universiti putra malaysia the nucleotide...

25
UNIVERSITI PUTRA MALAYSIA THE NUCLEOTIDE SEQUENCE OF THE MATRIX (M) PROTEIN GENE OF NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF 2240 SITI FATHIMAH PUTERY JEMAIN FSAS 1999 31

Upload: truongkien

Post on 25-Apr-2019

229 views

Category:

Documents


0 download

TRANSCRIPT

 

UNIVERSITI PUTRA MALAYSIA

THE NUCLEOTIDE SEQUENCE OF THE MATRIX (M) PROTEIN GENE OF NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF 2240

SITI FATHIMAH PUTERY JEMAIN

FSAS 1999 31

THE NUCLEOTIDE SEQUENCE OF THE MATRIX (M) PROTEIN GENE OF NEWCASTLE DISEASE VIRUS (NDV) STRAIN AF 2240

By

SITI FATHIMAH PUTERY JEMAIN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of

Science and Environmental Studies Universiti Putra Malaysia

March 1999

ACKNO�EDGEMENTS

Bismillahirrahmanirrahim, I would like to express my most sincere

thanks and appreciation to my Chairperson, Associate Prof. Dr. Khatijah Yusoff,

Department of Biochemistry and Microbiology, Universiti Putra Malaysia, for

her guidance, support, understanding, encouragement, patience and

constructive suggestions throughout the course of study. I also wish to convey

my thanks to Associate Prof. Dr. Abdullah Sipat and Dr. Abd.Rahman Omar for

their support and valuable suggestions during the course of this research.

I would like to convey my heartfelt thanks and gratitude to my lab-mates,

Omeima, Subha, Vijay, Alan, Laili, Filza, Ainu, Wai Kean, Chiew Ling, Majid,

Jeeven, Wei Hong, Chui Fung, Sing King, Siti and Priya for the friendship,

support and encouragement and for making the 2 years stay, an enjoyable one.

My deepest gratitude and thanks especially go to MSMN, SRA, my

parents, brothers and sisters, my beloved husband - abang Mustapha, and the

'Family' especially, mama, ibu, Azu, Nor, kak Yam, Uncle Ali and Dr. Nyonya

for the continued support and prayers.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LIST OF ABBREVIATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ABSTRAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I

II

III

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Newcastle Disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Newcastle Disease Virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ma trix Protein. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . .. . . . . ... 7

Sequence Characteristics.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Physical Location in the Virus Particle. . . . . . . . . . . . 10 Changes During Infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Polymerase Chain Reaction . . . . . . . . . . . . . . . . . " . .. . . . . .. . .. . . . . . 12 RNA (RT) PCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Contamination. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 15

DNA Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Dideoxy Chain Termination. . . . . . . . . . . . . . . . . . . . . . . . 17 Cycle Sequencing . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

New Sequence Determination Strategies. . . . . . . . . . . . . . .. . . 20 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Virus Isolate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Preparation of RNA Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii

N

Virus Cultivation. . .. . . . . . . . . . . . . . . . . . . . . . .. . . ...... . . . .. 24 Harvesting Technique.. . . . .. . . . . .. . . . . ..... . ... . . . .. . .. 25 Purification of the Virus . . .. . . . . . . . .. . ... ..... . . .. . . ... 25 Viral RNA Extraction. . . . . . . ... . . . ... . . . . . . ... . .. . . . . .. . . 26

Primers Design and Selection . . . . . . . . . , . . . . . . . . . . . . . .. . . . . . . . .. 27 Reverse Transcription Polymerase Chain Reaction (RT-PCR) . . .. . . . . .. . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .. . . . . . . . . . . 29 Cloning of RT-PCR Product into Vector pCR™2.1... . . . .. 31

Ligation. . . . . . . . . . . . . . .. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Transformation.... . . . .... . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . .. 32 Competent Cells . .... . . . . . . . . . . . . . . . . . ... . .. . . . ... ... . . . . . 36 Growth of Bacterial Colony. . . . . . . . . . . .. . . . . .. . . . . . . . . 37 Plasmid Extraction.. . . . . . . . . . . .. . . . . . .. . . . . ... . . . . .. . . . . . 37 Restriction Enzyme Analysis...... . . . . ... . . . . .. . . . . . . . 39 Plasmid PCR. . . . ... . . . ... . . . . .. . . .. .... . . .. . . . . . . . .. . . . ... 39

