university of bath · this is a non-destructive test based on the transient plane source technique...

12
Citation for published version: Colangelo, F, Roviello, G, Ricciotti, L, Ferrandiz-Mas, V, Messina, F, Ferone, C, Tarallo, O, Cioffi, R & Cheeseman, C 2018, 'Mechanical and thermal properties of lightweight geopolymer composites', Cement & Concrete Composites, vol. 86, pp. 266-272. https://doi.org/10.1016/j.cemconcomp.2017.11.016 DOI: 10.1016/j.cemconcomp.2017.11.016 Publication date: 2018 Document Version Peer reviewed version Link to publication Publisher Rights CC BY-NC-ND University of Bath General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Apr. 2020

Upload: others

Post on 20-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

Citation for published version:Colangelo, F, Roviello, G, Ricciotti, L, Ferrandiz-Mas, V, Messina, F, Ferone, C, Tarallo, O, Cioffi, R &Cheeseman, C 2018, 'Mechanical and thermal properties of lightweight geopolymer composites', Cement &Concrete Composites, vol. 86, pp. 266-272. https://doi.org/10.1016/j.cemconcomp.2017.11.016

DOI:10.1016/j.cemconcomp.2017.11.016

Publication date:2018

Document VersionPeer reviewed version

Link to publication

Publisher RightsCC BY-NC-ND

University of Bath

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright ownersand it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Download date: 23. Apr. 2020

Page 2: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

1IntroductionExpandedpolystyrene(EPS)isanextremelylightweightthermoplasticthathaslowthermalconductivity,highdurabilityandlow-cost.EPSiswidelyusedinmanythermalinsulationapplicationsandaslightweightpackaging[1].Theendofliferecyclingandreuse

optionsforEPSarelimitedanditisnormallyeitherlandfilledorincinerated.Thiscancauseenvironmentalproblemsincountrieswhereappropriatestandardsarenotenforced[2].SeveralrecyclingprocesseshavebeendevelopedforEPS[3],buttheseoftenrequirethe

useofhazardoussolvents[4].Thisresearchhas investigatedusingwasteEPSasa lightweightaggregate inmetakaolinderivedgeopolymer.Theobjectivewastodevelop lightweight thermally insulatingmaterialswithmechanicalpropertiessuitable foruse innon-

structuralapplications.Atthesametime,arecyclingoptionforEPSthatallowsthismaterialtoremainintheeconomiccycleisprovidedthroughuseinnewsustainablematerials.WasteEPShasreducedenvironmentalimpactcomparedtomanyothertypesofwaste

Mechanicalandthermalpropertiesoflightweightgeopolymercomposites

F.Colangeloa,b

G.Rovielloa,b,∗

[email protected]

L.Ricciottia,b

V.Ferrándiz-Masc,e

F.Messinaa,b

C.Feronea,b

O.Tarallod

R.Cioffia,b

C.R.Cheesemane

aDipartimentodiIngegneria,UniversitàdegliStudidiNapoliParthenope,CentroDirezionale,IsolaC4,80143Napoli,Italy

bINSTM,ConsorzioInteruniversitarioperlaScienzaeTecnologiadeiMateriali,ViaG.Giusti,9,50121Firenze,Italy

cDepartmentofArchitectureandCivilEngineering,UniversityofBath,Bath,BA27AY,UK

dDipartimentodiScienzeChimiche,UniversitàdegliStudidiNapoli“FedericoII”,ComplessoUniversitariodiMonteS.Angelo,viaCintia,80126Napoli,Italy

eDepartmentofCivilandEnvironmentalEngineering,ImperialCollegeLondon,SW72BU,UK

∗Correspondingauthor.DipartimentodiIngegneria,UniversitàdegliStudidiNapoliParthenope,CentroDirezionale,IsolaC4,80143Napoli,Italy.

Abstract

Thisresearchhasinvestigatedthepropertiesofthermally insulatinggeopolymercompositesthatwerepreparedusingwasteexpandedpolystyreneaslightweightaggregate.Thegeopolymermatrixwassynthetizedusingmetakaolinandanalkaline

activatingsolution.Toimproveitsmechanicalproperties,thismatrixwasmodifiedbytheadditionofanepoxyresintoformanorganic-inorganiccomposite.Moreover,inordertoreducedryingshrinkagemarblepowderwasusedasaninertfiller.Thematerials

obtainedwerecharacterizedintermsofphysico-mechanicalproperties,thermalperformanceandmicrostructure.ThegeopolymerexpandedpolystyrenecompositehaveimprovedpropertiescomparedtoPortlandcement-basedmaterials,withhigherstrengths

andlowerthermalconductivity.Theresearchdemonstratesthemanufactureofsustainablelightweightthermallyinsulatinggeopolymercompositesusingwasteexpandedpolystyrene.

Keywords:Expandedpolystyrene;Geopolymer;Composite;Thermalinsulation

Page 3: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

derivedmanufacturedlightweightaggregates[5–11].

