univariate (andmultivariate) extreme value theory

47
Univariate (and multivariate) extreme value theory Mathieu Ribatet ([email protected]) Ecole Centrale de Nantes 1. Block maxima 9 Type and Max-stability ...................................................................... 14 Extremal type theorem ...................................................................... 16 The three limiting families ................................................................... 17 GEV ....................................................................................... 19 Domains of attraction ....................................................................... 21 von Mises conditions ........................................................................ 22 Penultimate approximation .................................................................. 23 Quantile ................................................................................... 29 Return level plot ............................................................................ 31 Inference ................................................................................... 32 Model checking ............................................................................. 34 Assessing uncertainties ...................................................................... 37 2. Threshold exceedances 40 Another representation for extremes .......................................................... 41 GPD ....................................................................................... 42 Quantile ................................................................................... 46 Threshold selection ......................................................................... 52 3. Point process 58 Point processes ............................................................................. 59 Convergence to a PPP ....................................................................... 62 Quantile ................................................................................... 65 4. Non-stationary sequences 71 Failure of the i.d. assumption................................................................. 72 Two strategies .............................................................................. 73 Toulouse temperatures ...................................................................... 74 Model with a trend .......................................................................... 75 Model selection ............................................................................. 76 1

Upload: others

Post on 18-Mar-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Univariate (andmultivariate) extreme value theory

Univariate (and multivariate) extreme value theory

Mathieu Ribatet ([email protected])

Ecole Centrale de Nantes

1. Block maxima 9

Type and Max-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Extremal type theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

The three limiting families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

GEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Domains of attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

von Mises conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Penultimate approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Return level plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Assessing uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2. Threshold exceedances 40

Another representation for extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

GPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Threshold selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Point process 58

Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Convergence to a PPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4. Non-stationary sequences 71

Failure of the i.d. assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Two strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Toulouse temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Model with a trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1

Page 2: Univariate (andmultivariate) extreme value theory

5. Stationary sequences 80

Stationary sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D(un) condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

GEV revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Extremal index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Exceedances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Cluster maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Declustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2

Page 3: Univariate (andmultivariate) extreme value theory

Course details

ä Tuesday 19th November 15:30–18:30,ME401

ä Tuesday 3rd December 08:30–12:30, ME401

ä Monday 3rd December 14:30–17:30, ME405

ä Supplementary material (if any) can be downloaded from

http://imag.umontpellier.fr/~ribatet/teaching.html

Extreme value theory M2 Statistics and Econometrics – 2 / 95

Bibliography

ä Coles (2001) An Introduction to Statistical Modeling of Extreme Values, Springer

ä de Haan and Ferreira (2006) Extreme Value Theory: An Introduction, Springer

ä Resnick (1987) Extreme values, Regular variation and Point processes, Springer

ä Embrechts, Klüppelberg and Mikosch (1997) Modelling Extreme Events for Insurance and Finance,

Springer

Extreme value theory M2 Statistics and Econometrics – 3 / 95

3

Page 4: Univariate (andmultivariate) extreme value theory

Environmental extremes

Extreme value theory M2 Statistics and Econometrics – 4 / 95

Environmental extremes (2)

Knowledge of the distribution of environmental extremes might be useful for

ä economic reasons, prevent any severe dammage due to a storm, extremely cold temperatures,

. . . yielding to economic losses;

ä policy management to characterize the potential human losses if some extreme weather events

occur—France 2003.

Extreme value theory M2 Statistics and Econometrics – 5 / 95

4

Page 5: Univariate (andmultivariate) extreme value theory

Financial extremes

Extreme value theory M2 Statistics and Econometrics – 6 / 95

Financial extremes (2)

Knowledge of the distribution of financial extremes might be useful to

ä be in agreement with the Basel committe, e.g., characterize the value at risk;

ä assess to which extent a given company is “at risk”;

ä derive optimal portfolio management such as extension of the Markowitz framework.

Extreme value theory M2 Statistics and Econometrics – 7 / 95

5

Page 6: Univariate (andmultivariate) extreme value theory

History

ä 1930: Foundations of asymptotic arguments from Fisher and Tippett

ä 1940s: Unification and extension of the asymptotic theory by Gnedenko and von Mises

ä 1950s: First statistical modelling from asymptotic distribution by Gumbel and Jenkinson

ä 1960s: Multivariate maxima

ä 1970s: Threshold exceedances

ä 1980s: Extremes for stationary processes, point processes approaches

ä 1990s: Multivariate modelling strategies, Bayesian approaches

ä 2000s: Softwares

ä 2010s: Spatial extremes

Extreme value theory M2 Statistics and Econometrics – 8 / 95

1. Block maxima 9 / 95

Set upä Let X1, . . . , Xm

iid∼ F and define the (block) maximum Mm = max{X1, . . . , Xm}. Clearly we have

Pr(Mm ≤ x) = Pr(X1 ≤ x, . . . , Xm ≤ x)

= Pr(X1 ≤ x)×·· ·×Pr(Xm ≤ x)

= F (x)m .

ä F is unknown so approximate F m with some relevant distribution.

ä As m →∞ we have

F (x)m −→{

0, F (x) < 1,

1, F (x) = 1,

so MmD−→ x+ where x+ = sup{x ∈R : F (x) < 1}. We say that the limiting distribution is degenerate.

Extreme value theory M2 Statistics and Econometrics – 10 / 95

6

Page 7: Univariate (andmultivariate) extreme value theory

How to avoid degenerate limiting distribution?

ä You already met degenerate distribution, e.g., provided E(|X |) <∞,

Xm =1

m

m∑

i=1

XiD−→ E(X ), m →∞.

ä Question: How would you get a non degenerate distribution?

ä We will just do the same with Mm !

Extreme value theory M2 Statistics and Econometrics – 11 / 95

Examples

Example 1. Find suitable (normalizing) sequences such that maxima of independent random variables

from the

i) Exponential(1)

ii) (unit) Fréchet, i.e., Pr(X ≤ x)= exp(−1/x), x > 0

iii) Uniform(0,1)

distributions have non–degenerate limiting distributions.

Extreme value theory M2 Statistics and Econometrics – 12 / 95

7

Page 8: Univariate (andmultivariate) extreme value theory

Numerical illustration

Unnormalised Normalised

0.0 2.5 5.0 7.5 10.0 12.5 −5 0 5

0.00

0.25

0.50

0.75

1.00

x

Cum

ula

tive

dis

trib

ution function

Block sizem=1

m=7

m=30

m=90

m=365

m=3650

Figure 1: Distribution of maxima (left) and normalized maxima (right) with m = 1,7,30,90,365,3650 standard Exponential random variables.

