uslides3

120
Light Waves

Upload: uc-berkeley-extension

Post on 11-Nov-2014

836 views

Category:

Technology


0 download

DESCRIPTION

Class Presentation slides for the Third Quarter of Physical Science 50, Spring Semester 2009

TRANSCRIPT

Page 1: Uslides3

Light Waves

Page 2: Uslides3

X-rays

3 x 108 m/sF = c / = 2.19 x 10-10 m

= 1.37 x 1018 Hz

Page 3: Uslides3

Radio Waves

Live 105:105.3 MHz

3 x 108 m/s

= c / f = 105.3 x 106 Hz

= 2.85 m

Page 4: Uslides3

Red Light

= 728 nm = 7.28 x 10-7 m

3 x 108 m/sf = c/ = 7.28 x 10-7 m

= 4.12 x 1014 Hz

Page 5: Uslides3

Light Energy

Planck’s Law:E = h f

High frequency -> High energy

Page 6: Uslides3

Properties of Light

Reflection:

Specular &diffuse

Page 7: Uslides3

Refraction

“Bending” of light rays

With a change in media

Page 8: Uslides3

Light rays and vision

Page 9: Uslides3

Myopia (Nearsightedness)

Page 10: Uslides3

Lens Correction

Page 11: Uslides3

Hyperopia (Farsightedness)

Page 12: Uslides3

Lens Correction

Page 13: Uslides3

Refracting Telescope

Page 14: Uslides3

Refraction

Page 15: Uslides3

Index of Refraction

cn = v

Page 16: Uslides3

Refraction due to Temperature

“mirages”

Page 17: Uslides3

Refraction via (temperature)

n (air 0ºC) = 1.0029

n (air 30ºC) = 1.0026

Light travels faster in warm air

Page 18: Uslides3

Refractive Index valuesMaterial Refractive Index

Air 1.0003

Water 1.33

Glycerin 1.47

Oil 1.515

Glass 1.52

Zircon 1.92

Diamond 2.42

Page 19: Uslides3

Laser

Single frequency

Focused

Single direction

Page 20: Uslides3

Incandescent Light Bulb

Filament heated to glow

All visible light frequencies

All directions

Page 21: Uslides3

Wave Vs. Particle?

Young’s experiment

Page 22: Uslides3

Photoelectric Effect

Quanta

E = h x f

High frequency photonshave more energy

Page 23: Uslides3

Electron Ejection

Page 24: Uslides3

Bohr model for Hydrogen

Niels Bohr

What about more complex atoms?

Page 25: Uslides3

Atomic Theory

Leucippus & Democritus4th century BC

“indivisible”eternal, moving

Page 26: Uslides3

Elements

Page 27: Uslides3

Aristotle

Continuous matter

Natural motion

Page 28: Uslides3

Age of Experimentation

Lavoisier (1743 - 1794)

Conservationof matter

Page 29: Uslides3

Lavoisier

“Traite Elementaire de Chimie”

HgO --> Hg + oxygène

Page 30: Uslides3

Dalton

Elements made of atoms

All atoms of one element are the same but different than those of other elements

Atoms of different elements can form different combinationswith different properties

Page 31: Uslides3

Compounds

Water Hydrogen Peroxide

H2O H2O2

Page 32: Uslides3

Compounds

Nitrous oxide Nitrogen DioxideN2O NO2

Page 33: Uslides3

Dalton

Atomic masses

Page 34: Uslides3

Benjamin Franklin

Like charges - Repel

Unlike charges - Attract

Page 35: Uslides3

Michael Faraday

Ions = Charged atoms

Page 36: Uslides3

+/- Charged Particles

J.J. Thomson (1897) Cathode rays

Page 37: Uslides3

The Size of an Electron

Millikan (1911)

me = 9.11 x 10-31 kg 1 H atom

= 1840

Page 38: Uslides3

Positive Particle?