PreviousresearchhasinvestigatedEPSinPortlandcementcomposites[12–25].ThesestudiesreportthatasubstantialdecreaseincompressivestrengthisassociatedwithincreasingtheEPScontent,andthisrequirestheadditionofmaterials,suchassilica

fumeandsteelfibrestoimprovemechanicalperformance.ThepropertiesofEPSconcretedependonthemixdesignandtheEPSparticlesizedistribution[26].Increasedshrinkageandcreepdeformationarereportedandresultfromareductionintherestrainteffect

comparedtonaturalaggregates,whichhavemuchhigherstaticmodulusofelasticity[27–30].Additional issuesrelatedtoEPSlightweightaggregateconcreteareEigenstress-drivencrackingandincreasedbulkshrinkage[31].EPS-containingconcretehasreduced

spallingresistanceathightemperatureduetothermaldecompositionofEPS[18].TheembeddedCO2isincreasedwithEPSadditionduetothehighcarboncontentofEPScomparedtonormalinorganiccementbindersandaggregates.

SeveralstrategieshavebeenproposedforreducingtheembeddedCO2inthebuiltenvironment[32,33].Geopolymersareinnovativebindersthathavebeenextensivelyresearchedinrecentyearsconsistingofamorphousaluminosilicatesthataresynthesized

usingalkalineactivationofsolidprecursorssuchasflyash[34–36],calcinedclays[37–40]andblastfurnaceslag[41–43].GeopolymersareapotentialalternativetotraditionalPortlandcementinselectedapplications,becausetheycombinereducedenvironmentalimpact

withexcellentmechanicalproperties.However,theyhaverelativelylowtoughnessandlowflexuralstrengthandinordertoimprovethesepropertiesgeopolymercompositematerialshavebeenformedbytheinsituco-reticulationofageopolymermatrixwithanepoxy

basedorganicresin[44–49].Thesemodifiedgeopolymermaterialsshowenhancedcompressiveandflexuralstrengthcomparedtonormalgeopolymerswithanalogouscompositionsduetothesynergisticeffectsbetweentheinorganicandtheorganicphasesarisingfrom

interfacialforcesatnanometrescale.Thepropertiesarecontrolledbycompositionandprocessingmethodandthesemodifiedgeopolymermaterialshavepotentialtobeusedinstructural[50],photo-catalytic[51],fire-resistantandthermalinsulating[52,53]applications.

Lightweightgeopolymershavebeenpreparedwithdifferentmixproportionsbyfoaming[54]andusingdifferentlightweightaggregates[55–61] (pleasereplace[55-61]with[55-62]).Inthisresearch,lightweightgeopolymerconcrete(LWGC)hasbeeninvestigated

usingrecycledEPSasaggregate.Geopolymermatrixpreparationusedmetakaolin(MK)andanalkalineactivatingsolution(AAS).Epoxyresinswithtailoredcompositionandstoichiometrywereaddedtoobtaingeopolymerorganiccomposites.Wastecalciumcarbonate

powderfromprocessingmarblehasbeenusedasafillerasthis improvesthemechanicalpropertiesofgeopolymersandreducesdryingshrinkage[63].Thiswaste isamajorproblemthateffectstheenvironment[63].TheLWGCsamplespreparedweretestedfor

physico-mechanicalandthermalpropertiesandtheinterfacialzonesbetweenEPSparticlesandthegeopolymermatrixcharacterizsedbymicrostructuralanalysis.

2Materialsandmethods2.1Materials

Thecompositionofmetakaolin(MK,NeuchemS.r.l.)sodiumsilicatesolution(SS,ProchinItaliaS.r.l)andmarblepowder[64,65]areshowninTable1.ReagentgradesodiumhydroxidewassuppliedbySigma-Aldrichandtheepoxyresin(Epojet®)wassuppliedby

MapeiS.p.A.EPSwasobtainedfromawastetreatmentplantinCampania,Italyandconsistedof<5mmparticleswithanapparentdensityof1.6±0.3×10−2g/cm3.TheEPSwasfrompolystyreneseedtraysusedinagricultureandthesewereprocessedbymillingto

produceEPSbeads.Wastemarbleslurrywasdriedat105°Cfor4handmilledtoproducemarblepowder(MP)withparticlesizesrangingbetween10and300μm.

Table1Chemicalcomposition(weight%)ofthemetakaolin(MK),marblepowder(MP)andsodiumsilicatesolution(SS).

alt-text:Table1

Metakaolin Marblepowder Sodiumsilicate

SiO2 52.90 1.12 27.40

Al2O3 41.90 0.37 –

CaO 0.17 52.26 –

Fe2O3 1.60 0.11 –

MgO 0.19 0.87 –

K2O 0.77 0.10 –

Na2O – 0.14 8.15

Water – – 64.45

LoI – 40.74 –

*LoI=LossonIgnition.

ThecompositionsoftheLWGCmixesaregiveninTable2.Thealkalineactivatingsolutionwaspreparedbydissolvingsolidsodiumhydroxideintothesodiumsilicatesolution.Thesolutionwasthenallowedtoequilibrateandcoolfor24h.Thecompositionofthe

Page 4: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

solutioncanbeexpressedasNa2O·1.4SiO2·10.5H2O.GeopolymerpasteswereobtainedbymixingMKfor10minwiththeactivatingsolution,atasolidtoliquidratioof1:1.4byweight,usingaHobartmixer.EPSbeadsandMPwerethenaddedandthesystemmixedfor

afurther5min.ThisprocedurewasusedfortheLWGCsamplesthatdidnotcontainepoxyresin.TheseweretheGMK-65,GMK-MP-65,GMK-72.5andGMK-MP-72.5mixes.GMK-XXsamplescontainedEPS,whereXXreferstotheamountofEPSv/v%.GMK-MP-YY

samplesaresamplecontainingEPSandMP,whereYYreferstothesumofEPSandMPv/v%.