Extreme value theory M2 Statistics and Econometrics – 13 / 95

Type and Max-stability

Definition 1. A distribution H is said to be max-stable if for any k ∈N∗

H k (x) = H (ak x +bk ),

for some constants ak and bk .

Definition 2. Two distributions F and G are of the same type if there are constants a > 0 and b ∈R such

that G(ax +b)= F (x) for all x ∈R.

Extreme value theory M2 Statistics and Econometrics – 14 / 95

8

Page 9: Univariate (andmultivariate) extreme value theory

Clearly if a limiting distribution H for normalized maxima exists, it must be max-stable since as m →∞

Pr

(

Mmk −bmk

amk≤ x

)

−→ H (x),

Pr

(

Mm −bm

am×

am

amk+

bm −bmk

amk≤ x

)k

−→ H

{

x −β(k)

α(k)

}k

,

as the convergence to types theorem states that

am

amk−→α(k) > 0,

bk −bmk

amk−→β(k), m →∞.

Extreme value theory M2 Statistics and Econometrics – 15 / 95

Extremal type theorem

Theorem (Extremal types theorem). If there exist sequences of constants {am > 0: m ≥ 1} and

{bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am≤ x

)

−→ H (x),

for some non–degenerate distribution H, then H has the same type as one of the following distributions:

I: H (x) = exp{

−exp(−x)}

, x ∈R;

II: H (x) ={

0, x ≤ 0,

exp(−x−α) , x > 0,α> 0;

III: H (x)={

exp{

−(−x)α}

, x < 0,α> 0,

1, x ≥ 0.

Extreme value theory M2 Statistics and Econometrics – 16 / 95

9

Page 10: Univariate (andmultivariate) extreme value theory

The three limiting families

Gumbel Frechet (α = 2) Weibull (α = 2)

−10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

x

Density

ä The three limiting distribution are known respectively as the Gumbel, Fréchet and Weibull

distributions.

ä Note that Fréchet is lower bounded, Weibull is upper bounded.

Extreme value theory M2 Statistics and Econometrics – 17 / 95

Statistical application

ä From a statistical perspective, we assume that for some (unknown) a > 0 and b ∈R,

Pr

(

Mm −b

a≤ x

)

≈ H (x),

or in other words,

Pr(Mm ≤ x) ≈ H

(

x −b

a

)

= H2(x),

where H2 is of the same type as H .

ä We thus fit one of the three family to a series of observations of Mm .

ä It is a bit unfortunate that we need to consider three different families. . .

Extreme value theory M2 Statistics and Econometrics – 18 / 95

10

Page 11: Univariate (andmultivariate) extreme value theory

The Generalized Extreme Value distribution

Definition 3. A random variable X has a Generalized Extreme Value distribution GEV(µ,σ,ξ) if its c.d.f.

is

H (x)= exp

{

−(

1+ξx −µ

σ

)−1/ξ}

, 1+ξx −µ

σ> 0.

The GEV distribution has three parameters: a location µ ∈R, a scale σ> 0 and a shape ξ ∈R.

The case ξ= 0 is derived by a continuity extension, i.e.,

H (x)= exp{

−exp(

−x −µ

σ

)}

, x ∈R.

ä The shape parameter controls the tail, i.e.,

– ξ> 0 corresponds to the heavy–tailed (Fréchet) case;

– ξ= 0 corresponds to the light–tailed (Gumbel) case;

– ξ< 0 corresponds to the short–tailed (Weibull) case.

Extreme value theory M2 Statistics and Econometrics – 19 / 95

Extremal type theorem 2.0

Theorem. If there exist sequences of constants {am > 0: m ≥ 1} and {bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am≤ x

)

−→ H (x),

for some non–degenerate distribution H, then

H (x)= exp

{

−(

1+ξx −µ

σ

)−1/ξ}

, 1+ξx −µ

σ> 0,

for some µ ∈R, σ> 0 and ξ ∈R.

Remark. Watch out! The theorem above states that if the limit exists it has to be GEV. In general there is

no guarantee that such a limit exists, e.g., Poisson distribution.

Extreme value theory M2 Statistics and Econometrics – 20 / 95

11

Page 12: Univariate (andmultivariate) extreme value theory

Domains of attraction

Definition 4. A distribution F is said to belong to the (max) domain of attraction of the

Gumbel Gumbel

Fréchet distribution if the limiting distribution of Mm−bm

amis Fréchet

Weibull Weibull

Example 2. The (max) domain of attraction of the Normal distribution is Gumbel.

ä In practice the notion of domain of attraction is of little interest since typically F is unknown—and

so is the domain of attraction!

Extreme value theory M2 Statistics and Econometrics – 21 / 95

von Mises conditions

ä How one can determine sequences {am : m ≥ 1} and {bm : m ≥ 1}?

ä The von Mises conditions give sufficient (but not necessary) simple conditions, i.e., for a (smooth

enough) distribution F the Mills ratio is

r (x)=1−F (x)

f (x).

Then with

bm = F−1

(

1−1

m

)

, am = r (bm), ξ= limx→x+

r ′(x),

the limit distribution of (Mm −bm)/am is GEV with shape ξ.

Example 3. Use the von Mises conditions to check the limiting distribution of maxima from the

uniform, exponential, Fréchet and Gaussian distribution.

Extreme value theory M2 Statistics and Econometrics – 22 / 95

12

Page 13: Univariate (andmultivariate) extreme value theory

Penultimate approximation

ä Convergence to the limiting distribution may be slow.

ä Taking ξm = r ′(bm) may give better approximation to the distribution of (Mm −bm)/am for finite m

than does using the limiting approximation.

Example 4. For the N (0,1) case we have

ξ7 ≈−0.324, ξ30 ≈−0.176, ξ90 ≈−0.13, ξ365 ≈−0.097, ξ3650 ≈−0.068,

so the distribution of Mm is short–tailed compared to the Gumbel limit—even when m is very large!

ä As a consequence, even if we were sure about the Gumbel limit, one should prefer fitting a GEV with

an arbitrary shape parameter ξ.

Extreme value theory M2 Statistics and Econometrics – 23 / 95

Illustration of the penultimate approximation

m = 7 m = 30 m = 90 m = 365 m = 3650

Lim

itP

enu

ltima

te

−2 0 2 4 6 −2 0 2 4 6 −2 0 2 4 6 −2 0 2 4 6 −2 0 2 4 6

−2

0

2

4

6

−2

0

2

4

6

Gumbel/Penultimate plotting position

Norm

aliz

ed G

aussia

n m

axim

a

Figure 2: Illustration of the penultimate approximation with 100 replicated of renormalized N(0,1) maxima with m = 7,30,90,365,3650.

