watchman: a water cherenkov monitor for antineutrinos ......the watchman collaboration 3 uc davis uc...

25
Defense Nuclear Nonproliferation Lawrence Livermore National Laboratory Sandia National Laboratories Adam Bernstein Lawrence Livermore National Laboratory May 01 2014 WATCHMAN Collaboration Meeting 1 WATCHMAN: a WAT er CH erenkov M onitor for AN tineutrinos Meeting Goals Project Status

Upload: others

Post on 16-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Adam Bernstein Lawrence Livermore National Laboratory May 01 2014 WATCHMAN Collaboration Meeting

1

WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos

Meeting Goals Project Status

Page 2: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Meeting Goals

Today Thursday May 1 •  Bring collaborators and guests up to date on WATCHMAN

scope and status of all tasks •  Discuss reactor and supernova physics, and large Cherenkov

detector R&D potential Tonight – Banquet at Sal’s Restaurant in Blacksburg Tomorrow Friday May 2 Morning: KURF Tour and talks for WATCHBOY/MARS detectors Afternoon: Review and discuss ISODAR beam physics Throughout Consider synergies with ISODAR, ANNIE, and other physics efforts

2

Page 3: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

The WATCHMAN collaboration

3

UC Davis

UC Berkeley

UC Irvine

U of Hawaii

Hawaii Pacific

A. Bernstein, N. Bowden, S. Dazeley, D. Dobie

P. Marleau, J. Brennan, M. Gerling, K. Hulin, J. Steele, D. Reyna K. Van Bibber, K. Vetter, C. Roecker, T. Shokair R. Svoboda, M. Askins, M. Bergevin, Daine Danielson Students getting WATCHMAN-related Ph.D. s Undergraduate

J. Learned, J. Maricic S. Dye M. Vagins, M. Smy S.D. Rountree, B. Vogelaar, C. Mariani, Patrick Jaffke

World  Leaders  in  the  Development  and  Use  of  Large  Water  Cherenkov  Detectors  

2  Na;onal  Laboratories  6  Universi;es  25  collaborators    15  physicists  5  engineers    2  Post-­‐docs  3  Ph.Ds  1  Undergrad  

We need to add collaborators if full project goes forward

Page 4: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Remote Reactor Monitoring is an NNSA Strategic Goal

4

§  Now: 3 year scoping project with 4 Tasks

§  2014-15 Decision point to deploy WATCHMAN, a kiloton scale antineutrino detector, ~10 km from a US reactor

§  Proposed joint funding with Office of Science, High Energy Physics (DOE-SC-HEP)

2015 Federal budget defers start to 2016 (we believe)

Page 5: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Top level view of schedule

A.  Low risk option, 2016 start: – 2015 Intermediate Design, continued KURF data-

taking – Conservative 4 year installation plan to reach

operational state – 2016-2019

B.  High risk option: October 2014 start: – Gd-H2O fill and partial instrumentation with 50% of

PMTs by December 2016 to observe reactor antineutrinos by the original Strategic Plan date

– Highly constrained schedule with no contigency

5

Page 6: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

A budget-informed guess about project timing

6

Page 473

Page 7: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Post-WATCHMAN goal: find/exclude hidden 10 MWt reactors at up to ~1000 km

7

Goal

Detector target mass standoff

5 events in 1 year from a 10 MWt reactor (negligible background, 50% efficiency, includes oscillations) >99% exclusion if 0 events observed, 5 expected Zero false positive rate for zero expected, 5 observed

24,000 ton

100 km

2 Megaton

1000 km

Global  reactor  antineutrino  fluxes  simulation  courtesy  Jocher/Learned  NGA/UH  

•  Gadolinium-­‐doped  (light)  water  is  the  most  viable  option  for  scaling  to  the  largest  sizes  

•  Strong  synergy  with  fundamental  physics  research  –  Many  groups/countries  are  already  investing  in  this  technology    

•  SuperKamiokande  is  today’s  largest  comparable  detector  -­‐  50,000  tons  of  H2O  

Science  &  Global  Security,  18:127–192,  2010  

Page 8: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

WATCHMAN Technical Goals

1+4 year Construction and Operation Phase (2015, 2016-2019) •  Demonstrate sensitivity to reactor ON/OFF transition at ~10 km standoff, with

at most 30 days of ON and OFF data, with at least 99% confidence, with a kiloton scale detector.