Colony Hybridisation.'... . . . . .. . . . . . . . . . . .. . . . ... . . . . . . ... . ... .. 40 Pro be Labeling. . . . . . . . . . . . . . . . . .. . . . . . . . .. . .. . . . . .. . . . . . . 40 Colony Lifts ... . . .... . . .. . . . . ... . . . .. . . . . . . . .. . . . . . , . . . . . , . 41 Hybridisation.. . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 42 Stringency Washes . . . , . . . .. , . . . . . . . .. . . . . . . . .. . . . . .. . . . . . 43 Colorimetric Detection with NBT and BCIP. . . . 43

Cycle Sequencing. . . . .. . . . . . . . . . . . . ... . . . . . . . . . . ... . . . . . . . . . . . . . .. 44 Computer Analysis of Nucleotide Sequence. . . . . . . . . . . .. . . 46

RESULTS AND DISCUSSION . . . .. . . . .. . . . . . .. . . . . . . . . . . . . .. . . 47 Amplification of the Matrix (M) Protein Gene. . . . .. . . . . . .. 47 Ligation and Transformation. . . . ... . . . . . .. . . . . . . . . ... . .. . . . . . . . 51 Colony Hybridisation. ... . .. . . . ... . . . . . . ... . . . .. . . . . . . . . .. . . . . . . . 54 Restriction Enzyme Analysis. . . . ... . . . . . . . . . . ... . . . .. . . . . . . . .. 56 Plasmid PCR. . . . ... .. . . .. . . . . .. . . . . . . . .. . ... . . . .. . . ... . . . . . .. . . . . .. 60 Sequencing of the M Gene.... . .. . . . . . . . . .. . . . . . . ..... . .. . . . . . . . 62

Problems Encountered.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Sequence Analysis. . . . . . . . . . . . . . . .... . . . .. ... .. . . ... . . .. . . . .. . . ... 65

FASTA Search Results.. . .. . . . . . . . . .... . . . . .. . . . .. . . . . . . . 65 Physical Properties of the M Protein. . . . . . . . . . . . . . . . . . . . . . . . . 68

The Amino Acid Composition and Molecular Weight. .. . . ... . .... .. . . .. . .. . . . . . . . .. . . . ... . . . . . . . . . . . . . . . .. 68

Structural Properties of the M Protein. . . . . . . . . . . . . . . . . . . . ... 73 Hydrophobicity Patterns . . ... . . . . . . .... . . . . . ... . . . . . . .. 73

Secondary Structure. . .... . . . . . .. . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 77 Non-graphical Prediction. .. ... .. . . . . . . . . . ... . . .. . . . . . . 78

Phylogenetic Analysis. . ... . . .. . . .. . .. . . . . . . . .. . . . . . . .... . . . . . . . . 82

iv

v

Distance Matrix Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Maximum Likelihood Method. . . . . . . . . . . . . . . . . . . . . . . . . 85 Consensus Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

NDV Phylogenetic Grouping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 The Grouping of Strain AF 2240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . 90 Multiple Alignment of the Amino Acids Sequence. . . . . . . . 90 Comparison Between the Amino Acid of the M Protein of AF 2240 and the M Protein of Other Strains of NDV and Other Members of the Paramyxoviridae Family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Restriction Enzyme Sites on the M gene. . . . . . . . . . . . . . . . . . . . . . 101

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 114

Appendix A : Hydropathy Plot for M Protein of Strain Turkey IND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Hydropathy Plot for M Protein of Strain Largo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Hydropathy Plot for M Protein of Strain Hertz/33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix B: Evolutionary tree of 13 NDV Strains. . . . . . . . . 118 Appendix C: Nucleotide Sequence of the M Gene of

NDV strain AF 2240 Submitted to the GenBank . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

VITA........................................................................... 121

v

LIST OF TABLES

Table Page

1 Function of the NDV Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Potential Sources of Nucleic Acid Contamination in PCR. .. . . . . . . . . 16

