underwater counderwater coommunications · computational ocean acoustics april 19, 2007 underwater...

36
Underwater Co Underwater Co Ballard bjblair@ April 19 WHOIE Adviser: James Preisig April 19, 2007 Underwater Co Ballard ommunications ommunications d Blair @mit.edu 9, 2007 MIT Adviser: Art Baggeroer ommunications d Blair 1

Upload: others

Post on 28-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Underwater CoUnderwater Co

Ballardbjblair@April 19

WHOIE Adviser: James Preisig

April 19, 2007 Underwater CoBallard

ommunicationsommunications

d [email protected]

9, 2007

MIT Adviser: Art Baggeroer

ommunicationsd Blair

1

Page 2: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Back

BS in Electrical and CoBS in Electrical and CoCornell university 2002

MS in Electrical and CoJ h H ki 2005Johns Hopkins 2005

Hardware Engineer, JH

PhD Candidate, MIT/WApril 19, 2007 Underwater Co

Ballard

kground

omputer Engineeringomputer Engineering, 2

omputer Engineering,

HUAPL 2002-2005

WHOI Joint Programommunicationsd Blair

2

Page 3: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Introduction

O 0% f l• Ocean covers 70% of plan• 11,000 meters at deepest p

April 19, 2007 Underwater CoBallard

and Motivation

netpoint

ommunicationsd Blair

3

Page 4: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Underwate

WHOApril 19, 2007 Underwater Co

Ballard

WHO

r Technology

OI 2006ommunicationsd Blair

4

OI, 2006

Page 5: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Comm

S t kSensor networks

Autonomous underwate

Gliders

Manned VehiclesManned Vehicles

April 19, 2007 Underwater CoBallard

unication

er vehicles (AUV)

ommunicationsd Blair

5

Page 6: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Current A

ScienceScience− Geological / bathymetric su

Underwater archeology− Underwater archeology− Ocean current measuremen

Deep ocean exploration− Deep ocean explorationGovernment

Fish population manageme− Fish population manageme− Costal inspection

IndustryIndustry− Oil field discovery maintena

April 19, 2007 Underwater CoBallard

Applications

rveys

nt

ntnt

ance WHOI, 2005

ommunicationsd Blair

6

Page 7: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Applications plann

Ocean observation systemOcean observation system− Costal observation

MilitaryMilitary− Submarine communications

Shi i ti− Ship inspectionNetworking

M bil t k (DA− Mobile sensor networks (DAVehicle deployment

− Multiple vehicles deployed s− Resource sharing among ve

April 19, 2007 Underwater CoBallard

ned / in development

mm

s (covert)

ARPA)ARPA)

simultaneouslyehicles

ommunicationsd Blair

7

Page 8: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Example Comm

April 19, 2007 Underwater CoBallard

munication System

PLUSnet/Seaweb

ommunicationsd Blair

8

Page 9: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Technology fo

RF (~1m range)RF ( 1m range)− Absorbed by seawater

Laser (~100m range)( g )− Hard to aim/control− High attenuation except for blue/g

Ult L F ( 100 kUltra Low Frequency (~100 km− Massive antennas (miles long)− Very narrowband (~50 Hz)y ( )− Not practical outside of navy

Cable− Expensive/hard to deploy mainta− Impractical for mobile work sites

April 19, 2007 Underwater CoBallard

r communication

green)m)

in

ommunicationsd Blair

9

Page 10: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Acoustics is

Fairly low powerFairly low power− ~10-100W Tx − ~100 mW Rx100 mW Rx

Well studied− Cold war military funding

Compact− Small amount of hardware n

Current Best Solution

April 19, 2007 Underwater CoBallard

s the solution

WHOI Micromodem

needed

ommunicationsd Blair

10

Page 11: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Acoustics

A ti iAcoustic wave is compthrough water medium

April 19, 2007 Underwater CoBallard

Background

i t liression wave traveling

ommunicationsd Blair

11

Page 12: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Sound

S d f d 1500Speed of sound ~ 1500

Deep water profile

Schmidt, Computational Ocean Acoustics

April 19, 2007 Underwater CoBallard

d Profile

0 /0 m/s

ommunicationsd Blair

12

Page 13: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Global Oc

Schmidt, Comput

April 19, 2007 Underwater CoBallard

cean Profile

tational Ocean Acoustics

ommunicationsd Blair

13

Page 14: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Shallow w

Schmidt, Comp

April 19, 2007 Underwater CoBallard

water profile

putational Ocean Acoustics

ommunicationsd Blair

14

Page 15: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Speed of Sou

V ti l d d fi• Vertical sound speed profi• the characteristics of the• the amount and importan• the amount of bottom int• the location and level of

