1 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9846 624

10 Case 2 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9205 1118

11 Case 2 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9205 999

12 Case 2 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9568 623

13 Case 3 + SL(L) + 0.3*SL(V) + 0.3*SL(T) 9218 1118

14 Case 3 + SL(T) + 0.3*SL(L) + 0.3*SL(V) 9218 1000

15 Case 3 + SL(V) + 0.3*SL(L) + 0.3*SL(T) 9582 623

Page 69: Well Fdn Design

Transverse Force(T)

26 345 7361 544

26 339 7452 382

26 340 7279 594

492 609 12432 12866

492 606 12523 12704

492 606 12350 12916

210 943 18849 4523

639 807 10294 14665

210 537 10294 4523

209 942 18872 4473

637 805 10317 14577

209 535 10317 4473

209 942 18833 4528

638 806 10278 14660

209 536 10278 4528

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Page 70: Well Fdn Design

Transverse Force(T)

86 362 13793 1863

86 356 13774 1701

86 357 13620 1913

86 362 25705 33959

86 356 25686 33797

86 357 25532 34009

304 1119 42884 10604

840 1001 21760 33764

304 624 21760 10604

303 1118 42887 10527

838 999 21764 33582

303 623 21764 10527

303 1118 42848 10597

839 1000 21725 33715

303 623 21725 10597

19260 5.46 362 0 831

Net Horizontal force (T)

Longitudinal Moment (Tm)

Transverse moment (Tm)

Resultant Moment(Tm)

h = Depth from scor level where

shear is zero

Shear due to (Kp/2-Ka) Pressure

= 0.5 x (kp-ka) x Gsub x h2 x D0

Moment due to Passive Pressure =

0.5 x (kp-ka) x Gsub x 0.42 x h3 x D0

Page 71: Well Fdn Design

19240 5.42 356 0 811

19112 5.43 357 0 814

48187 4.84 362 0 576

48061 4.80 356 0 562

48134 4.80 357 0 564

47219 8.50 1119 0 3128

43692 8.04 1001 0 2649

29075 6.35 624 0 1304

47209 8.50 1118 0 3123

43549 8.03 999 0 2640

29048 6.34 623 0 1300

47187 8.50 1118 0 3124

43637 8.04 1000 0 2643

29043 6.34 623 0 1301

Steining to be checked at RL =Normal case = 63.62 m Seismic case = 62.48 m

Page 72: Well Fdn Design

LOAD FACTOR

DL+SIDL 1.0

LIVE LOAD 1.0

BRAKING 1.0

WATER CURRENT 1.0

WIND 1.0

SEISMIC 1.0