Table2Composition(weight%)ofthematerialspreparedinthisresearch.

alt-text:Table2

Sample MK SS NaOH Resin MPfillera EPSbeadsa

Wt. Vol.

GMK-65 41.6 50.0 8.4 – – 1.9 65.0

GMK-MP-65 41.6 50.0 8.4 – 7.5 1.7 63.3

GMK-72.5 41.6 50.0 8.4 – – 2.8 72.5

GMK-MP-72.5 41.6 50.0 8.4 – 7.5 2.8 70.8

GMK-E10-65 37.4 45.0 7.6 10 – 1.9 65.0

GMK-E10-MP-65 37.4 45.0 7.6 10 7.5 1.7 63.3

GMK-E10–72.5 37.4 45.0 7.6 10 – 2.8 72.5

GMK-E10-MP-72.5 37.4 45.0 7.6 10 7.5 2.8 70.8

a Calculatedwithrespecttogeopolymerpasteand/orgeopolymercomposite(withresin)paste.

Epoxyresingeopolymercomposites(GMK-E10-XXandGMK-E10-MP-YY)wereproducedbyadding10w/w%byweightofEpojet®resintothefreshly-preparedgeopolymersuspensionandmixingfor5min.Epojet®resinwascuredatroomtemperaturefor

10minbeforeaddingtothegeopolymermixwhenitwasworkableandbeforecross-linkingandhardeninghadoccurred.

Aftermixingthepasteswerecastintoprismatic(40×40×160mm)andcubic(100×100×100mm)mouldsandcuredsealedat40°Cfor24h.Thespecimenswerekeptsealedatroomtemperaturefor6daysandthenstoredinairatroomtemperaturefora

further21days.

2.2MethodsTheapparentdensityofsampleswasdeterminedastheratioofthemasstoagivenvolumebyhydrostaticweighingusinganOHAUS-PA213balance.ThecompressiveandflexuralstrengthswereevaluatedaccordingtoEN196-1.Thetestswereperformed

after28dayscuringandthevaluesreportedaretheaverageofsixstrengthtests.FlexuralstrengthtestsonprismaticsamplesusedaControlsMCC8multipurposetestingmachinewithacapacityof100kN.Compressivestrengthmeasurementsoncubicsamplesuseda

ControlsMCC8hydraulicconsolewith2000kNcapacity.Thermalconductivity testswereperformedon100×100×100mmcubesamplesusingaHotDiskM1analyser(Thermal InstrumentsLtd).This isanon-destructive testbasedonthetransientplanesource

techniqueaccordingtoISO22007–2:2015.Microstructuralanalysisbyscanningelectronmicroscopy(SEM)usedaPhenomProXMicroscopeonfreshlypreparedfracturesurfaces.Opticalimageswereobtainedfrompolishedsurfaces.

3Experimentalresultsanddiscussion3.1Morphologicalcharacterization

Fig.1isaSEMimageofanEPSparticleshowingthetypicalcellularstructure[66].

Page 5: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

Duetothegrindingprocess,thesecellsarenotevenlydistributedandvaryindimensions.

Fig.2showsopticalmicrographsofpolishedsurfacesofGMK-72.5andGMK-E10–72.5samples.

TheEPSbeadsareembeddedinthegeopolymermatrixanddistributeduniformlywithnoevidentaggregationphenomena.Moreover,thespecimensshowacompactstructurewithnocracking,asconfirmedbySEMimagesofthesesamplesthatwasusedin

ordertoinvestigateindetailthemicrostructureofthesamplesandthebondingcharacteristicsbetweenthegeopolymermatrixandEPSparticlesandMPaggregate(Fig.3).Thisdemonstratesthatatmicroscopiclevel,thematrixiscompactandhomogeneous.TheSEM

imagesinFig.3(AandA′,sampleGMK-72.5)indicatethatthereisverygoodadhesionbetweenEPSparticlesandthematrix.EPSparticlesarecompletelyembeddedinthegeopolymeranditisdifficulttoclearlyidentifytheinterface.Thiscompatibilitywasobtained

withouttheuseofanyadditives.

Fig.1SEMimageofanEPSparticle.Scalebaris100μm.

alt-text:Fig.1

Fig.2OpticalmicrographofpolishedsurfacesofA)GMK-72.5andB)GMK-E10–72.5.

alt-text:Fig.2

Page 6: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

TheadhesionbetweenEPSparticlesandthematrixisalsogoodforsamplespreparedusingthecompositematrixcontainingepoxyresin(Fig.3B,B′,sampleGMK-E10–72.5).Themajordifferenceisinthematrixmicrostructure,whichshowsthepresenceof

microspheresofresinofvarioussizesasdiscussedinourpreviouswork[47].

TheadditionofMP(Fig.3C,C′,sampleGMK-E10-MP-72.5)asfillerdoesnotcompromisethebondingbetweenphasesinthegeopolymermatrixthusnotaffectingsignificantlythemicrostructure.Theparticlesarewelldispersedandthestrongadhesionimproves

themechanicalproperties.