• Horizontal Speed of SoundN li i i i h• Nonlinearities in channe

April 19, 2007 Underwater CoBallard

und Implications

l i tle impactse impulse responsence of surface scatteringteraction and lossshadow zones

d impactsll response

ommunicationsd Blair

15

Page 16: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Propaga

Schmidt, C

April 19, 2007 Underwater CoBallard

ation Paths

Computational Ocean Acoustics

ommunicationsd Blair

16

Page 17: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Mul

Mi lti th d tMicro-multipath due to Macro-multipath due top

April 19, 2007 Underwater CoBallard

tipath

h frough surfaceso environment

Sea surfaceSea surface

TxRx

seabed

ommunicationsd Blair

17

Page 18: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Time vary

Time variation is due to:Time variation is due to:− Platform motion− Internal waves− Surface waves

Effects of time variabilityEffects of time variability− Doppler Shift

cuff cd =

− Time dilation/compression of the

Channel coherence times often

c

Channel coherence times oftenChannel quality can vary in < 1

April 19, 2007 Underwater CoBallard

ying channel

received signal

n << 1 secondn << 1 second. 1 second.

ommunicationsd Blair

18

Page 19: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Acoustic FocusingTime-Varying Channel Impulse Response

April 19, 2007 Underwater CoBallard

Time (seconds)

g by Surface WavesDynamics of the first surface scattered arrival

ommunicationsd Blair

19Preisig, 2006

Page 20: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Multipath and Time V

Ch l t ki dChannel tracking and q− Equalizer necessary an

Coding and interleavingCoding and interleaving

In networks, message r

April 19, 2007 Underwater CoBallard

Variability Implications

lit di ti i it lquality prediction is vitalnd beefy

gg

routing

ommunicationsd Blair

20

Page 21: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Shado

Sometimes there is no direct path two points. All paths are either suno paths.pProblem with communications be

instruments in upwardly refractingwater, deep water).Problem with communications be

surface in a downwardly refractingwater and deep water).

April 19, 2007 Underwater CoBallard

w Zones

Clay and Medwin, ,“Acoustical Oceanography”

(unscattered) propagation between urface or bottom reflected or there are

etween two bottom mounted g environment (cold weather shallow

etween two points close to the g environment (warm weather shallow

ommunicationsd Blair

21

Page 22: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Shadow Zone Exa

April 19, 2007 Underwater CoBallard

amples (Deep Water)

ommunicationsd Blair

22Figures from J. Preisig

Page 23: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Ambie

• Ambient noise• Ambient noise – Passing ships, storms, breaking wav– p.s.d. decays as 20dB/decade ->N(f)

Primary natural sources− bubbles, rain, and biologic sources such

BubblesCan cause communications channel to di− Can cause communications channel to di

− Can increase surface scattering losses (u

− Attenuation in bubble cloud can be 20dB/

F d d t tt ti ( k 3− Freq dependent attenuation (peak near 3

− Can persist for minutes

− Cause sound (noise)

April 19, 2007 Underwater CoBallard

ent Noise

ves, seismic events )= 1010 f-2 Watts/Hz re 1μPa

as snapping shrimp

isappearisappear

up to 10dB per bounce)

/meter

30kH )30kHz)

ommunicationsd Blair

23

Page 24: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

No

April 19, 2007 Underwater CoBallard

oise

Figure from:

Stojanovic, j ,WUWNeT'06

ommunicationsd Blair

24

Page 25: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Bubble Clou

April 19, 2007 Underwater CoBallard

ud Attenuation

ommunicationsd Blair

25Figures from J. Preisig

Page 26: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Band

C t f t iCenter frequency typica

Typical Bandwidth ~ 5-

Channel is inherently by− Modulation essential for

April 19, 2007 Underwater CoBallard

dwidth

ll d 10 30kHally around 10-30kHz

15kHz

band-limitedr high rate communications

ommunicationsd Blair

26

Page 27: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Path loss an

P th LPath Loss− Spherical Spreading ~ r− Cylindrical Spreading ~

Absorption ~ α(f)-r

Thorp’s formula (for sea− Thorp s formula (for sea

410044

111.0)(log10 2

2

2

2

++

+=

ff

fffα

41001 ++ ff

April 19, 2007 Underwater CoBallard

nd Absorption

r -1

r -0.5

a water):a water):

(dB/km) 003.0 000275.0 22 ++ f

ommunicationsd Blair

27

Page 28: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Short Rang

April 19, 2007 Underwater CoBallard

e Attenuation

ommunicationsd Blair

28Figures from J. Preisig

Page 29: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Long Rang

SNR( f ) =171+10log(P) − r α( f ) − 20log(h /2

60

70

80

90

1 km

30

40

50

SN

R (d

B) 10 km

50 km

-10

0

10

2050 km

100 km

0 5 10 15 20 25-20

f (kHz)

Figure courtesy of Costas

April 19, 2007 Underwater CoBallard

Figure courtesy of Costas

ge Bandwidth

⎛ ⎞2) −10log(r − h /2) −10log N( f )df

f −df / 2

f +df / 2

∫⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ dB

Source: 20 Watts

h 500h = 500 m

30 35 40

s Pelekanakis

ommunicationsd Blair

29

s Pelekanakis

Page 30: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Attenuation of S

Schmidt CApril 19, 2007 Underwater Co

Ballard

Schmidt, C

Sound in Seawater

Computational Ocean Acousticsommunicationsd Blair

30

Computational Ocean Acoustics

Page 31: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Bandwidth

M d l ti fModulation frequency m

System inherently wide

Frequency curtain effecq y− Form of covert commun

Might help with network− Might help with network

April 19, 2007 Underwater CoBallard

Implications

t b k t lmust be kept low

e-band

ctnicationsk routingk routing

ommunicationsd Blair

31

Page 32: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Latency

P ti f dPropagation of sound s− Feedback might take se− Channel changing faste

Most underwater nodesC i ti T− Communications Tx pow

− Retransmissions costly

April 19, 2007 Underwater CoBallard

and Power

l th li htslower than lighteveral seconder than feedback

s battery powered( 10 100W)wer (~10-100W)

ommunicationsd Blair

32

Page 33: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Example

Power A

WHOI Micromodem

DSP Tex10

Transmit Power

10 Typ

Receive 80 Power Wh

Data Rate 805 pFS

Daughter Card / Co-processor

April 19, 2007 Underwater CoBallard

FS

e Hardware

Amp

Micromodem in action

Micromodem Specifications xas Instruments TMS320C5416 0MHz low-power fixed point processor

Watts pical match to single omni-directional ceramic transducer.

milliwatts hile detecting or decoding an low rate FSK packet.

-5400 bps packet types supported. Data rates higher than 80bps SK i dditi l d t b i d

ommunicationsd Blair

33

SK require additional co-processor card to be received.

Page 34: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Conc

C i ti i thCommunicating in the oce− Time varying channel− Inconsistent noise− Shadow zones− Bubbles− Latency

Many questions still left to − Communications is not well− Many opportunities for adva

April 19, 2007 Underwater CoBallard

clusions

i diffi ltan is difficult

be answered researched

ancesommunicationsd Blair

34

Page 35: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

Acknowle

I ld lik t th k thI would like to thank thehelping me with this pre

− Jim Preisig− Costas Pelekanakis− Henrik Schmidt− Milica StojanovicMilica Stojanovic− WHOI Acoustic team

April 19, 2007 Underwater CoBallard

edgements

f ll i l fe following people for esentation:

ommunicationsd Blair

35

Page 36: Underwater CoUnderwater Coommunications · Computational Ocean Acoustics April 19, 2007 Underwater C o Ballard Profile 0/0 m/s mmunications Blair 12. Global Oc Schmidt, Comput April

My Re

C di f th dCoding for the underwa

April 19, 2007 Underwater CoBallard

esearch

t h later channel

ommunicationsd Blair

36