3 Primers for RT-PCR and Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Universal Primers used for Sequencing......... . .......... . . . . . ...... . . . 28

5 Features of pCR™2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 35

6 Results from the FASTA Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Results from the BLASTP Program. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 102

8 List of Enzymes that are Able to Cut the M Gene. . . . . . . . . . . . . .. . . . . . . .. 103

9 List of Enzymes that are Not Able to Cut the M Gene. . . . . . . . . . . . .. . ... 103

vi

LIST OF FIGURES

Figure Page

1 Schematic Diagram of a Typical Paramyxovirus Particle. . . . . . . . . . . 6

2 The Concept Behind the TA Cloning® Method . . .. . . . . . . . . . . . . . . . . . . . . . . 33

3 The pCR™2.1 Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The Nucleotide Sequence of the M Gene of Strain AF 2240. . . . . . . . . 69

Sa Hydropathy Profile of the M Gene Amino Acid Residues of NDV Strain AF 2240. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5b Hydropathy Profile of the M GeneAmino Acid Residues of NDV Strain Fontana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Non-graphical Representation of AF 2240 M Protein. . . . . . . . . . . . . . . . . 80

7 Consensus Tree Generated by BOOTSTRAP Resamplings (1000 bootstrap reiterations) Using the ECONSENSUS Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Multiple Sequence Alignment of 13 NDV Strains Using the PREITYPLOT Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 Hydropathy Plot for M Protein of Strain Turkey /ND. . . . . . . . . . . . . . . .. 115

10 Hydropathy Plot for M Protein of Strain Largo... . . . . . . . . . . . . . . . . . . . . . . 116

11 Hydropathy Plot for M Protein of Strain Hertz/33. . . . . . . . . . . . . . . . . . . . . 117

12 EvolUtionary Tree of 13 NDV Strains Based on the HN Gene. . . . . . .. 118

vii

LIST OF PLATES

Plate

1 RT-PCR Amplification of the M Gene of NDV

Page

Strain AF 2240 ................................................................... 49

2 The Colonies on the LB Plate with X-GaljIPTG....... .......... ......... 53

3 Colony Hybridisation of the Putative Recombinants................... 55

4 Eco RI Enzyme Analysis of Putative Recombinant Plasmid 01 and P5a.......................................................................... 57

5 Eco RI Enzyme Analysis of Plasmids 01,P5a and P5a'.................. 59

6 PCR of the Insert in the Recombinant Plasmid........................... 61

7 Sequence Ladders of the Cloned RT-PCR Product of the M Gene... 64

viii

LIST OF ABBREVIATIONS

The following abbreviations were used in the text:

bp

kDa

kb

min

s

v/v

w/v

1-11

NDV

RT-PCR

Mbp

M

st

NDU 25828

NDU 25829

NDU 25830

base pair

degrees Centigrade

kilodalton

kilo basepair

minute

second

volume per volume

weight per volume

microlitre

Newcastle disease virus

reverse transcription polymerase chain reaction

mega base pair

matrix

strain

NDV strain Bl NDV strain Fontana

NDV strain Hertz

ix

NDU 25831 NDV strain Kimber

NDU 25832 NDV strain Largo

NDU25833 NDV strain La Sota

NDU 25834 Queensland/V 4

NDU 25835 Texas/GB

NDU 25836 Turkey/ND

NDU25837 NDV strain Ulster

NDU 25838 NDV strain VGGA

VMAT_NDVA NDV strain Australia/Victoria/32

VMAT_NDVB NDV strain Beudette C/45

x

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science.

THE NUCLEOTIDE SEQUENCE OF THE MATRIX (M) PROTEIN GENE OF NEWCASTLE DISEASE VIRUS (NDV) AF 2240

By

SITI FATHIMAH PUTERY JEMAIN

March 1999

Chairperson: Associate Professor Khatijah Yusoff, Ph.D.

Faculty: Science and Environmental Studies

The complete nucleotide sequence of the matrix (M) protein gene of the

local Newcastle disease virus (NDV) strain AF 2240 was determined. Based on

consensus primers, several segments of the M gene were reverse transcribed

and amplified by the polymerase chain reaction. The RT-PCR products were

cloned into a plasmid vector pCR™2.1. The DNA inserts in the clones were then

cycle-sequenced. The start and polyadenylation signals have been identified.

