vibration measurement present

16
Vibration Measurement Presented by Mr.Kiratikorn Kaewpankan 553040033-2 Mechanical Engineering KhonKaen University

Upload: ipui-up

Post on 19-Dec-2015

226 views

Category:

Documents


2 download

DESCRIPTION

for vibration

TRANSCRIPT

Vibration Measurement

Presented byMr.Kiratikorn Kaewpankan553040033-2

Mechanical Engineering KhonKaen University

ObjectiveTo determine the damped natural

frequency and damping ratio of vibration system by testing.

To determine the damped and undamped natural frequency of vibration system by theory.

Compare frequency from testing and theory.

Experimental equipment.

1. Vibration system

2. Vibration measurement

3. Computer and software (Vibview)

How to Experiment1. Turn on vibration measurement and setting.

2. Install the sensor at the end of the beam.

3. Use rubber hammer to tap on the beam and wait until the scope shown result in graph.

4. Record the graph and use Vipview to change the graph to the number that use to plot.

Beam

Free Body Diagram

Theory

Mass moment of inertia

𝐽𝑏=13π‘šπ‘π‘

2𝐽 s=π‘šπ‘ (𝑠¿¿2+h2)ΒΏ

βˆ‘ π‘€π‘œ= 𝐽 �̈�𝐽 �̈�=βˆ’π‘˜1 𝑦1𝑙1πœƒβˆ’π‘˜2 𝑦2 𝑙2πœƒ+𝑐1 �̈�+𝑐2 �̈�

𝐹=π‘˜ 𝑦𝐽 �̈�+π‘˜1 𝑙1

2πœƒ+π‘˜2 𝑙22πœƒ=0

ωω

From

Change

We can find

=full volume of beam

=inner volume of beam

βˆ’ 𝐽 πœ”2+(π‘˜ΒΏΒΏ1 𝑙12+π‘˜2 𝑙2

2)=0ΒΏ

πœ”π‘›=√ (π‘˜ΒΏΒΏ1 𝑙12+π‘˜2 𝑙2

2)𝐽

ΒΏ

(Ο‰

Now we want to find but this vibration system can’t be find pure βˆ‘ π‘€π‘œ=0

𝐹 1𝑙1 cosπœƒ+𝐹2 𝑙2π‘π‘œπ‘ πœƒ=π‘šπ‘€π‘€ cosπœƒ

𝐹=π‘˜π‘¦π‘˜1 𝑦1𝑙1π‘π‘œπ‘  πœƒ+π‘˜2 𝑦2 𝑙2π‘π‘œπ‘ πœƒ=π‘šπ‘€π‘€ cosπœƒ

π‘˜1 𝑦1𝑙1+π‘˜2 𝑦2𝑙2=π‘šπ‘€π‘€

𝑦 π‘₯

𝑙π‘₯= 𝑦𝑀

Similar triangles

π‘˜1𝑙1𝑦𝑀𝑙1+π‘˜2𝑙2

𝑦𝑀𝑙2=π‘šπ‘€π‘€

π‘˜1𝑙12+π‘˜2𝑙2

2=π‘šπ‘€π‘€π‘€π‘¦

Using = 10 kg = 98.1 N

π‘˜1𝑙12+π‘˜2𝑙2

2=2275 . 470𝑁 .π‘š

ResultsSection 1. I’m use the average of 5graph to fine natural frequency and damping ratio

When n= cycle of vibration V0 = maximum velocity=

t0, tn=time for vibration

we use for five graph

𝑓 𝑑 𝑒=27 .5229+27 .5229+27 .1003+27 .1257+27 .2537

5

𝑓 𝑑𝑒=27 .3111𝐻𝑧

πœ”π‘‘=2πœ‹ 𝑓 π‘‘πœ”π‘‘π‘’=2πœ‹ (27 .3111𝐻𝑧 )=171 .6007π‘Ÿπ‘Žπ‘‘ /𝑠

= 0.1145Logarithmic decrement

=𝛿

√(2πœ‹)2+𝛿2Damping Ratio

0 .1145

√(2πœ‹)2+0 .11452=0 .0182=

Find Damping Ratio ()

Section 2. From Theory

πœ”π‘›=√ (π‘˜ΒΏΒΏ1 𝑙12+π‘˜2 𝑙2

2)𝐽

ΒΏ

π‘˜1𝑙12+π‘˜2𝑙2

2=2275.470𝑁 .π‘š

= = = )() = =

We can change Undamped into Damped

πœ”π‘‘π‘‘=πœ”π‘›βˆš1βˆ’2From testing

= 27.9246 Hz

πΈπ‘Ÿπ‘Ÿπ‘œπ‘Ÿ=| 𝑓 π‘‘π‘‘βˆ’ 𝑓 𝑑

𝑓 𝑑𝑑|Γ—100%ΒΏ|27.9246Hzβˆ’27.3111Hz27.9246Hz |Γ—100%=2.1969%

Error between and and

Bonus >> No weight. How about frequency ?

𝐽=[ 13 0 .23377614 (0 .598)2]New J ΒΏ0 .027866 π‘˜π‘” .π‘š2

Change Undamped into Damped

πœ”π‘‘π‘‘=πœ”π‘›βˆš1βˆ’2

πœ”π‘‘π‘‘= (287 .203 rad /s )Γ—βˆš1βˆ’0 .01822

πœ”π‘‘π‘‘=287 .155 rad /s

= 45.702 Hz

SummaryFrom testingDamped natural frequency () = 27.3111 Hz Damping ratio =0.0182

From TheoryUndamped Natural frequency () =27.9292 Hzdamped Natural frequency () =27.9249 Hz

Bonus no weightUndamped Natural frequency () = 45.470 Hzdamped Natural frequency () = 45.702 Hz

Error of Damped natural frequency between testing and theory =2.19 %

Discussion