Extreme value theory M2 Statistics and Econometrics – 24 / 95

13

Page 14: Univariate (andmultivariate) extreme value theory

Recall the extremal types theorem

Theorem. If there exist sequences of constants {am > 0: m ≥ 1} and {bm ∈R : m ≥ 1} such that, as m →∞,

Pr

(

Mm −bm

am≤ x

)

−→ H (x),

for some non–degenerate distribution H, then

H (x)= exp

{

−(

1+ξx −µ

σ

)−1/ξ}

, 1+ξx −µ

σ> 0,

for some µ ∈R, σ> 0 and ξ ∈R.

Extreme value theory M2 Statistics and Econometrics – 25 / 95

Statistical interpretation

ä We observe a time series of, say, daily values X1, X2, . . . supposed to be independent and identically

distributed from F

ä We compute the maxima Mm =max(X1, . . . , Xm) of blocks of the original time series

– Environmental applications: annual maxima with m = 365, monthly maxima m = 30

– Finance: annual maxima with m = 250, monthly maxima m = 20

ä We suppose that this new time series of block maxima follows the GEV distribution with unknown

parameters µ,σ and ξ.

ä We then estimate the parameters and use our fitted GEV for estimations.

Extreme value theory M2 Statistics and Econometrics – 26 / 95

14

Page 15: Univariate (andmultivariate) extreme value theory

Environmental applications

0

20

40

60

80

2010−01−01 2011−01−01 2012−01−01 2013−01−01 2014−01−01 2015−01−01 2016−01−01 2017−01−01

Date

Pre

cip

itation (

mm

)

Figure 3: Annual maxima for precipitation (mm) recorded at Toulouse–Blagnac.

ä Watch out for seasonality, starting/ending of blocks, e.g., hydrological years.

Extreme value theory M2 Statistics and Econometrics – 27 / 95

Financial applications

20

40

60

2008 2010 2012 2014 2016 2018

Date

YH

OO

.Clo

se

−0.4

−0.2

0.0

0.2

2008 2010 2012 2014 2016 2018

Date

Ne

ga

tive

lo

g−

retu

rn

Figure 4: Illustration about the use of (negative) log-returns, i.e., Yt =− log(X t /X t−1)—Yahoo closing prices.

ä It is common practice to work on the (negative) log-return to cancel out trends and mitigate the

volatility.

Extreme value theory M2 Statistics and Econometrics – 28 / 95

15

Page 16: Univariate (andmultivariate) extreme value theory

Quantiles for the GEV

ä Let p ∈ (0,1), the quantile yp of a GEV(µ,σ,ξ) with exceedance probability p , i.e., F (yp ) = 1−p , is

yp =µ−σ1− {− log(1−p)}−ξ

ξ.

ä In environmental application we say that yp is the return level associated with the return period

1/p .

ä In finance we say that yp is the Value at Risk (VaR).

ä In both cases, yp is a quantile.

Extreme value theory M2 Statistics and Econometrics – 29 / 95

Why the phrasing “return period”?

ä Let T = 1/p with p ∈ (0,1).

ä Let Y1,Y2, . . .iid∼ Y and consider the random variable

I = argmin {i ≥ 1: Yi ≥ yp }, Pr(Y ≥ yp ) = p.

ä Clearly I ∼ Geom(p) as Pr(“success”) = Pr(Y ≥ yp ) = p .

ä Hence E(I )= 1/p = T , that is, yp is expected to be exceeded once every T = 1/p observations.

ä If the Yi ’s are block maxima, it is expected to be exceeded once every T = 1/p blocks, e.g., years.

Remark. Don’t be fooled! It doesn’t refer to any kind of periodicity. . .

Extreme value theory M2 Statistics and Econometrics – 30 / 95

16

Page 17: Univariate (andmultivariate) extreme value theory

Return level plotIt is common practice to show results using a return level plot, i.e., plotting on a log–scale for the x–axis

the function

f : T 7−→ yp =µ−σ1− {− log(1−p)}−ξ

ξ, p =

1

T.

ξ = − 0.2

ξ = 0

ξ = 0.2

0.0

2.5

5.0

7.5

1 10 100

Return period

Re

turn

leve

l

ξ = − 0.2

ξ = 0

ξ = 0.2

0.0

2.5

5.0

7.5

1 10 100

− 1 log(1 − 1 T)

Re

turn

leve

l

Remark. Sometimes the x–axis is not the return period T but rather −1/log(1−1/T ). Since

−1/log(1−1/T ) ∼ T as T ∼∞, both plots are roughly the same.

Extreme value theory M2 Statistics and Econometrics – 31 / 95

Inference

Given observed block maxima Y1, . . . ,Yn , we want to estimate the GEV parameters (µ,σ,ξ). One could

use

ä moment based estimators—usually not relevant as moments might not exist with extremes.

ä probability weighted moments—good small sample performance but not very flexible.

ä likelihood based approaches (by far the most used approach)

– flexible and usually efficient;

– model selection is easy (AIC, BIC, Likelihood ratio, . . . )

– can be embedded, if necessary, into a Bayesian framework.

Extreme value theory M2 Statistics and Econometrics – 32 / 95

17

Page 18: Univariate (andmultivariate) extreme value theory

Example: Precipitation extremes at Toulouse–Blagnac> library(evd)##R package for EVT (other alternatives exist)

> head(data)##data is an R matrix giving the *raw* data

Years Precip

1 1947 0.2

2 1947 0.2

3 1947 0.0

4 1947 0.0

5 1947 6.0

6 1947 0.4

> block.max <- aggregate(Precip~Years, FUN = max, data = data)

> (fitted <- fgev(block.max[,"Precip"]))

Call: fgev(x = block.max[, "Precip"])

Deviance: 543.5806

Estimates

loc scale shape

35.12564 9.90881 0.01489

Standard Errors

loc scale shape

1.33591 0.97678 0.09087

...

Extreme value theory M2 Statistics and Econometrics – 33 / 95

Model checking: QQ–plot

ä QQ–plots are useful for model checking, identifying possible outliers

ä Given a sample Y1, . . . ,Yniid∼ F we plot the order statistics Y(1) < ·· · < Y(n) against the plotting

positions of F , e.g., the fitted GEV,

F−1

(

1

n +1

)

< ·· · < F−1( n

n +1

)

.

ä If F is a sensible statistical model, one should get a points lying close to a straight line of unit slope

through the origin.