•  Demonstrate innovative, scalable, cost-effective Gd-H2O Cherenkov technology, pioneered and patented by WATCHMAN collaborators

•  Provide a data-sharing and joint funding model for the scientific community to make use of antineutrino data from WATCHMAN and future nonproliferation detectors

8

3 year Scoping Phase (2012-2014) 1.  Consider Use and Gap Analysis 2.  Select a Site 3.  Create a Preliminary Design, Budget and Schedule 4.  Measure of Shallow Depth Backgrounds – October deliverable

May 19 deliverables

Page 9: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

A new Task: study relevance for nonproliferation

•  Similar to other joint global nonproliferation and science efforts –  CTBT’s International Data Center regularly shares seismic

data with the science community (Intl. Science Ctr.) – infrasound and hydroacoustic also shared

–  The SESAME synchroton project in Jordan – “"SESAME…will serve as a beacon, demonstrating how shared scientific initiatives can help light the way towards peace” 45 Nobel Laureates

9

•  WATCHMAN will demonstrate a capability to exclude or discover undeclared reactors with high confidence in a wide geographical region

•  Small reactor 10 MWt standard: 4 kg Pu/year à 0.5 IAEA Significant Quantity •  New Task: Gap analysis for alternative technologies, use case for antineutrino monitor

–  Radionuclide sensing and satellites are the current open-source methods for reactor finding

–  Possible relevance to Treaties, Agreements, Confidence Building Measures is now being studied – Not relying only the Strategic Plan goal for justification

Page 10: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Preferred and Backup sites identified

10

Preferred Backup Reactor Location PERRY Reactor

Perry Ohio Advanced Test Reactor,

Idaho Falls, Idaho

Thermal Power (MWt) 3875 120

Detector Location Morton Salt/IMB mine (!) Painesville, Ohio

New excavation Idaho National Laboratory

Standoff 13 km - the only reactor in the US at a suitable distance from a deep mine

1 km

Overburden (mwe) 1430 ~360

Approval status Morton Salt has approved installation !

INL has approved excavation studies

Physics potential Greater physics potential due to greater depth

Page 11: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Antineutrino signal and background

11

n    (100-­‐200  MeV)  

n  

n  

µ

µ

9Li  β

Signal  in  1  kiloton  of  water  

n  νe p  

Σγ  ~  8  MeV  

511  keV  

511  keV  e+  

Gd  

τ  ~  30  µs  prompt e+ signal + n capture on Gd

•  Exactly  two  Cerenkov  flashes  •  within  ~100  microseconds    •  Within  a  cubic  meter  voxel  

‘The  antineutrino  heartbeat’  

Backgrounds: 1.  Real antineutrinos 2.  Random event pair coincidences 3.  Muon induced high energy neutrons 4.  Long-lived radionuclide decays

Page 12: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Full Signal and Background Monte Carlo using GEANT/RMSIM

12

Depth Dependent per day •  Fast Punch-through Neutrons ~1 •  Radionuclides à not well known ~1-10 Depth-Independent •  PMT and Rock Gamma/Neutrons <1 ?