3.2Physico-mechanicalcharacterization

Fig.3SEMimagesofaninterfaceareabetweenanEPSparticleembeddedinthegeopolymermatrix:A,A′)neatgeopolymermatrix(sampleGMK-72.5);B,B′)compositegeopolymermatrix(sampleGMK-E10–72.5);C,C′)compositegeopolymermatrixcontainingalsomarblepowder(sampleGMK-E10-MP-72.5).Inallcases

averygoodadhesionbetweenEPSparticlesandthematrixisapparent.

alt-text:Fig.3

Page 7: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

Fig.4ashowstheapparentdensityofsamples.Asexpected,densitydecreasesasthecontentofEPSaggregateincreases.Sampleswith65%volumeofaggregateshaddensitiesrangingfrom646±51kg/m3(GMK-65)to827±91kg/m3(GMK-E10-MP-65).

Sampleswitha72.5%volumecontentofaggregateshaddensitiesrangingfrom516±43kg/m3(GMK-72.5)to549±52kg/m3(GMK-E10-MP-72.5).Forneatgeopolymersamples(GMK-65andGMK-72.5),increasingthevolumetriccontentofEPSbylessthan10%turns

outinadecreasedofthedensityby∼20%.MorepronounceddecreasesindensitywereobservedforthesamplescontainingepoxyresinandMP.Inparticular,correspondinglytothesameincreaseofEPScontent,thesampleswithepoxyresininthegeopolymermatrix

(GMK-E10-65andGMK-E10–72.5)showedadecreaseofdensity∼24%,whileinthecaseoftheadditionofMP(GMK-MP-65andGMK-MP-72.5),thedecreaseofdensityis∼27%.Finally,inthecaseoftheadditionofbothorganicresinandMP(GMK-E10-MP-65and

GMK-EP10-MP-72.5)thedecreaseofdensityis∼33%.Moreover,fromthedatareportedinFig.1, it isapparentthattheorganicresinandMPadditionshaveamorelimitedinfluenceonthedensityofsamplescontaining72.5%EPSinrespecttothoseatlowerEPS

content(forexample,theadditionoftheorganicresinandMPturnsoutinanincreaseofdensityof∼28%inthecaseofthesampleswith65%volofEPSbeadsandofonly6%inthesampleswith72,5%volofEPS).

ThegeopolymersampleshadcomparabledensitiestoEPS-containingPortlandcementmatrices [14]andcommercialEPS-containingconcretemixturesforwhichvaluesaround1000kg/m3arereported [67].ThemechanicalperformanceofEPS-containing

geopolymerconcretecorrelateswithdensity.Thevolumetriccontentofaggregateinfluencesbothcompressiveandflexuralstrengths(Fig.4bandc).Thecompressivestrengths(Fig.4b)ofLWGCsamplescontaining65%volumeofEPSbeadsrangedfrom3.4±0.5to

6.0±1MPa,whileforhigherEPSvolumes(72.5%)compressivestrengthsrangedfrom1.8±0.3to2.4±0.2MPa.Itisapparentthattheadditionofbothmarblepowderandepoxyresinsignificantlyimprovedthemechanicalpropertiesofsamples.Thebestcompressive

strengthvalueswereobtainedforspecimensGMK-E10-MP-65andGMK-E10-MP-72.5,andthevaluesobtainedwerecomparabletocommercialalternatives[67]andgreaterthantheliteraturedataonEPS-containingPortlandcementcomposites.

Asimilartrendtocompressivestrengthwasobservedforflexuralstrength(Fig.4c).ForEPScontentsof65%theflexuralstrengthvariedfrom0.32±0.08MPaforgeopolymersamplesto0.6±0.1MPaforcompositematrixsampleswithMP.WithgreaterEPS

contents(72.5%)theflexuralstrengthrangedfrom0.22±0.07to0.33±0.09MPaandonlyaminorimprovementinmechanicalpropertieswasassociatedwiththeadditionofMPandepoxyresin.ItcouldbearguedthatinthesesampleswithhigherEPScontent,thevery

poormechanicalpropertiesandhighcompressibilitybehaviourofpolystyreneparticlesneutralizethebeneficialeffectonthemechanicalpropertiesoftheadditionofepoxyresinandMP(thatinsteadisevidentinthesetofsampleswithlowerEPScontent)bycausingthe

formationofmicro-cracksattheinterfacebetweenthegeopolymermatrixandtheEPSparticles.

3.3ThermalpropertiesFig.5showsthermalconductivitydatafortheLWGCsamplespreparedinthisstudy.Asfordensitydata(Fig.4a),twodifferentgroupsofspecimenscanbeidentified.Samplescontaining65v/v%ofaggregateshadgreaterthermalconductivitythanthesamples

Fig.4Apparentdensity(a),compressivestrength(b)andflexuralstrength(c)ofLWGCsamplesprepared.Ina)andb),thedatafortwocommercialproducts(LatermixCemMini©andLatermixCemClassic©,http://www.laterlite.es/wp-content/uploads/2014/03/General-Catalogue.pdf)arealsoreportedforcomparison.

alt-text:Fig.4

Page 8: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

containing72.5v/v%ofEPS.Forexample,sampleGMK-65hadathermalconductivityof0.158±0.001W/m·KwhilesampleGMK-72.5hadathermalconductivityof0.121±0.001W/m·K,a23.4%reduction.Itisapparentthat,asexpected,thepresenceofEPSparticles

causesasignificantreductioninthermalconductivity.ThecorrelationbetweenthermalconductivityanddensityforLWGCsamplesisshowninFig.6.Thesampleswiththehighestthermalconductivity(0.207±0.001W/m·K)wassampleGMK-E10-MP-65whichhadthe

highestbulkdensity(827±91kg/m3),whilethesamplewiththelowestthermalconductivity(0.121±0.001W/m·K),sampleGMK-72.5,hadthelowestdensity.TheinfluenceofMPandepoxyresinonthermalconductivityisnotclearastheseareminorcomponentsinthe

samplestested.

