vle - tm - may2011 (1)

Upload: fakhrul-razi

Post on 05-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 VLE - TM - May2011 (1)

    1/19

    Dr.T.M 1

    Concept of EquilibriumThe separation process considered arebased on the equilibrium stage concept

    i.e. the streams leaving a stage are inequilibrium

    What do we meant byEquilibrium?

  • 7/31/2019 VLE - TM - May2011 (1)

    2/19

    Dr.T.M 2

    The objective is:

    To understand the concept of equilibrium

    Able to estimate the concentration in vapour and liquid

    phases

    Chapter : 2

  • 7/31/2019 VLE - TM - May2011 (1)

    3/19

    Dr.T.M 3

    Vapour-Liquid Equilibrium

    Consider a vapor and liquid that are in contactwith each other as shown:

    vapor condensing + liquid vaporizing

    Pliquid , Tliquid

    Pvapour , Tvapour

    A B

    A B

  • 7/31/2019 VLE - TM - May2011 (1)

    4/19

  • 7/31/2019 VLE - TM - May2011 (1)

    5/19

    Dr.T.M 5

    Phase Rule and Equilibrium

    F = C - P + 2

    degrees

    of freedom

    number

    of components

    number

    Of phases

    Degrees of freedom is the number of intensive variables that must

    be specified to define the equilibrium state of a system.

  • 7/31/2019 VLE - TM - May2011 (1)

    6/19

    Dr.T.M 6

    Intensive variables: P, T, or molefraction which do not depend on the total

    amount of material presentExtensive variables: number of moles,flow rate, volume, which depend on the

    amount of material present

  • 7/31/2019 VLE - TM - May2011 (1)

    7/19

  • 7/31/2019 VLE - TM - May2011 (1)

    8/19Dr.T.M 8

    Vapour-Liquid Equilibrium

    100oC

    Tbp

    1 atm

    One ComponentExample:Water

    2 variables: T and P

    V&L

    T

    P

  • 7/31/2019 VLE - TM - May2011 (1)

    9/19Dr.T.M 9

    Two Components Example: A and B

    - 3 variables: T, P and compositionBoiling Point Diagram @Txy diagram at P= 1 atm

    L

    V

    Tbp of A

    V&L

    Tbp of B

    mole fraction A

    Tdew

    Tbp

    bubble pointwhen heating

    a subcooled liquid, the

    temperature at which the firstbubble forms

    dew pointwhen cooling a

    superheated vapour, the

    temperature at which the first

    drop of dew forms

  • 7/31/2019 VLE - TM - May2011 (1)

    10/19Dr.T.M 10

    x

    tie line

    y

    T

    Two ComponentsA and B

    x = mole fraction of more

    volatile component in

    liquid phase

    y = mole fraction of more

    volatile component in

    vapour phase

  • 7/31/2019 VLE - TM - May2011 (1)

    11/19Dr.T.M 11

    Vapour-Liquid Equilibrium

    Raoults law: pi=xi P*i

    Ideal Solutions Obey Raoults Law

    Consider an ideal solution in equilibrium with an ideal gas to

    predict the Txy diagram. Assume we are at some temperaturefor which both phases co-exist at equilibrium

    Let P = total pressure

    P*i= vapour pressure of pureI

    xi, yi= mole fractions in liq or vap at equil

    piyi P = partial pressure of component i

    Partial Pressure = Vap.Pressure X Conc.

  • 7/31/2019 VLE - TM - May2011 (1)

    12/19Dr.T.M 12

    Ideal Binary Mixtures

    Now, we consider to a system with only 2 components, which we

    will call A and B.

    The mole fractions must sum to one for each phase, so we can

    express the mole fraction of B in terms of that for A:

    xB= 1xA and yB= 1 - yA

    Applying Raoults law to each component:

    pA= xA P*A = yA P (1)

    pB=(1-xA)P*B = (1yA)P (2)

  • 7/31/2019 VLE - TM - May2011 (1)

    13/19

    Dr.T.M 13

    Adding the partial pressures from (1) and (2), we obtain the total

    pressure:

    P =pA +pB=xA P*A + (1-xA)P*B

    Solving for the mole fractionxA :

    (3)

    From (1): yA = xA P*A/P (4)

    If you specify a Tand P, the vapour pressure can be determinedand calculate the compositions which will be at equilibrium from

    (3) and (4). Thus, you can construct a complete phase diagram

    using only vapour pressure data for the pure components.

    **

    *

    BA

    BT

    A

    PP

    PPX

  • 7/31/2019 VLE - TM - May2011 (1)

    14/19

    Dr.T.M 14

    T-x-y Diagram

  • 7/31/2019 VLE - TM - May2011 (1)

    15/19

    Dr.T.M 15

    Vapour-Liquid Equilibrium

    Txy diagram

    xy diagram

    (used in distillation

    calculations)

    tie line

    x y

    T

    x

    y

  • 7/31/2019 VLE - TM - May2011 (1)

    16/19

    Dr.T.M 16

    Relative Volatility

    Relative volatility is a measure of the differences in volatility

    between 2 components. It indicates how easy or difficult a

    particular separation will be. The relative volatility of component i

    with respect to componentj is shown with the relationship

    betweenx andy :

    ij Ki / Kj

    Where Ks are called the distribution coefficient which in turn

    are defined as: Ki yi / xi

    j

    j

    i

    i

    ij

    x

    y

    x

    y

    i.e.,

  • 7/31/2019 VLE - TM - May2011 (1)

    17/19

    Dr.T.M 17

    The normal boiling points of the pure, n-heptane and n-octane

    are 98.4 oC and 125.6 oC, respectively. The vapor pressure

    data are given below. Estimate the mole fraction of n-heptane

    in both liquid and vapor phase.

    Example - 1

    Temp VP mm Hg0C n- heptane Octane

    98.4 760 333

    105 940 417

    110 1050 484

    115 1200 561120 1350 650

    125.6 1540 760

  • 7/31/2019 VLE - TM - May2011 (1)

    18/19

    Dr.T.M 18

    T (oC) heptane octane x y

    98.4 760 333 1.000 1.000

    105 940 417 0.656 0.811

    110 1050 484 0.488 0.674

    115 1200 561 0.311 0.492

    120 1350 650 0.157 0.279

    125.6 1540 760 0.000 0.000

    Mole Fraction n-heptane

    at 1 atm

    Vapour Pressure (mmHg)

    Vapour Pressure and Equilibrium-Mole-Fraction Data forheptane-octane system

  • 7/31/2019 VLE - TM - May2011 (1)

    19/19

    Dr.T.M 19

    98

    100

    102

    104

    106

    108

    110112

    114

    116

    118

    120

    122

    124

    126

    0.000 0.200 0.400 0.600 0.800 1.000

    mole fraction of heptane

    Temperature(degC)