Rutherford (1907)

particle = He+ nucleus

Page 39: Uslides3

Neutrons

Chadwick (1932)

Neutron = neutral = “spacer”

Page 40: Uslides3

Atomic Structure

Plum pudding planetary

Page 41: Uslides3

Subatomic particles

Quarks

Page 42: Uslides3

Atomic Number

Atomic Number = # of protons

Atomic Mass = protons + neutrons

Page 43: Uslides3

Isotopes

1

1H 1

2H 1

3H

Page 44: Uslides3

Unstable Isotopes

Page 45: Uslides3

Radioactivity

Henri Becquerel

Page 46: Uslides3

Radioactivity

Marie Sklodowskaand Pierre Curie

Page 47: Uslides3

Alpha Decay

92

238U - - - -- > 2

4He + 90

234Th

Page 48: Uslides3

Beta Decay

88

228Ra - - - -- > 89

228Ac + -1

0e

Page 49: Uslides3

Gamma Radiation

Page 50: Uslides3

Radiation Safety

Paper

Al foil

Lead

Page 51: Uslides3

Artificial Elements

92

238U + 6

12C - - - -- > 98

244Cf + 60

1n

98

249Cf + 8

15O - - - -- > 106

263Sg + 4 0

1n

Page 52: Uslides3

Rate of Decay: Half Life

Page 53: Uslides3

Isotope Half Lives

Isotope Half Life

U - 238 4.5 x 109 years

Pu - 239 24,360 years

C - 14 5730 years

Co - 60 5.3 years

I - 131 8 days

Po - 214 1.63 x 10-4 sec

Page 54: Uslides3

Medical Radioisotopes

99Tc and 123I

Page 55: Uslides3

Technetium Half life

99Tc half life = 6 hours

If 10 g injected into a patient, how much is left after 24 hrs?

24 hrs = 4 x 6 hrs = 4 half lives

10 g -> 5 g -> 2.5 g -> 1.25 g -> 0.625g

Page 56: Uslides3

Radiocarbon Dating

Atomic Clock

Page 57: Uslides3

Radiocarbon Dating

Page 58: Uslides3

Shroud of Turin

Page 59: Uslides3

Ice Man (Ötzi)

Page 60: Uslides3

Nuclear Fission

Otto Hahn &Lise Meitner

0

1n + 92

235U - - - - > 56

141Ba + 36

92Kr + 3 0

1n

Page 61: Uslides3

Chain Reaction

Page 62: Uslides3

Fission Energy

Control rods= moderators

usually Boron, Carbon

Keep reactionunder control

Page 63: Uslides3

Manhattan Project

Page 64: Uslides3

US Fission Reactors

Page 65: Uslides3

Three Mile Island (TMI) 1979

Page 66: Uslides3

Chernobyl 1986

Page 67: Uslides3

Breeder Reactor

Page 68: Uslides3

Fast Breeder Reactions

Page 69: Uslides3

Radioactive Waste

Page 70: Uslides3

Fusion

Page 71: Uslides3

Fusion into Heavier Elements

Page 72: Uslides3

Fission vs. Fusion

High energy higher energy

Radioactive waste no radioactivity

Need fissionable small commonnuclei atoms

Currently used need solar conditions

Page 73: Uslides3

Cold Fusion (1989)

Fleischman/Pons (Utah)

Page 74: Uslides3

Cold Fusion

Page 75: Uslides3

Cold Fusion (2005)

Naranjo, Gimzewski & Putterman

Using a strong Electric Field

Page 76: Uslides3

Tokamak reactor

Page 77: Uslides3

Chemical Reactions

Proton Transfer Electron Transfer

H+ e-

acids/bases reduction/oxidation

Page 78: Uslides3

Proton Transfer

Acid: Sour taste, corrosive Releases H+

Base (alkaline): bitter, corrosiveAccepts H+

Page 79: Uslides3

Identifying Acids, Bases

2 HBr + CaO --> H2O + CaBr2

Page 80: Uslides3

Identifying Acids, Bases

2 HBr + CaO --> H2O + CaBr2

ACID BASE

All proton transfer reactions must haveBOTH an acid and a base

Page 81: Uslides3

Amphoteric Compounds

H2O + HCl --> H3O+ + Cl–

H2O + NH3 --> OH– + NH4+

Page 82: Uslides3

pH

“pouvoir hydrogène”

pH = – log10 [H+]

Acid: excess H+, low pH

Base: H+ deficit, high pH

Page 83: Uslides3

pH scale

Low pHacid

pH = 7neutral

High pH basic

Page 84: Uslides3

“pH Balanced”

Page 85: Uslides3

Buffers

Combination of acid/base form designed to keep pH at setlevel

Page 86: Uslides3

Antacids

Page 87: Uslides3

Excess Stomach Acid

Overindulgence

Skipping meals

Stress

Page 88: Uslides3

Antacid = Mild Base

Sodium BicarbonateNaHCO3

NaHCO3 + HCl --->

H2CO3 ---> carbonic acid

CO2 + H2O

Page 89: Uslides3

Sodium - Free?