Other Reactors <1 Geoantineutrinos negligible ___________________________________________ Total Background ~10 Perry Reactor Signal 8-12

Page 13: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Preliminary Design Task

13

•  Largest possible cylindrical tank at Morton - 3:1 kTon total:fiducial

•  Stainless tank, assembled in place

•  PMTs mounted on a frame in the tank. - 5500 Target PMTS looking “in” - 480 Veto PMTs on same frame looking “out”

Drift layout at Morton Salt Mine Close-up of Veto PMT Wall

78 feet

Page 14: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

We’re not alone: other large water detector R&D

Detector EGADS WATCHMAN Hyper-K

Status Ongoing 2016 start 2021 start (approx.) Mass (ton) 200 1,000 - 10,000 560,000

Type Gd-WCD Gd-WCD Pure H2O or Gd-WCD

Purpose Measure background materials,energy threshold Too small to see reactor antineutrinos

Remotely detect reactor antineutrinos – beam and reactor physics potential

Neutrino oscillations, proton decay, supernovae… WATCHMAN would demonstrate Gd option for HyperK or other future big detectors

14

Page 15: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Physics Synergy WATCHMAN will provide: •  The U.S.’s only supernova watch detector

•  A demonstration of technologies for future large neutrino detectors (advanced PMTs, water-based scintillator…)

15

Requires nearby neutrino beam

Requires upgrade to scint.

DOE Office of Science co-investment is critical to the project’s success ‘Positive dual-use’ aspect strengthens the long term case for remote monitoring

WATCHMAN may also provide: •  a measurement of the ordering of the neutrino masses

– a major question for 21rst century physics

e,µ,τ•  A search tool for a proposed 4th neutrino flavor

( are the only currently known flavors) •  A search tool for non-standard neutrino interactions

Page 16: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Background Measurements at the Kimballton Underground Research Facility

16

•  Drive  in  access  don  to    1500  foot  depth    

•  First-­‐ever  continuous  measurement  as  a    function  of  depth  

•  Most  important  at  shallow  depths    (300  feet,  alternative  site)    

•  Final  measurement    will  be  at  the  1400  foot    depth  of  preferred  site   Multiplicity and Recoil Spectrometer

for fast neutron energy spectrum

Small version of WATCHMAN (WATCHBOY) to measure muogenic radionuclide backgrounds

Time between muons in WATCHBOY

Entering KURF

Page 17: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Next Steps

May 2014: •  Provide detailed information to DNN as part of their

review process – May 27 review •  Generate white paper on WATCHMAN physics

potential for DOE Office of Science – submit full proposal

•  Summer 2014: Possible reference in HEP advisory committee long term planning report (‘P5 committee’)

October 2014: •  Publish first experimental results on depth

dependent backgrounds

17

Page 18: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Backup slides

18

Page 19: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Prior work and technical challenges

•  2004 KamLAND project: Japanese team demonstrates 400 km detection of reactor antineutrinos, but using an expensive and difficult-to-scale technology (oil-based liquid scintillator)

•  2012 LLNL DNN funded project – first-ever demonstration of time-tagged neutron detection in water (1 ton detector)

•  2014 EGADS project: WATCHMAN collaborator Vagins demonstrates long term recirculation/purification of 200 tons of Gd-doped water (engineering prototype, no antineutrino sensitivity)

•  All individual steps have been separately tested to high Technical Readiness: integration is the key technical challenge

19

Page 20: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Historical examples indicate that satellite imagery is a favored tool

20

Country(and(location(

Reactor(characteristics(

Discovered(before(

complete?(

NPT(party(at(the(time(of(

discovery?(

(obligated(to(have(declared(the(reactor(?(

How(was(the(reactor(discovered?(

DPRK,&Yongbyon& ~25&MWt& Yes& No& No& satellite&imagery&at&known&Yongbyon&facilityi&

Algeria,&Birine& 15&MWt&& Yes& No& No& news&article,ii&claims&construction&had&been&observed&in&satellite&imagery.&China&reportedly&notified&the&U.S.&of&its&intention&

to&supply&the&reactor.iii&Pakistan,&Khushab&

~50&MWt& Yes&?& No& No& Announced&by&Pakistan&in&April&1998,iv&but&open&sources&references&suggest&it&was&known&to&U.S.&intelligence&before&then.v&