Assuming that the M gene starts and terminates at these sequences, the M gene

is 1223 nucleotides long and encodes an open reading frame of 364 amino acids,

corresponding to a polypeptide calculated molecular weight of 40 kDa. The M

protein, is both hydrophobic and basic. Phylogenetic analysis shows that the

strain has a close relationship with the North American Fontana strain. The M

protein amino acid sequence also shows similarities with members of the

xi

Rubulavirus genus such as the Simian virus 5, the human parainfluenza virus

type 4 and the mumps virus. Similarities of the amino acid sequence also exist

between the local strain and other members of the Paramyxovirus and

Morbillivirus genus.

xii

Abstrak tesis yang dikemukakan kepada Senat Dniversiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

JDJUKAN NUKLEOTIDA GEN PROTEIN MATRIKS (M) VIRUS PENYAKIT SAMPAR AYAM (NOV) STRAIN AF 2240

Oleh

SITI FATHIMAH PUTERY JEMAIN

Mac 1999

Pengerusi: Profesor Madya Khatijah Yusoff, Ph.D.

Fakulti : Sains dan Pengajian Alam Sekitar

Gen protein matriks (M) virus penyakit sampar ayam (NDV) strain AF

2240, yang merupakan strain tempatan, belum di ketahui jujukan

nukleotidanya. Oleh itu kajian ini dijalankan untuk mengenalpasti jujukan

nukleotida protein M tersebut. Produk RT-PCR gen M diklonkan ke dalam

vektor plasmid pCR™2.1. Jujukan produk RT-PCR gen M yang telah diklonkan

tadi ditentukan melalui proses penjujukan berulang. Kodon-kodon permulaan

dan isyarat poliadenilat telah dikenalpasti. Dengan mengambil kira kodon-

kodon ini, jujukan nukleotida protein M didapati mempunyai 1223 pasangan

bes dan berupaya untuk mengkodkan protein yang mempunyai 364 asid-asid

amino. Anggaran berat molekular protein M ialah lebih kurang 40 kDa. Secara

keseluruhannya, jujukan asid amino protein M adalah bersifat hidrofobik dan

basik. Analisis filogenetik, menunjukkan bahawa strain AF 2240 mempunyai

xiii

pertalian yang rapat dengan strain NDV daripada Amerika Utara, iaitu strain

Fontana. Jujukan asid amino protein M mempunyai persamaan dengan ahli­

ahli genus Rubulavirus yang lain, iaitu virus Simian 5, virus parainfluenza

manusia jenis 4 dan virus penyakit begok dan juga ahli genus Paramyxovirus

dan Morbillivirus.

xiv

CHAPTER I

INTRODUCTION

Newcastle disease or 'penyakit sampar ayam' is endemic in

Malaysia and has always been a serious threat to the livestock industry.

This disease is caused by the Newcastle disease virus (NDV) which

belongs to the Rubulavirus genus within the Paramyxoviridae family. The

disease currently has a worldwide distribution with a wide host range

in which all orders of birds have been reported to be infected by NDV

(Brandly, 1964). From the Office International Des Epizooties (O.I.E)

homepage (http://ss.niah.affrc.go.jp/OIE/yb95/yb95b.html), it was

shown that there has been 11 reported outbreaks of ND in Malaysia and

frequent outbreaks also occur in Indonesia, the Philippines, India, South

Korea and other developing countries from January to August 1995.

The techniques used to eradicate the virus are (1) destruction of

the entire chicken population and disinfection of the affected area with

viricidal agents, (2) employing quarantine procedures and (3)

2

vaccination of the chickens (Spradbrow, 1987). Vaccination has so far given an

adequate protection against NDV, at least for chickens reared commercially.

Two types of vaccines are currently being used against Newcastle disease; a live

attenuated vaccine (for example, strains Bl and La Sota) usually administered in

drinking water and the inactivated vaccine (for example, strain Ulster) usually

administered by intra-muscular injection. In addition, researchers in UPM has

used the lentogenic strain V 4 (UPM) as a live attenuated vaccine and in the form

of food pellet (Ideris et al., 1990).