Extreme value theory M2 Statistics and Econometrics – 34 / 95

18

Page 19: Univariate (andmultivariate) extreme value theory

QQ–plot: Toulouse–Blagnac

> qq(fitted)

20 30 40 50 60 70 80

20

40

60

80

10

0

Quantile Plot

Model

Em

pir

ica

l

Remark. The plot shows 95% pointwise confidence intervals obtained by parametric bootsrap.

Extreme value theory M2 Statistics and Econometrics – 35 / 95

Return level plot: Toulouse–Blagnac

> rl(fitted)

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

20

40

60

80

10

0

Return Level Plot

Return Period

Re

turn

Leve

l

Remark. The plot shows empirical points, i.e., {(n +1)/(n +1− i ),Y(i )} and pointwise confidence

intervals as before.

Extreme value theory M2 Statistics and Econometrics – 36 / 95

19

Page 20: Univariate (andmultivariate) extreme value theory

Assessing uncertainties

ä The output of fgev gives the standard errors for µ, σ and ξ from which one easily get symmetric

confidence intervals, e.g.,

µ± z1−(1−α)/2 ×std.err(µ), Φ(z1−(1−α)/2) = 1− (1−α)/2.

ä Symmetry is not always a good thing so one could use confidence intervals based on the profile

likelihood.

ä As the likelihood ratio statistics satisfies

W (ξ0) := 2{ℓ(θ)−ℓ(θξ=ξ0)}

D−→χ21, n →∞,

we can find I = [ξ−,ξ+] such that for all ξ0 ∈ I

Pr{

χ21 >W (ξ0)

}

>α.

Extreme value theory M2 Statistics and Econometrics – 37 / 95

Profile likelihood: Toulouse–Blagnac

> plot(profile(fitted))

> plot(profile(fgev(block.max[,"precip"], prob = 0.05), "quantile"))

32 34 36 38 40

−2

78

−2

77

−2

76

−2

75

−2

74

−2

73

−2

72

Profile Log−likelihood of Loc

loc

pro

file

lo

g−

like

liho

od

7 8 9 10 11 12 13 14

−2

77

−2

76

−2

75

−2

74

−2

73

−2

72

Profile Log−likelihood of Scale

scale

pro

file

lo

g−

like

liho

od

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−2

78

−2

77

−2

76

−2

75

−2

74

−2

73

−2

72

Profile Log−likelihood of Shape

shape

pro

file

lo

g−

like

liho

od

60 70 80 90

−2

77

−2

76

−2

75

−2

74

−2

73

−2

72

Profile Log−likelihood of Quantile

quantile

pro

file

lo

g−

like

liho

od

Extreme value theory M2 Statistics and Econometrics – 38 / 95

20

Page 21: Univariate (andmultivariate) extreme value theory

fgev(block.max[,"Precip"], prob = 0.05) #@%*?!

ä What does mean this (optional) argument prob = p?

ä It is just a reparametrization of the GEV with parameters (yp ,σ,ξ), i.e., we substitute µ in the density

by

µ= yp +σ1− {− log(1−p)}−ξ

ξ

ä And fit the GEV as usual.

ä We can then profile the likelihood w.r.t. yp as any other parameter !

Extreme value theory M2 Statistics and Econometrics – 39 / 95

2. Threshold exceedances 40 / 95

Another representation for extremes

ä Previously we characterize extremes using block maxima

Mm = maxj=1,...,m

X j .

ä Another approach consists in considering threshold exceedances

{X j −u : X j −u > 0},

for some (high enough) threshold u.

Extreme value theory M2 Statistics and Econometrics – 41 / 95

21

Page 22: Univariate (andmultivariate) extreme value theory

The Generalized Pareto DistributionTheorem. Let X1, X2, . . . be a sequence of i.i.d. random variables with distribution F and sequences

{am > 0: m ≥ 1}, {bm ∈R : m ≥ 1} such that

Pr

(

Mm −bm

am≤ x

)

−→ H (x), m →∞,

where H is a (non degenerate) GEV. Then

Pr {X > um(u +x) | X >um(u)} −→ 1− H (x), m →∞,

with um(x) = am x +bm for all x ∈ (0,∞) and

H(x) ={

1−(

1+ξ xτ

)−1/ξ, ξ 6= 0

1−exp(

− xτ

)

, ξ= 0,

where τ=σ+ξ(u −µ). The limiting distribution is the Generalized Pareto Distribution GPD(τ,ξ).

Extreme value theory M2 Statistics and Econometrics – 42 / 95

Statistical interpretation

ä We observe a time series of, say, daily values X1, X2, . . . supposed (for now) to be independent and

identically distributed from F .

ä We choose, and not estimate, a large enough threshold u—common practice is to take

u = F−1(0.95) but see later.

ä Compute the exceedances

{Xi −u : Xi >u} .

ä And fit a GPD to these exceedances.

Extreme value theory M2 Statistics and Econometrics – 43 / 95

22

Page 23: Univariate (andmultivariate) extreme value theory

Environmental applications

0

20

40

60

80

2010−01−01 2011−01−01 2012−01−01 2013−01−01 2014−01−01 2015−01−01 2016−01−01 2017−01−01

Date

Pre

cip

ita

tio

n (

mm

)

Figure 5: Exceedances above u = 20 (mm) recorded at Toulouse–Blagnac.

ä Watch out for seasonality, temporal dependences

Extreme value theory M2 Statistics and Econometrics – 44 / 95

Financial applications

−0.4

−0.2

0.0

0.2

2008 2010 2012 2014 2016 2018

Date

Negative

log−

retu

rn

Figure 6: (Negative) Log-returns exceedances with threshold u = 0.1—Yahoo closing prices.

Extreme value theory M2 Statistics and Econometrics – 45 / 95

23

Page 24: Univariate (andmultivariate) extreme value theory

Quantiles for the GPD

ä Let p ∈ (0,1), the quantile yp of a GPD(τ,ξ) with exceedance probability p , i.e., F (yp ) = 1−p , is

yp = τp−ξ−1

ξ.

ä Or depending on the situtation we can write

yp = u +τp−ξ−1

ξ,

if we work on the orginal scale.

Extreme value theory M2 Statistics and Econometrics – 46 / 95

Return levels for the GPDä Recall that the GPD is an asymptotic model for conditional exceedances.

ä For some threshold u, the return level yp > u of with exceedance probability p satisfies

Pr(X > yp ) = Pr(X > yp | X >u)Pr(X > u)= p.

ä Hence we get

yp = u +τ

(

p/p(u))−ξ−1

ξ, p(u)= Pr(X > u),

and yp is expected to be exceeded once every 1/p observations.