TheadditionofMPandepoxyresintogeopolymersproducedLWGCwithsignificantlyimprovedmechanicalpropertiescomparedtolightweightmortarsmadewithPortlandcementwithsimilarthermalconductivity.Forexample,sampleGMK-72.5retainedgood

mechanicalpropertiesandhadverylowthermalconductivity(0.121±0.001W/m·K).This is15%lower thanPortlandcementbasedcommercialproductswithsimilardensity [67].Thereduction inthermalconductivity increasesto92%whencomparedtoanalogous

materialswiththesamedensitythathadpoormechanicalpropertiescomparedtothesamplespreparedinthisstudy[19].

4ConclusionsLightweightthermallyinsulatingmaterialsbasedongeopolymerconcretecontainingexpandedpolystyrene(EPS)asinsulatingaggregatewerepreparedandcharacterized.ThemicrostructuralcharacterizationshowedahomogeneousstructurewithEPSbeads

uniformlydispersedandembeddedinthegeopolymermatrix.CompressiveandflexuralstrengthsdecreasedwithincreasingEPScontent.Theadditionofanorganicresintothegeopolymersignificantlyincreasedbothcompressiveandflexuralstrengths.Asimilareffect

wasobservedwiththeadditionofmarblepowder.Allsamplesstudiedwerecharacterizedbyverylowthermalconductivity.Thiswasmuchlowerthananalogouslightweightmaterialswithsimilardensitiesreportedintheliterature.Theresearchhasdemonstratedthe

Fig.5ThermalconductivityofLWGCsamples.Datafortwocommercialproducts(LatermixCemMini©andLatermixCemClassic©),arealsoreportedforcomparison[67].

alt-text:Fig.5

Fig.6CorrelationbetweenthermalconductivityanddensityofLWGCsamples:fullcircles(●)arerelatedtoLWGCsamples;emptycircles(○)arerelatedtotwocommercialproducts(LatermixCemMini©andLatermixCemClassic©,[67]).

alt-text:Fig.6

Page 9: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

productionofgeopolymermatrixEPScompositesthatarelightweightthermallyinsulatingmaterialswithexcellentmechanicalproperties.

Uncitedreference[62].

AcknowledgementsTheauthorsthankNeuvendisS.p.A.forthemetakaolinsupplyandProchinItaliaS.r.l.forthesilicatesolutionsupply.Mr.GiovanniMorierieMrs.LucianaCiminoarewarmlyacknowledgedforassistanceinlaboratoryactivities.Universitàdi

Napoli“Parthenope”isacknowledgedforfinancialsupportwithagrantwithinthecall“SupportforIndividualResearchforthe2015-17Period-Annuity2016”issuedbyRectorDecreeno.954(28/11/2016).

References[1]S.DoroudianiandH.Omidian,Environmental,healthandsafetyconcernsofdecorativemouldingsmadeofexpandedpolystyreneinbuildings,Build.Environ.45(3),2010,647–654.

[2]M.Poletto,J.Dettenborn,M.ZeniandA.J.Zattera,Characterizationofcompositesbasedonexpandedpolystyrenewastesandwoodflour,WasteManag.31(4),2011,779–784.

[3]C.Shin,Filtrationapplicationfromrecycledexpandedpolystyrene,J.colloidinterfaceSci.302(1),2006,267–271.

[4]M.AmiantiandV.R.Botaro,RecyclingofEPS:anewmethodologyforproductionofconcreteimpregnatedwithpolystyrene(CIP),Cem.Concr.Compos.30(1),2008,23–28.

[5]C.R.CheesemanandG.S.Virdi,Propertiesandmicrostructureoflightweightaggregateproducedfromsinteredsewagesludgeash,Resour.Conserv.Recycl.45(1),2005,18–30.

[6]C.R.Cheeseman,A.MakindeandS.Bethanis,Propertiesoflightweightaggregateproducedbyrapidsinteringofincineratorbottomash,Resour.Conserv.Recycl.43(2),2005,147–162.

[7]L.Dembovska,D.Bajare,V.Ducman,L.KoratandG.Bumanis,Theuseofdifferentby-productsintheproductionoflightweightalkaliactivatedbuildingmaterials,Constr.Build.Mater.135,2017,315–322.

[8]F.Colangelo,F.Messina,L.DiPalmaandR.Cioffi,Recyclingofnon-metallicautomotiveshredderresiduesandcoalfly-ashincold-bondedaggregatesforsustainableconcrete,Compos.PartBEng.116,2017,46–52.

[9]F.Colangelo,F.MessinaandR.Cioffi,RecyclingofMSWIflyashbymeansofcementitiousdoublestepcoldbondingpelletization:technologicalassessmentfortheproductionoflightweightartificialaggregates,J.Hazard.Mater.299,2015,181–191.