Hypertension

Page 90: Uslides3

Alka SeltzerNaHCO3 + aspirin + citric acid

Page 91: Uslides3

Calcium Carbonate

Twice the acid relief!

CaCO3 + 2 HCl --->

H2CO3 --->

CO2 + H2O

Page 92: Uslides3

Milk of Magnesia

No gas

Mg(OH) 2 + 2 HCl ->

2 H2O + MgCl2

High dose = laxative

Page 93: Uslides3

Acid Rain

Rainfall with ph < 5.5

Normal rainis mildly acidic

due to H2CO3 (carbonic acid)

Page 94: Uslides3

Locations

Page 95: Uslides3

Causes

Impurities in fossil fuels: N, S (+ O2)

NOx, SOx

Page 96: Uslides3

Effects of Acid Rain

Limestone, marble erosion

Page 97: Uslides3

Effects of Acid Rain

Page 98: Uslides3

Chemical Reactions

Proton Transfer Electron Transfer

H+ e-

acids/bases reduction/oxidation

Page 99: Uslides3

Electron Transfer

Oxidation electron loss

Reductionelectron gain

Page 100: Uslides3

Electron Transfer

Oxidation electron loss

2 Ag --> 2 Ag+ + 2 e-

Reductionelectron gain

silver tarnishingS + 2 e- --> S2-

Page 101: Uslides3

Electron Transfer

OxidationOxygen gain C + O2 --> CO2

Hydrogen loss NH4+ --> N2 (rocket fuel)

Reduction

Oxygen loss ClO4- --> Cl2 (rocket fuel)

Hydrogen gain C18H34O2 --> C18H36O2unsat Oleic acid sat Stearic acid

Page 102: Uslides3

Safety Matches

3 S + 2 KClO3 -> 2 KCl + 3 SO2

ox

Red

Page 103: Uslides3

Biological Redox

Alcohol metabolism

Page 104: Uslides3

Alcohol Metabolism

Acetic acid

Liveralcoholdehydrogenase

Aldehydeoxidase

Page 105: Uslides3

Hangover

Nausea

Headache

Sensitivity tolight, sound

Page 106: Uslides3

Batteries

Daniell cell: Cu and Zn

Page 107: Uslides3

Battery Operation

Anode: oxidation Zn -> Zn2+ + e-

Cathode: where reduction occurs

MnO2 + e- Mn2O3

Page 108: Uslides3

Alkaline Batteries

Anode: Manganese

Cathode: Zinc

Page 109: Uslides3

Rechargeable Batteries

Ni-cad

Cd -> Cd2+ + e-

NiO2 + e- -> NiO

Page 110: Uslides3

NiMH batteries

Higher capacity

Longer lifetime

NiOOH -> Ni(OH)2 (Ni+/Ni2+ oxidation)M+H- -> M (reduction)

Page 111: Uslides3

Lead-Acid Batteries

Pb + SO42- -> PbSO4 + 2e-

PbO2 + 4 H+ + SO42- + 2e- -> PbSO4 + H2O

Page 112: Uslides3

Corrosion

Fe -> Fe2+ oxidation

O2 -> OH- reduction

Page 113: Uslides3

Statue of Liberty

Gift fromFrance 1876

Page 114: Uslides3

Renovation (1986)

Page 115: Uslides3

Capturing Light

Louis Daguerre

Page 116: Uslides3

Exposure

Silver salts: AgBr or AgI

Light + 2 Ag+ X- 2 Ag+* + X2

Page 117: Uslides3

Development

Ag+* + C6H6O2 Ag + HBr + C6H4O2

Use Acid to Stop this process

Page 118: Uslides3

Fixing

Removes excess insoluble Silver:

Ag+ + S2O32- Ag(S2O3)-

HYPO

Page 119: Uslides3

Color Photography

Light + Ag+ + Dye -> Ag+* + Dye*

Page 120: Uslides3

Instant Photography

Polaroids