ä It is often more convenient to work on an annual scale so if we have ny observations per year, yp is

expected to be exceeded once every 1/(pny ) years.

Extreme value theory M2 Statistics and Econometrics – 47 / 95

24

Page 25: Univariate (andmultivariate) extreme value theory

Example: Yahoo negative log-returns> library(evd)## For EVT

> library(quantmod)## To get the Yahoo data

> getSymbols("YHOO", src = "google")

> head(YHOO)## YHOO is a xts object giving the *raw* data

> nlogreturn <- -diff(log(YHOO$YHOO.Close))

> (fitted <- fpot(nlogreturn, 0.05, npp = 250))

Call: fpot(x = nlogreturn, threshold = 0.05, npp = 250)

Deviance: -320.2334

Threshold: 0.05

Number Above: 58

Proportion Above: 0.0214

Estimates

scale shape

0.01743 0.28939

Standard Errors

scale shape

0.003793 0.179451

...

Extreme value theory M2 Statistics and Econometrics – 48 / 95

QQ–plot: Yahoo

> qq(fitted)

0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

0.5

Quantile Plot

Model

Em

pir

ica

l

Extreme value theory M2 Statistics and Econometrics – 49 / 95

25

Page 26: Univariate (andmultivariate) extreme value theory

Return level plot: Yahoo

> rl(fitted)

0.02 0.05 0.10 0.20 0.50 1.00 2.00

0.1

0.2

0.3

0.4

0.5

Return Level Plot

Return Period

Retu

rn L

eve

l

0.2 0.5 1.0 2.0 5.0 10.0 20.0

0.1

0.2

0.3

0.4

0.5

0.6

Return Level Plot

Return Period

Retu

rn L

eve

lFigure 7: Return level plot for the Yahoo data set. Left: without specifying the npp argument. Right: With npp = 250.

Extreme value theory M2 Statistics and Econometrics – 50 / 95

Profile likelihood: Yahoo

> plot(profile(fitted))

> plot(profile(fpot(nlogreturn, 0.05, mper = 20, npp = 250)),

"rlevel")

0.010 0.015 0.020 0.025 0.030 0.035

15

31

54

15

51

56

15

71

58

15

91

60

Profile Log−likelihood of Scale

scale

pro

file

lo

g−

like

liho

od

0.0 0.2 0.4 0.6 0.8 1.0 1.2

15

41

55

15

61

57

15

81

59

16

0

Profile Log−likelihood of Shape

shape

pro

file

lo

g−

like

liho

od

0.5 1.0 1.5 2.0

15

21

54

15

61

58

16

0

Profile Log−likelihood of Rlevel

rlevel

pro

file

lo

g−

like

liho

od

Extreme value theory M2 Statistics and Econometrics – 51 / 95

26

Page 27: Univariate (andmultivariate) extreme value theory

Threshold selection

ä Remember that threshold u is not a parameter of the GPD. We should fix it. But how?

ä Intuitively one should expect a bias/variance tradeoff:

– if u is too low: far from the asymptotic regime → bias

– if u is too high: only few exceedances → large variance

ä The basic idea is to check whether some properties of the GPD are met for a sequence of increasing

thresholds {um : m ≥ 1}.

Extreme value theory M2 Statistics and Econometrics – 52 / 95

Threshold stability of the GPD

Proposition 1. If X −u0 | X >u0 ∼ GPD(τ,ξ) then for all u ≥ u0,

X −u | X > u ∼GPD(τ,ξ), τ= τ+ξ(u −u0).

Extreme value theory M2 Statistics and Econometrics – 53 / 95

27

Page 28: Univariate (andmultivariate) extreme value theory

Mean residual life plot

Proposition 2. If X −u0 | X >u0 ∼ GPD(τ,ξ), ξ< 1, then for all u ≥ u0

MRL(u)= E (X −u | X >u) =τ(u0)+ξu

1−ξ

ä Hence if the GPD assumption is sensible for some threshold u0, then the function u 7→ MRL(u)

should be linear in u, u ≥ u0.

ä We then define a sequence of increasing threshold {um : m ≥ 1}, compute the empirical version of

MRL(um) and check for linearity.

Extreme value theory M2 Statistics and Econometrics – 54 / 95

Mean residual life plot: Yahoo

> mrlplot(nlogreturn, c(0, 0.12))

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

00

.02

0.0

40

.06

0.0

8

Mean Residual Life Plot

Threshold

Me

an

Exce

ss

Extreme value theory M2 Statistics and Econometrics – 55 / 95

28

Page 29: Univariate (andmultivariate) extreme value theory

Parameters stability

ä Let X −u0 | {X >u0} ∼GPD(τ,ξ) then we know that for all u ≥u0

X −u | {X > u}∼ GPD(τ,ξ), τ= τ+ξ(u −u0).

ä Hence the function τ∗ : u 7→ τ−ξu should be constant and the shape parameter should be the same.

ä It suggests to define a sequence of increasing threshold {um : m ≥ 1}, fit a GPD to exceedances above

threshold um , and check for stability of τ∗ and ξ.

Extreme value theory M2 Statistics and Econometrics – 56 / 95

Parameters stability: Yahoo

> tcplot(nlogreturn, c(0, 0.12))

0.00 0.02 0.04 0.06 0.08 0.10 0.12

−0

.2−

0.1

0.0

0.1

0.2

Threshold

Mo

difie

d S

ca

le

0.00 0.02 0.04 0.06 0.08 0.10 0.12

−1

.5−

1.0

−0

.50

.00

.51

.01

.5

Threshold

Sh

ap

e

ä A threshold around u = 0.04 seems appropriate here.

Extreme value theory M2 Statistics and Econometrics – 57 / 95

29

Page 30: Univariate (andmultivariate) extreme value theory

3. Point process 58 / 95

Point processesDefinition 5 (Informal). A point process {Xi : i ∈ I } is a stochastic process whose realization is a

collection of points “falling” in a space X . These points are often called atoms.

ä The distribution of a point process is character-

ized through its counting measure

N (A)=∑

i∈I

δXi(A),

A ⊂X Borel set and δ the Dirac function.

ä Its intensity measure is defined by

Λ : A 7−→ E{N (A)}.

43.55

43.60

43.65

1.35 1.40 1.45 1.50 1.55

LongitudeLatitu

de

Figure 8: Locations of the bike share program in Toulouse. Can be

seen as a point process on X =Toulouse.

Extreme value theory M2 Statistics and Econometrics – 59 / 95

Poisson point process

Definition 6. A point process with intensity measure Λ is a Poisson point process if for all k ≥ 1 and

disjoint Borel sets A, A1, . . . , Ak ⊂X ,

i) N (A) ∼ Poisson{Λ(A)};

ii) N (A1), . . . , N (Ak ) are independent random variables.