[10]K.Y.Chiang,K.L.ChienandS.J.Hwang,Studyonthecharacteristicsofbuildingbricksproducedfromreservoirsediment,J.Hazard.Mater.159(2),2008,499–504.

[11]A.Frankovic,V.B.BosiljkovandV.Ducman,Lightweightaggregatesmadefromflyashusingthecold-bondprocessandtheiruseinlightweightconcrete,MTAEC951(2),2017,267–274.

[12]K.G.BabuandD.S.Babu,Behaviouroflightweightexpandedpolystyreneconcretecontainingsilicafume,Cem.Concr.Res.33(5),2003,755–762.

[13]D.S.Babu,K.G.BabuandW.Tiong-Huan,Effectofpolystyreneaggregatesizeonstrengthandmoisturemigrationcharacteristicsoflightweightconcrete,Cem.Concr.Compos.28(6),2006,520–527.

[14]D.Bouvard,J.M.Chaix,R.Dendievel,A.Fazekas,J.M.Létang,G.PeixandD.Quenard,CharacterizationandsimulationofmicrostructureandpropertiesofEPSlightweightconcrete,Cem.Concr.Res.37(12),2007,1666–1673.

[15]K.Miled,K.SabandR.LeRoy,ParticlesizeeffectonEPSlightweightconcretecompressivestrength:experimentalinvestigationandmodelling,Mech.Mater.39(3),2007,222–240.

[16]W.C.Tang,Y.LoandA.B.I.D.Nadeem,Mechanicalanddryingshrinkagepropertiesofstructural-gradedpolystyreneaggregateconcrete,Cem.Concr.Compos.30(5),2008,403–409.

[17]Y.Xu,L.Jiang,J.XuandY.Li,Mechanicalpropertiesofexpandedpolystyrenelightweightaggregateconcreteandbrick,Constr.Build.Mater.27(1),2012,32–38.

[18]V.Ferrándiz-MasandE.García-Alcocel,Durabilityofexpandedpolystyrenemortars,Constr.Build.Mater.46,2013,175–182.

[19]V.Ferrándiz-Mas,T.Bond,E.García-AlcocelandC.R.Cheeseman,Lightweightmortarscontainingexpandedpolystyreneandpapersludgeash,Constr.Build.Mater.61,2014,285–292.

[20]W.C.Tang,H.Z.CuiandM.Wu,Creepandcreeprecoverypropertiesofpolystyreneaggregateconcrete,Constr.Build.Mater.51,2014,338–343.

[21]M.Lanzón,V.Cnudde,T.DeKockandJ.Dewanckele,Microstructuralexaminationandpotentialapplicationofrenderingmortarsmadeoftirerubberandexpandedpolystyrenewastes,Constr.Build.Mater.94,2015,817–825.

Page 10: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

[22]V.Ferrándiz-Mas,L.A.Sarabia,M.C.Ortiz,C.R.CheesemanandE.García-Alcocel,Designofbespokelightweightcementmortarscontainingwasteexpandedpolystyrenebyexperimentalstatisticalmethods,Mater.Des.89,2016,901–912.

[23]B.A.HerkiandJ.M.Khatib,Valorisationofwasteexpandedpolystyreneinconcreteusinganovelrecyclingtechnique,Eur.J.Environ.Civ.Eng.2016,1–19.

[24]Y.Liu,D.Ma,Z.Jiang,F.Xiao,X.Huang,Z.LiuandL.Tang,Dynamicresponseofexpandedpolystyreneconcreteduringlowspeedimpact,Constr.Build.Mater.122,2016,72–80.

[25]A.A.Sayadi,J.V.Tapia,T.R.NeitzertandG.C.Clifton,Effectsofexpandedpolystyrene(EPS)particlesonfireresistance,thermalconductivityandcompressivestrengthoffoamedconcrete,Constr.Build.Mater.112,2016,716–724.

[26]G.Falzone,G.P.Falla,Z.Wei,M.Zhao,A.Kumar,M.BauchyandG.Sant,Theinfluencesofsoftandstiffinclusionsonthemechanicalpropertiesofcementitiouscomposites,Cem.Concr.Compos.71,2016,153–165.

[27]T.C.HansenandK.E.Nielsen,Influenceofaggregatepropertiesonconcreteshrinkage,ACIJ.Proc.62(7),1965,783–794.

[28]D.W.Hobbs,Bulkmodulusshrinkageandthermalexpansionofatwophasematerial,Nature222,1969,849–851.

[29]D.W.Hobbs,Influenceofaggregaterestraintontheshrinkageofconcrete,ACIJ.Proc.71(9),1969,1974.

[30]A.Leemann,P.LuraandR.Loser,ShrinkageandcreepofSCC–Theinfluenceofpastevolumeandbindercomposition,Constr.Build.Mater.25(5),2011,2283–2289.

[31]P.LuraandJ.Bisschop,Ontheoriginofeigenstressesinlightweightaggregateconcrete,Cem.Concr.Compos.26(5),2004,445–452.

[32]M.Schneider,M.Romer,M.TschudinandH.Bolio,Sustainablecementproduction—presentandfuture,Cem.Concr.Res.41,2011,642–650.