The rapid advance in recombinant DNA technology has given birth to a

new generation of genetically engineered vaccine that has several advantages

over the traditional vaccines. These advantages include (1) greater safety to

workers and the environment because only the usage of isolated genes (cloned

into specific vectors) are involved, (2) vaccine associated complications are

reduced because non-essential viral components are not present in the vaccine,

(3) purified proteins are more stable than virus particles and (4) cheaper

production cost (Obijeski, 1985).

The local velogenic-viscerotropic NDV virus reference strain AF 2240, has

been studied in UPM for the past few years. This strain has the potential to be

3

developed as a subunit vaccine capable of protecting poultry against a wider

range of NDV isolates. Being heat resistant, its transportation and handling will

be cheaper and easier as it will limit the number of essential 'cold-chains'

involved in maintaining its effectiveness. Unlike the haemagglutinin-

neuraminidase (HN) protein and the fusion (F) protein genes of strain AF 2240

(Tan et al., 1995; Yusoff et al., 1993) which have been extensively studied, very

little work has been done on the matrix (M) protein gene. The M protein gene

encodes the M protein, which plays an important role in the construction of the

virus as well as the regulation of the viral RNA synthesis (Tanabayashi et al.,

1990; Seal, 1996). It is hoped that knowledge of the M gene sequence will give a

better understanding of its structure and function.

This thesis reports on the nucleotide sequence of the M gene of NDV

strain AF 2240.

CHAPTER II

LITERATURE REVIEW

Newcastle Disease

Newcastle disease which causes 100% mortality in birds

(Brandly, 1964), was discovered in 1926 near Batavia (Jakarta) . A similar

outbreak was also reported in Newcastle-on-Tyne (hence, the name of

the disease) and in Korea in that same year. By 1933, researchers in

England, Philippines, Indonesia and India, through cross-immunity

tests, agreed that the same virus named as the Newcastle disease virus

caused these outbreaks.

Newcastle Disease Virus

The Newcastle disease virus, the human parainfluenza virus

types 2, 4a and 4b, the Simian virus 5 and mumps virus are grouped

under the genus Rubulavirus (Lamb and Kolakofsky, 1996).

4

5

The Paramyxoviridae family was reclassified in 1993 into two subfamilies: the

Paramyxovirinae and the Pneumovirinae. The Paramyxovirinae contains three genera,

Parainjluenzavirus, Rubulavirus and Morbillivirus. The sub-family Pneumovirinae

contains the genus Pneumovirus. The new classsification is based on morphological

criteria, genomic organisation, biological activities of proteins, and the sequence

relationship of the encoded proteins (Lamb and Kolakofsky, 1996).

Members of this family of viruses are very pleomorphic, with a diameter of

about 100 to 500 nm, and are capable of acquiring a variety of shapes ranging from

circular, spherical, flattened, and often in filamentous forms. The virion is enveloped

with a lipid bilayer membrane, derived from the plasma membrane of the host cell,

which gives it a certain flexibility to exist in these various morphological forms suited

to the pH and salinity of the surrounding environment (Waterson, 1964). The

haem agglutinin-neuraminidase (HN) and fusion (F) glycoproteins protrude from the

lipid bilayer membrane. They are visible as spike-like structures under the electron

microscope, ranging from about 8 to 20 nm in length and spaced 6 to 10 nm apart

Below the lipid bilayer membrane is a shell of protein known as the matrix (M) protein. Protected by the lipid and protein layers, is the long helical nucleocapsid 13

to 18 nm in diameter with the "herring-bone" structure quite unique to NDV,

containing the genome (Figure. 1) (Alexander, 1988; Samson, 1988).

NP Protei n

RNA Genome

P Protei n

M = matrix protein F = fusion protein consists of 2 disulphide-linked subunits (Fl+F2) HN = haemagglutinin-neuraminidase protein NP = nucleoprotein L = large protein P = nucleocapsid associated protein

Figure 1: Schematic Diagram of a Typical Paramyxovirus Particle.