Remark. The intensity measure Λ is not necessarily finite. We only require it to be σ–finite, i.e., one

may have Λ(X ) =∞ but we can find a partition ∪i∈I Ai =X such that Λ(Ai ) <∞, i ∈ I , where I is at

most countable.

Extreme value theory M2 Statistics and Econometrics – 60 / 95

30

Page 31: Univariate (andmultivariate) extreme value theory

Reminder: Likelihood of a PPP

Definition 7. A Poisson point process on X with intensity measure Λ is regular if for all Borel set A ⊂X

Λ(A) =∫

Aλ(s)ds.

The function λ is non-negative and is called the intensity function.

Proposition 3. Let {X1, . . . , Xn} be a realization of a Poisson point process on X with intensity measure

Λ. The likelihood is

exp{−Λ(X )}n∏

i=1

λ(Xi ).

Extreme value theory M2 Statistics and Econometrics – 61 / 95

Convergence to a PPP

Theorem. Under the framework of convergence of Mm to the GEV, the sequence of point processes living

in X = [0,1]×R

{Pm }m≥1 ={(

i

m +1,

Xi −bm

am

)

: i = 1, . . . ,m

}

m≥1

converges to a Poisson point process (PPP) on [0,1]×C with intensity measure

Λ{[a,b]× (z,∞)}= (b −a)(

1+ξz −µ

σ

)−1/ξ,

where C = {x ∈R : 1+ξ(x −µ)/σ> 0}.

Extreme value theory M2 Statistics and Econometrics – 62 / 95

31

Page 32: Univariate (andmultivariate) extreme value theory

Illustration convergence to a PPP

m = 7 m = 30 m = 90 m = 365 m = 3650

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−6

−3

0

i (m + 1)

Xi−

bm

am

Figure 9: Illustration of the convergence to a PPP with m = 7,30,90,365,3650 for standard Exponential random variables—am = 1 and Bm =logm. The threshold is u =− log 10.

Extreme value theory M2 Statistics and Econometrics – 63 / 95

Statistical interpretation

ä For a threshold u large enough, we fit a PPP to the exceedances with intensity measure

Λ{(a,b)× (x,∞)} = (b −a)×(

1+ξx −µ

σ

)−1/ξ, x > u, (a,b)⊂ [0,1].

ä In practice it is more convenient to scale the parameter to an annual scale, i.e.,

Λ{(a,b)× (x,∞)} = nyear(b −a)×(

1+ξx −µ

σ

)−1/ξ, x >u, (a,b)⊂ [0,1],

where nyear is the number of years of data.

Extreme value theory M2 Statistics and Econometrics – 64 / 95

32

Page 33: Univariate (andmultivariate) extreme value theory

Return levels for PPP

ä For all x > u, the expected number of exceedances above x in a year is

E

[

N{

(0,n−1year)× (x,∞)

}]

{

(0,n−1year)× (x,∞)

}

=(

1+ξx −µ

σ

)−1/ξ.

ä Hence the T –year return level yp , p = 1/T , satisfies

T(

1+ξyp −µ

σ

)−1/ξ

= 1 ⇐⇒ yp =µ+σp−ξ−1

ξ.

Remark. It is a the return level derived from a GPD(σ,ξ) with threshold µ restricted to the set {x > u}.

Extreme value theory M2 Statistics and Econometrics – 65 / 95

Example: Yahoo negative log-returns> (fitted <- fpot(nlogreturn, 0.05, model = "pp", npp = 250))

Call: fpot(x = nlogreturn, threshold = 0.05, model = "pp", npp = 250)

Deviance: -398.3905

Threshold: 0.05

Number Above: 58

Proportion Above: 0.0213

Estimates

loc scale shape

0.08803 0.02907 0.30824

Standard Errors

loc scale shape

0.007316 0.006808 0.190213

Optimization Information

Convergence: successful

Function Evaluations: 89

Gradient Evaluations: 13

Extreme value theory M2 Statistics and Econometrics – 66 / 95

33

Page 34: Univariate (andmultivariate) extreme value theory

QQ–plot: Yahoo

> qq(fitted)

0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Quantile Plot

Model

Em

pir

ical

Figure 10: QQ-plots for the Yahoo data with the PPP approach.

Extreme value theory M2 Statistics and Econometrics – 67 / 95

Return level plot: Yahoo

> rl(fitted)

0.2 0.5 1.0 2.0 5.0 10.0 20.0

0.1

0.2

0.3

0.4

0.5

Return Level Plot

Return Period

Retu

rn L

eve

l

Figure 11: Return level plot for the Yahoo data set with the PPP approach.

Extreme value theory M2 Statistics and Econometrics – 68 / 95

34

Page 35: Univariate (andmultivariate) extreme value theory

Profile likelihood: PPP

ä Unfortunately the evd package appears to be broken when we try to profile the PPP likelihood.

ä Hence we will try to do it as a homework or during the lab session.

Extreme value theory M2 Statistics and Econometrics – 69 / 95

Yahoo: GEV / GPD / PPP approaches> getSymbols("YHOO", src = "google")

> head(YHOO)## YHOO is a xts object giving the *raw* data

> nlogreturn <- -diff(log(YHOO$YHOO.Close))

> nlogreturn[1] <- 0

> quarter.max <- aggregate(YHOO.Close ~ quarters(index(YHOO)):years(index(YHOO)),

> FUN = max, data = nlogreturn)

> prob <- 1 / 10##10 years return level

> gev <- fgev(quarter.max$YHOO.Close)

> gpd <- fpot(nlogreturn, 0.05, npp = 250, mper = 1 / prob)

> ppp <- fpot(nlogreturn, 0.05, model = "pp", npp = 250)

> qgev(1 - prob/4, gev$param["loc"], gev$param["scale"], gev$param["shape"])

0.1691627

> gpd$param["rlevel"]

0.180289

> qgpd(1 - prob, ppp$param["loc"], ppp$param["scale"], ppp$param["shape"])

0.1854948

Extreme value theory M2 Statistics and Econometrics – 70 / 95

35

Page 36: Univariate (andmultivariate) extreme value theory

4. Non-stationary sequences 71 / 95

Failure of the i.d. assumption

ä In many situtation the i.i.d. assumption is not appropriate.

ä In this section we will focus on situations in case of failure of the i.d. assumption;

ä It is often the case with environmental processes which typically involve:

1. seasonality, i.e., spring, summer, fall, winter;

2. trends, e.g., global warming.