Iran,&Arak& 40&MWt&& Yes& Yes& No& officially&announced&4Q2004&vi&Q&publicly&disclosed&by&NCRI&in&August&2002.vii&&U.S.&Intelligence&discovery&may&have&preceded&

that&date&Syria,&Dayr&Alzour& 25&MWt&?&& Yes& Yes& Yes& 4Q2008&DNI&briefing&showed&satellite&and&

ground&photography.viii&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&i&Don&Oberdorfer,The&Two&Koreas,&p.&25;&see&also&declassified&reports&at&http://www2.gwu.edu/~nsarchiv/NSAEBB/NSAEBB87/&&ii&Bill&Gertz,&Washington&Times,&11&April&1991.&iii&&Letter,&Ambassador&Richard&Kennedy&to&Editor&of&the&New&York&Times,&20&November&1991&(http://www2.gwu.edu/~nsarchiv/nukevault/ebb228/index.htm)&

iv&"Pakistan's(Indigenous(Nuclear(Reactor(Starts(Up,"(Islamabad,(The$Nation,(April(13,(1998.&v&Mark&Hibbs,&"Bhutto&May&Finish&Plutonium&Reactor&without&Agreement&on&Fissile&Stocks,”&Nucleonics&Week,&October&1994.&vi&Jeffrey&T.&Richelson,&Spying&on&the&Bomb,&p.&504&.&vii&National&Council&of&Resistance&on&Iran,&“Information&on&Two&Top&Secret&Nuclear&Sites&of&the&Iranian&Regime&(Natanz&and&Arak),”&pp.&1Q2&viii&"Background&Briefing&with&Senior&U.S.&Officials&on&Syria's&Covert&Nuclear&Reactor&and&North&Korea's&Involvement,"&Office&of&the&Director&of&National&Intelligence,&24&April&2008,&available&at&the&Council&on&Foreign&Relations&Website,&www.cfr.org.&&

Page 21: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Siting Study: Map of US Power Reactors

21

Page 22: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Siting Study: US Reactors + Active Mines

22

Page 23: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Two Possible Use Cases - Large Detectors

23

Exclusion: Ensure no reactors are operating at 10-1000 km standoff

Absence of undeclared reactors: ensure only declared reactors are

operating at a known site

Ø  Simplest scenario •  Searches for excess antineutrino

signal above background

Ø  Most sensitive •  Low background levels

Ø  Best suited to finding or excluding new reactors in areas without existing reactors

Ø  Potential countermeasures are

politically or financially costly •  Build a declared reactor near the

detector •  Physically attack the detector

Ø  More complex •  Requires knowledge of signal

from declared reactors

Ø  Higher backgrounds due to other reactors

Ø  Adjusting power of declared reactors is a potential countermeasure

We are not yet claiming significance for any particular Treaty or Agreement

Page 24: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Reactor Antineutrino Emissions

The famously low antineutrino interaction probability is good and bad

ü Detectable at long ranges ü Effectively impossible to falsify, disguise, or shield without another

reactor ☓ Requires big detectors for remote sensitivity

24

•  1021 fissions per second in a 3,000-MWt reactor

•  6 antineutrinos per fission from beta decay of neutron-rich daughters

Page 25: WATCHMAN: a WATer CHerenkov Monitor for ANtineutrinos ......The WATCHMAN collaboration 3 UC Davis UC Berkeley UC Irvine U of Hawaii Hawaii Pacific A. Bernstein, N. Bowden, S. Dazeley,

Defense Nuclear Nonproliferation

Lawrence Livermore National Laboratory Sandia National Laboratories

Technical approach

•  For the first time: Use water Cherenkov technology to detect low-energy reactor antineutrinos (1-10 MeV).

•  0.1% doping with neutron capture agent Gadolinium provides good ’tagging’ efficiency for the neutron - essential for background rejection

•  High Quantum Efficiency PMTs enable sensitivity to the ~10-100 photoelectron signals arising from the positron and neutron created by antineutrino interactions on protons in water

25

νe + p à e+ + n

n νe p

Σγ ~ 8 MeV

511 keV 511 keV e+

Gd

τ ~ 30 µs prompt e+ signal + n capture on Gd