6

( www.tulane.edu)

7

The genome of NDV is a non-segmented, single stranded linear RNA of

negative polarity with a molecular weight of 5.2 to 5.7xl06 daltons which is

approximately 15 kilobase (kb) long. It codes for the following six structural

proteins nucleocapsid protein (NP), nucleocapsid associated protein (P), matrix

protein (M), fusion protein (F), haemagglutinin-neuraminidase (HN) protein

and large (L) polymerase protein (Samson, 1988) (Table 1).

Matrix (M) Protein

Sequence Characteristics

The matrix (M) protein is a non-glycosylated, non-phosphorylated,

hydrophobic and highly basic protein of 364 amino acids (Chambers et aI., 1986;

McGinnes and Morrison, 1987; Seal, 1996). Most of its positively charged basic

amino acids lie in the C-terminal portion of the molecule. It is reported that the

amino acid sequence contains five cysteine residues (McGinnes and Morrison,

1987). The positions of glycine, proline and paired basic amino acid residues (R­

K, K-K, K-R, R-R) of the M gene have been shown to be conserved in NDV,

8

Table 1: Functions of the NDV Proteins.

Protein Approx. size (kDa) Function

NucleocapsId (NP) 53-56 Major structural component of nucleocapsId:complexed WIth genome RNA

NucleocapsId-assoCIated 53-56 AssocIated WIth protem (P) nucleocapsId,

phosphorylated, plays a role m transcnphon/ rephcahon RequIred for vIral mRNA synthesIS

MatrIx or membrane (M) 38-40 VIrUS assembly organiser, moderates transcnphon

Uncleaved fusIOn (Fa) 67 Precursor to F1,2

Larger cleaved fusIOn (Fl) 55 Major determmant of the Smaller cleaved fusIOn (F2) vrrulence of NDV

12 FUSIOn of VIrUS and host membranes, necessary for mfechon and haemolysis

Haemaggluhnm- 72-75 Dual funchon: receptor neurammidase (HN) bmdmg protem responsIble

for haemaggluhnahon and cleavage of neurammiC aCId resIdues from glycoprotems / lIpIds

Large (L) 180-220 RNA dIrected RNA polymerase, necessary for the makmg of + (codmg) sense mRNA

(Samson, 1988)

9

Send ai, measles and canine distemper viruses (Bellini et al., 1986; Chambers et al.,

1986; McGinnes and Morrison, 1987).

The M protein is one of the main structural elements of the virus. However,

the functioning of this M protein is suggested to be mediated by its overall

characteristics (basic and hydrophobic), rather than by any particular conserved

sequences (Bellini et al., 1986; Chambers et al., 1986; Spriggs et al., 1987; Elango 1989;

Limo and Yilma., 1990; Tanabayashi et ai ., 1990; Randhawa et al., 1996).

Functions

Firstly, the M protein seems to be a controlling factor in RNA synthesis and

has a key role in virus assembly by locating nucleocapsid structures beneath those

regions of the plasma membrane in which the F and HN glycoproteins are

attached. This was proven when paramyxoviruses that produced defective M

proteins were unable to produce virus particles (Peeples and Bratt, 1984). This was

perfectly demonstrated in vitro when the Sendai virus nucleocapsid would not

10

form a complex with the viral glycoproteins unless the M protein was added.

Secondly, it could be involved in moderating the virion RNA polymerase activity

possibly in interactions with cellular actin (negatively charged) which drives the

budding process. Thirdly, it could be involved in protein kinase activity

(Blumberg et al., 1984). Analysis of chimeric M proteins indicates that mutations

in the amino-terminal and the carboxyl-terminal regions of the M protein all

abrogate nucleocapsid binding. This suggests that the M protein conformation

is important for interaction with the viral nucleocapsid (Hirano et al., 1993).

Physical Location in the Virus Particle

In electron micrographs of virions (Lamb and Kolakofsky, 1996), an

electron-dense layer is observed underlying the viral lipid bilayer. This is

thought to represent the location of the M protein. Fractionation studies of the

virus indicate that this protein is peripherally associated with membranes and is

not an intrinsic membrane protein (Faaberg and Peeples, 1988). The M protein

probably contains amphipathic oc-helices that insert themselves into the inner

leaflet of the lipid bilayer to coat this surface and organise its contacts with the