Extreme value theory M2 Statistics and Econometrics – 72 / 95

Two strategies

ä Two (simple) strategies are possible:

1. you restrict your analysis to specific seasons, i.e., modelling seasonal extremes;

2. you emmbed the seasonal pattern into the parameters of the GEV/GPD/PPP.

ä The first approach is straightforward as it is just a classical EVT analysis applied to a subset of our

data.

ä The second is (very) slightly more elaborate.

Extreme value theory M2 Statistics and Econometrics – 73 / 95

36

Page 37: Univariate (andmultivariate) extreme value theory

An example: Toulouse summer maxima temperatures

33

36

39

1960 1980 2000 2020

Date

Tem

pera

ture

Extreme value theory M2 Statistics and Econometrics – 74 / 95

Model with a trend

Assume assume for the GEV that µ(t )=β0 +β1t /100—increase of β1◦C in a century.

> covar <- data.frame(year = scale(1:nrow(summer.max), scale = FALSE)) /

100

> (fit <- fgev(summer.max$Temperature, nsloc = covar))

Call: fgev(x = summer.max$Temperature, nsloc = covar)

Deviance: 295.6636

Estimates

loc locyear scale shape

35.1082 3.3582 1.8451 -0.1394

Standard Errors

loc locyear scale shape

0.24441 1.16260 0.16944 0.07912

Optimization Information

Convergence: successful

Function Evaluations: 20

Gradient Evaluations: 10

Extreme value theory M2 Statistics and Econometrics – 75 / 95

37

Page 38: Univariate (andmultivariate) extreme value theory

Model selection

ä Is this trend really necessary, i.e.,

H0 : β1 = 0 H1 : β1 6= 0?

ä How would you do this?

Extreme value theory M2 Statistics and Econometrics – 76 / 95

Do you understand those lines?

> z <- abs(fit$par["locyear"] / fit$std.err["locyear"])

> 2 * pnorm(z, lower.tail=FALSE)

locyear

0.003870264

� Conclusion?

> fit0 <- fgev(summer.max$Temperature)

> W <- 2 * (logLik(fit) - logLik(fit0))

> pchisq(W, df = 1, lower.tail=FALSE)

’log Lik.’ 0.005746295 (df=4)

� Conclusion?

Extreme value theory M2 Statistics and Econometrics – 77 / 95

38

Page 39: Univariate (andmultivariate) extreme value theory

Theoretical versions

ä From the asymptotic normality of the MLE we know that

pn(β1 −β1,∗)

d−→ N (0,σ2), n →∞.

ä Hence under H0, i.e., β1,∗ = 0, we have

pnβ1

σ

d−→ N (0,1), n →∞.

This is known as the Wald test.

Extreme value theory M2 Statistics and Econometrics – 78 / 95

Theoretical versions (2)

ä Using Taylor expansion of the log-likelihood ℓ(θ∗) around θ we have

ℓ(θ∗)·∼ ℓ(θ)+ (θ∗− θ)⊤∇ℓ(θ)+

1

2(θ∗− θ)⊤∇2ℓ(θ(θ∗− θ)⊤

·∼ ℓ(θ)+1

2(θ∗− θ)⊤∇2ℓ(θ)(θ∗− θ)

ä Hence we conclude that as n →∞

W = 2{ℓ(θ)−ℓ(θ∗)} =−p

n(θ∗− θ)⊤1

n∇2ℓ(θ)

pn(θ∗− θ)

d−→χ2p , p = |θ∗|.

ä This is known as the likelihood ratio test.

Extreme value theory M2 Statistics and Econometrics – 79 / 95

39

Page 40: Univariate (andmultivariate) extreme value theory

5. Stationary sequences 80 / 95

Stationary sequences

ä Sor far we analyzed the asymptotic behaviour of i.i.d. random variable.

ä In many situations, e.g., Yahoo time series, this assumption is unrealistic !

ä What happens there is some serial dependance ?

Extreme value theory M2 Statistics and Econometrics – 81 / 95

D(un) condition

Definition 8. A stationary sequence {Xi : i ≥ 1} is said to satisfy the D(un) condition, if for all

i1 < ·· · < ip < j1 < ·· · < jq with j1 − ip > ℓn , we have

|Pr(Xi1≤un , . . . , Xip

≤ un , X j1≤un , . . . , X jq

≤ un)−

Pr(Xi1≤ un , . . . , Xip

≤ un)Pr(X j1≤ un , . . . , X jq

≤un)| ≤α(n,ℓ),

where α(n,ℓn) → 0 for some sequences ℓn = o(n) as n →∞.

ä Roughly speaking the D(un) condition imposes that the two blocks Xi ’s and X j ’s are close to being

independent as long as they are sufficiently “far apart”.

ä One way to avoid long–range dependence.

Extreme value theory M2 Statistics and Econometrics – 82 / 95

40

Page 41: Univariate (andmultivariate) extreme value theory

GEV revisited

Theorem. Let X1, X2, . . . be a stationary sequence and define Mn = max(X1, . . . , Xn). If there exists 2

sequences {an > 0} and {bn ∈R} such that

Pr

(

Mn −bn

an≤ z

)

−→G(z), n →∞,

where G is a non degenerate distribution and the D(un) condition is met with un = an z +bn for all z ∈R

such that G(z) > 0, then necessarily G is of the GEV form.

Remark. The GEV parameters for the stationary sequence will not be the same as the ones for an i.i.d.

sequence.

Extreme value theory M2 Statistics and Econometrics – 83 / 95

Stationary sequence ↔ i.i.d. sequence

Theorem. Let X1, X2, . . . be a stationary sequence and X ∗1 , X ∗

2 , . . . an i.i.d. sequence with the same

marginal distribution as the Xi ’s. Define Mn = max(X1, . . . , Xn) and M∗n = max(X ∗

1 , . . . , X ∗n ). Under the

hypothesis of the previous theorem, we have

Pr

(

M∗n −bn

an≤ z

)

−→G∗(z), n →∞,

if and only if

Pr

(

Mn −bn

an≤ z

)

−→G(z), n →∞,

where

G(z) =Gθ∗(z), 0 < θ≤ 1.

� θ is called the extremal index.

Extreme value theory M2 Statistics and Econometrics – 84 / 95

41

Page 42: Univariate (andmultivariate) extreme value theory

Impact of the extremal index

θ = 0.01

θ = 0.1

θ = 0.2

θ = 0.3

θ = 0.4

θ = 0.5θ = 0.6θ = 0.7θ = 0.8θ = 0.9

0.50

0.75

1.00

1.25

1.50

1 10 100

Return period

Retu

rn leve

l

Figure 12: Impact of the extremal index θ on return levels.