[33]E.Benhelal,G.Zahedi,E.ShamsaeiandA.Bahadori,GlobalstrategiesandpotentialstocurbCO2emissionsincementindustry,J.Clean.Prod.51,2013,142–161.

[34]C.Ferone,F.Colangelo,F.Messina,L.SantoroandR.Cioffi,Recyclingofpre-washedmunicipalsolidwasteincineratorflyashinthemanufacturingoflowtemperaturesettinggeopolymermaterials,Materials6,2013,3420–3437.

[35]F.Colangelo,R.Cioffi,G.Roviello,I.Capasso,D.Caputo,P.Aprea,B.LiguoriandC.Ferone,Thermalcyclingstabilityofflyashbasedgeopolymermortars,Compos.PartB129,2017,11–17.

[36]F.Messina,C.Ferone,F.ColangeloandR.Cioffi,Lowtemperaturealkalineactivationofweatheredflyash:influenceofmineraladmixturesonearlyageperformance,Constr.Build.Mater86,2015,169–177.

[37]B.Molino,A.DeVincenzo,C.Ferone,F.Messina,F.ColangeloandR.Cioffi,Recyclingofclaysedimentsforgeopolymerbinderproduction.AnewperspectiveforreservoirmanagementintheframeworkofItalianlegislation:theOcchitoreservoircase

study,Materials7,2014,5603–5616.

[38]C.Ferone,B.Liguori,I.Capasso,F.Colangelo,R.Cioffi,E.CappellettoandR.DiMaggio,Thermallytreatedclaysedimentsasgeopolymersourcematerial,Appl.ClaySci.107,2015,195–204.

[39]P.RaphaëlleandC.Martin,Formulationandperformanceofflashmetakaolingeopolymerconcretes,Constr.Build.Mater.120,2016,150–160.

[40]F.Messina,C.Ferone,A.Molino,G.Roviello,F.Colangelo,B.MolinoandR.Cioffi,Synergisticrecyclingofcalcinedclayeysedimentsandwaterpotabilizationsludgeasgeopolymerprecursors:upscalingfrombinderstoprecastpavingcement-free

bricks,Constr.Build.Mater.133,2017,14–26.

[41]M.B.Haha,B.Lothenbach,G.L.LeSaoutandF.Winnefeld,Influenceofslagchemistryonthehydrationofalkali-activatedblast-furnaceslag—PartI:effectofMgO,Cem.Concr.Res.41(9),2011,955–963.

[42]M.B.Haha,B.Lothenbach,G.LeSaoutandF.Winnefeld,Influenceofslagchemistryonthehydrationofalkali-activatedblast-furnaceslag—PartII:effectofAl2O3,Cem.Concr.Res.42(1),2012,74–83.

[43]I.Ismail,S.A.Bernal,J.L.Provis,R.SanNicolas,S.HamdanandJ.S.vanDeventer,Modificationofphaseevolutioninalkali-activatedblastfurnaceslagbytheincorporationofflyash,Cem.Concr.Compos.45,2014,125–135.

[44]C.Ferone,G.Roviello,F.Colangelo,R.CioffiandO.Tarallo,Novelhybridorganic-geopolymermaterials,Appl.ClaySci.73,2013,42–50.

[45]C.Ferone,F.Colangelo,G.Roviello,D.Asprone,C.Menna,A.BalsamoandG.Manfredi,Application-orientedchemicaloptimizationofametakaolinbasedgeopolymer,Materials6(5),2013,1920–1939.

[46]L.Ricciotti,G.Roviello,O.Tarallo,F.Borbone,C.Ferone,F.Colangelo,M.CatauroandR.Cioffi,Synthesisandcharacterizationsofmelamine-basedepoxyresins,Int.J.Mol.Sci.14,2013,18200–18214.

[47]G.Roviello,L.Ricciotti,C.Ferone,F.Colangelo,R.CioffiandO.Tarallo,Synthesisandcharacterizationofnovelepoxygeopolymerhybridcomposites,Materials6,2013,3943–3962.

Page 11: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

QueriesandAnswersQuery:Pleasechecktheaddressforthecorrespondingauthorthathasbeenaddedhere,andcorrectifnecessary.

Answer:DipartimentodiIngegneria,UniversitàdegliStudidiNapoliParthenope,CentroDirezionale,IsolaC4,80143Napoli,Italye-mail:[email protected]

Query:Pleasecitefootnote‘*’intable1.

Answer:

Query:CouldyoupleaseprovidethegrantnumberforUniversitàdiNapoli“Parthenope”,ifany?

Answer:thereisnonumber

Query:PleasechecktheauthorgroupinRef.57.

[48]G.Roviello,L.Ricciotti,O.Tarallo,C.Ferone,F.Colangelo,V.RovielloandR.Cioffi,Innovativeflyashgeopolymer-epoxycomposites:preparation,microstructureandmechanicalproperties,Materials9(6),2016,461–475.

[49]S.Gottardi,T.Toccoli,S.Iannotta,P.Bettotti,A.Cassinese,M.Barra,L.RicciottiandY.Kubozono,Optimizingpicenemolecularassemblingbysupersonicmolecularbeamdeposition,J.Phys.Chem.C116,2012,4624503–4624511.

[50]F.Colangelo,G.Roviello,L.Ricciotti,C.FeroneandR.Cioffi,Preparationandcharacterizationofnewgeopolymer-epoxyresinhybridmortars,Materials6,2013,2989–3006.