ä As expected, Mn is stochastically smaller than M∗n —as maxima taken over dependent r.v. is likely to

be smaller than for independent r.v.

Extreme value theory M2 Statistics and Econometrics – 85 / 95

Connection between G and Gθ∗

ä Note that we have

Gθ∗(z) = exp

{

−θ(

1+ξz −µ

σ

)−1/ξ}

= exp

{

−(

1+ξz −µ∗σ∗

)−1/ξ}

,

where µ∗ =µ− σξ

(

1−θξ)

, σ∗ =σθξ.

Extreme value theory M2 Statistics and Econometrics – 86 / 95

42

Page 43: Univariate (andmultivariate) extreme value theory

Statistical interpretation

� No change for block maxima of stationary sequence, since you will estimate µ∗,σ∗ and ξ directly.

ä Wait!!! There is dependence so the likelihood is not

L(µ,σ,ξ;m1, . . . ,mn) =n∏

i=1

fGEV (mi ;µ,σ;ξ) . . .

ä Yes but no! If beginnings / endings of blocks are well defineda, assumption of mutual independence

between block maxima makes sense ⇒ Likelihood still valid.

� This will be however a bit different for the GPD // PPP approaches.

aWhy should it always be “calendar year” blocks?

Extreme value theory M2 Statistics and Econometrics – 87 / 95

Extremal index

ä The extremal index θ has two alternative definitions:

– As the reciprocal of the limiting expected cluster size

θ−1 = limn→∞

E

(

pn∑

i=1

1{Xi>un } | Mpn> un

)

,

for sequences such that n{1−F (un)} →λ ∈ (0,∞) and pn = o(n).

– As the limiting probability that an exceedance over un is the last one

θ = limn→∞

Pr{

max(X2, . . . , Xpn) ≤un | X1 ≥ un

}

.

Extreme value theory M2 Statistics and Econometrics – 88 / 95

43

Page 44: Univariate (andmultivariate) extreme value theory

Watch out!

ä Consider the 10–years return event A = {X > z10}.

ä This event is expected to occur 10 times in a century.

ä However we have

Pr(A not seen in the next 10 years)={

(

1− 110

)10 ≈ 0.35, θ= 1(

1− 110

)10θ = 0.90, θ= 0.1.

� When θ = 0.1, these “expected 10 extremes” will tend to occur simultaneously leading to a higher

probability of seeing none of them within the next 10 years.

Extreme value theory M2 Statistics and Econometrics – 89 / 95

Exceedances for stationary sequences

−10

0

10

20

30

40

1960 1980 2000 2020

Date

Te

mp

era

ture

(C

elc

ius)

−10

0

10

20

30

40

2009−01−01 2010−01−01

Date

Te

mp

era

ture

(C

elc

ius)

ä Two approaches are possible:

1. either you discard some observations to be closer to the i.i.d. assumption;

2. or you take into account for such a serial dependence, e.g., assume a Markovian structure. . . Not

discussed here!

Extreme value theory M2 Statistics and Econometrics – 90 / 95

44

Page 45: Univariate (andmultivariate) extreme value theory

Cluster maxima

ä Because we usually use the MLE to fit the GPD // PPP, we have to use cluster maxima only for

inference.

ä Still the expected annual number of exceedances above z is

Λ{(0,n−1year)× (z,∞)} = θ

(

1+ξz −µ

σ

)−1/ξ,

and the T –year return level yp , p = 1/T , satisfies

Tθ(

1+ ξyp −µ

σ

)1/ξ

= 1 ⇐⇒ yp =µ+σ

ξ

{

(θT )ξ−1}

,

where the extremal index θ can be estimated separately by

θ =nc

nu, nc = # clusters, nu = # exceedances above u.

�We need to define cluster of exceedances!

Extreme value theory M2 Statistics and Econometrics – 91 / 95

Declustering: runs method

Extreme value theory M2 Statistics and Econometrics – 92 / 95

45

Page 46: Univariate (andmultivariate) extreme value theory

Declustering at Toulouse–Blagnac

> clusters(data, thresh, r, plot = TRUE)

jui 01 jul 01 aoû 01 sep 01

25

30

35

40

2003 Heatwave in Toulouse−Blagnac

Te

mp

era

ture

(C

els

ius)

r = 1

jui 01 jul 01 aoû 01 sep 01

25

30

35

40

2003 Heatwave in Toulouse−Blagnac

Te

mp

era

ture

(C

els

ius)

r = 2

jui 01 jul 01 aoû 01 sep 01

25

30

35

40

2003 Heatwave in Toulouse−Blagnac

Te

mp

era

ture

(C

els

ius)

r = 3

jui 01 jul 01 aoû 01 sep 01

25

30

35

40

2003 Heatwave in Toulouse−Blagnac

Te

mp

era

ture

(C

els

ius)

r = 5

Extreme value theory M2 Statistics and Econometrics – 93 / 95

Illustration with the evd package

> fpot(df$Temperature, 32, "pp", npp = 365.25, cmax = TRUE, r = 3)

Call: fpot(x = df$Temperature, threshold = 32, model = "pp", npp = 365.25,

cmax = TRUE, r = 3)

Deviance: 807.4698

Threshold: 32

Number Above: 779

Proportion Above: 0.0305

Clustering Interval: 3

Number of Clusters: 330

Extremal Index: 0.4236

Estimates

loc scale shape

35.5823 1.8864 -0.2533

Standard Errors

loc scale shape

0.19606 0.08125 0.04456

Extreme value theory M2 Statistics and Econometrics – 94 / 95

46

Page 47: Univariate (andmultivariate) extreme value theory

ä Here the extremal index estimate is θ ≈ 0.42, i.e., clusters tends to be of size 2.5.

� It is typical, I think, for temperatures data but might be very different for, say, rainfall where θ ≈ 1.

GEV PPP PPP (r = 1) PPP (r = 3) PPP (r = 10)

µ 35.2 (0.3) 36.6 (0.1) 35.8 (0.2) 35.6 (0.2) 34.6 (0.3)

σ 1.9 (0.2) 1.51 (0.07) 1.72 (0.07) 1.88 (0.08) 2.65 (0.16)

ξ -0.16 (0.09) -0.19 (0.03) -0.23 (0.04) -0.25 (0.04) -0.35 (0.07)

y100 41.3 (0.94) 41.1 (1.2) 40.3 (1.1) 40.1 (1.2) 39.6 (2.8)

θ — — 0.54 0.42 0.21

Extreme value theory M2 Statistics and Econometrics – 95 / 95

47