[51]A.Strini,G.Roviello,L.Ricciotti,C.Ferone,F.Messina,L.SchiaviandR.Cioffi,TiO2-Basedphotocatalyticgeopolymersfornitricoxidedegradation,Materials9(7),2016,513.

[52]G.Roviello,L.Ricciotti,C.Ferone,F.ColangeloandO.Tarallo,Fireresistantmelaminebasedorganic-geopolymerhybridcomposites,Cem.Concr.Compos59,2015,89–99.

[53]G.Roviello,C.Menna,O.Tarallo,L.Ricciotti,C.Ferone,F.Colangelo,D.Asprone,R.diMaggio,E.Cappelletto,A.ProtaandR.Cioffi,Preparation,structureandpropertiesofhybridmaterialsbasedongeopolymersandpolysiloxanes,Mater.Des.87,2015

82–94.

[54]G.Roviello,C.Menna,O.Tarallo,L.Ricciotti,F.Messina,C.Ferone,D.AsproneandR.Cioffi,Lightweightgeopolymer-basedHybrid.Mater.Compos.PartB128,2017,225–237.

[55]S.Delair,É.Prud’homme,C.Peyratout,A.Smith,P.Michaud,L.EloyandS.Rossignol,Durabilityofinorganicfoaminsolution:theroleofalkalielementsinthegeopolymernetwork,Corros.Sci.59,2012,213–221.

[56]G.Masi,W.D.Rickard,L.Vickers,M.C.BignozziandA.VanRiessen,Acomparisonbetweendifferentfoamingmethodsforthesynthesisoflightweightgeopolymers,Ceram.Int.40(9),2014,13891–13902.

[57]ZuhuaZhang,JohnL.Provis,AndrewReidandHaoWang,Geopolymerfoamconcrete:anemergingmaterialforsustainableconstruction,Constr.Build.Mater.56,2014,113–127.

[58]Z.Zhang,J.L.Provis,A.ReidandH.Wang,Mechanical,thermalinsulation,thermalresistanceandacousticabsorptionpropertiesofgeopolymerfoamconcrete,Cem.Concr.Compos.62,2015,97–105.

[59]K.Pimraksa,P.Chindaprasirt,A.Rungchet,K.Sagoe-CrentsilandT.Sato,LightweightgeopolymermadeofhighlyporoussiliceousmaterialswithvariousNa2O/Al2O3andSiO2/Al2O3ratios,Mater.Sci.Eng.A528(21),2011,6616–6623.

[60]P.Posi,C.Teerachanwit,C.Tanutong,S.Limkamoltip,S.Lertnimoolchai,V.SataandP.Chindaprasirt,Lightweightgeopolymerconcretecontainingaggregatefromrecyclelightweightblock,Mater.Des.52,2013,580–586.

[61]M.Y.J.Liu,U.J.Alengaram,M.Z.JumaatandK.H.Mo,Evaluationofthermalconductivity,mechanicalandtransportpropertiesoflightweightaggregatefoamedgeopolymerconcrete,EnergyBuild.72,2014,238–245.

[62]V.Medri,E.Papa,M.Mazzocchi,L.Laghi,M.Morganti,J.FrancisconiandE.Landi,Productionandcharacterizationoflightweightvermiculite/geopolymer-basedpanels,Mater.Des.85,2015,266–274.

[63]RapportoRifiutiUrbani,ISPRA,251/2016,ISBN:978-88-448-0791-7.

[64]A.O.Mashaly,B.A.El-Kaliouby,B.N.Shalaby,A.M.El–GoharyandM.A.Rashwan,Effectsofmarblesludgeincorporationonthepropertiesofcementcompositesandconcretepavingblocks,J.Clean.Prod.112,2016,731–741.

[65]F.ColangeloandR.Cioffi,Useofcementkilndust,blastfurnaceslagandmarblesludgeinthemanufactureofsustainableartificialaggregatesbymeansofcoldbondingpelletization,Materials6(8),2013,3139–3159.

[66]K.A.Arora,A.J.LesserandT.J.McCarthy,Preparationandcharacterizationofmicrocellularpolystyrenefoamsprocessedinsupercriticalcarbondioxide,Macromolecules31(14),1998,4614–4620.

[67]http://www.laterlite.es/wp-content/uploads/2014/03/General-Catalogue.pdf.

Page 12: University of Bath · This is a non-destructive test based on the transient plane source technique according to ISO 22007–2:2015. Microstructural analysis by scanning electron microscopy

Answer:checked

Query:Uncitedreferences:Thissectioncomprisesreferencesthatoccurinthereferencelistbutnotinthebodyofthetext.Pleasepositioneachreferenceinthetextor,alternatively,deleteit.Anyreferencenotdealtwithwillbe

retainedinthissection.Thankyou.

Answer:pleasereplace[55-61]with[55-62]

Query:Pleaseconfirmthatgivennamesandsurnameshavebeenidentifiedcorrectlyandarepresentedinthedesiredorderandpleasecarefullyverifythespellingofallauthors’names.

Answer:Yes

Query:Yourarticleisregisteredasaregularitemandisbeingprocessedforinclusioninaregularissueofthejournal.IfthisisNOTcorrectandyourarticlebelongstoaSpecialIssue/[email protected]

immediatelypriortoreturningyourcorrections.

Answer:Yes