trabajo de polo

30
MANTENIMIENTO DE COMPUTAQDORAS 1. TIPOS DE MANTENIMIENTOS 2. MATERIALES DE TRABAJO 3.MEIMBOARD 4.MEMORIA RAM 5.PROCESADOR 6.UNIDAD DE DVD

Upload: pedroalcivarespinoza27

Post on 02-Aug-2015

53 views

Category:

Documents


1 download

TRANSCRIPT

MANTENIMIENTO DE

COMPUTAQDORAS

1. TIPOS DE MANTENIMIENTOS

2. MATERIALES DE TRABAJO

3.MEIMBOARD

4.MEMORIA RAM

5.PROCESADOR

6.UNIDAD DE DVD

Consiste en hacer revisiones periódicas (usualmente programadas) para detectar cualquier condición (presente o futura) que pudiera impedir el uso apropiado y seguro del dispositivo y poder corregirla, manteniendo de ésta manera cualquier herramienta o equipo en optimas condiciones de uso.

1. El Mantenimiento Predictivo

2. El Mantenimiento Preventivo.

Es hacer los ajustes, modificaciones, cambios, limpieza y reparaciones (generalmente sencillos) necesarios para mantener cualquier herramienta o equipo en condiciones seguras de uso, con el fin de evitar posibles daños al operador o al equipo mismo.

3. El Mantenimiento Correctivo.

Es reparar, cambiar o modificar cualquier herramienta, maquinaria o equipo cuando se ha detectado alguna falla o posible falla que pudiera poner en riesgo el funcionamiento seguro de la herramienta o equipo y de la persona que lo utiliza.

volver

BROCHA

JUEGO DE DESARMADORES

MEDIDOR DE VOLTAJE

JUEGO DE HERRAMIENTAS

volver

MEIMBOARD1. EMPRESAS FABRICANTES

2. IMAGENES

3.CONCEPTOS

4.PRECIOS

volver

volver

INTEL

ASUSGIGABYTE

MSIECS

VIK WE CONNECT

BIOSTAR

FACONN

volver

La historia de las tarjetas madres comienza en 1947 cuando William Shockley, Walter Brattain y John Bardeen, científicos de los laboratorios Bell, muestran su invento, el transistor amplificador de punto-contacto, iniciando el desarrollo de la miniaturización de circuitos electrónicos.Dummer, un británico que en 1952 presentó sobre la utilización de un bloque de material sólido que puede ser utilizado para conectar componentes electrónicos sin cables de conexión. 1961 cuando Fairchild Semiconductor anuncia el primer circuito integrado, Con estos inventos se comienza a trabajar en la computadora con una tarjeta, como las que mencionamos a continuación estas en orden de evolución.

Concepto de la tarjeta madre.

La mainboard es la parte principal de un computador ya que nos sirve de alojamiento de los demás componentes permitiendo que estos interactúen entre si y puedan realiza procesos.La tarjeta madre es escogida según nuestras necesidades.

HISTORIA

• Bios • Ranuras PCI• Caché• Chipset• Conectores USB• Zócalo ZIP• Ranuras DIMM • Ranuras SIMM • Conector EIDE (disco duro)• Conector disquetera • Ranuras AGP • Ranuras ISA• Pila del sistema• Conector disquetera • Conector electrónico

PARTES DE LA TARJETA MADRE

Bios: (Basic Input Output Sistem), sistema básico de entrada-salida. Programa incorporado en un chip de la tarjeta madre que se encarga de realizar las funciones básicas de manejo y configuración del ordenador.

Ranuras PCI: Pueden dar hasta 132 MB/s a 33 MHz, lo que es suficiente para casi todo, excepto quizá para algunas tarjetas de vídeo 3D. Miden unos 8,5 cm y generalmente son blancas.

Caché: es un tipo de memoria del ordenador; por tanto, en ella se guardarán datos que el ordenador necesita para trabajar.

Chipset: es el conjunto de chips que se encargan de controlar determinadas funciones del ordenador

USB: Conectores usados para insertar dispositivos transportables

Zócalo ZIF: Es el lugar donde se aloja el procesador

Slot de Expansión: son ranuras de plástico con conectores eléctricos (slots) donde se introducen las tarjetas de expansión

Ranuras PCI: Peripheral Component Interconnect ("Interconexión de Componentes Periféricos") Generalmente son de color blanco, miden 8.5 cm es de hasta 132 MB/s a 33 MHz, no es compatible para alguna tarjetas de vídeo 3D.

Ranuras DIMM: son ranuras de 168 contactos y 13 cm. de color negro.

Ranuras SIMM: tienen 30 conectores, y meden 8,5 cm. En 486 aparecieron los de 72 contactos, más largos: unos 10,5 cm de color blanco.

Ranuras AGP: Se dedica exclusivamente a conectar tarjetas de vídeo 3D,. ofrece 264 MB/s o incluso 528 MB/s. Mide unos 8 cm

Ranuras ISA: son las más antiguas,. Funcionan con 8 MHz-16MB/s sirve para conectar un módem o una tarjeta de sonido , Miden unos 14 cm y su color suele ser negro

Pila: se encarga de conservar los parámetros de la BIOS como la fecha y hora.

Formatos de la Tarjeta Madre

-Placa madre A-Trend ATC6240 Slot1 Intel 440BX basada en el chipset Intel 440BX, Puede permitir hasta 1Gb de memoria Las frecuencias de reloj ofrecidas en la ATC6240 son bastante limitadas y usted puede elegir solamente entre 66Mhz y 100Mhz. Características: Wake up on LAN, conectores PS2 de ratón y teclado, conectores USB, cabezal Irda TX/RX, cabezal SB-Link, power-on por teclado, Wake up on modem ring, Protección de CPU en sobre voltaje y monitoreo de hardware como opción son todas soportadas.

-Formato de Placa AT

Es el empleado por el IBM AT(Advanced Technology) y sus clones en formato sobremesa completo y torre completo. Su tamaño es de 12 pulgadas (305 mm) de ancho x 11-13 pulgadas de profundo. Su gran tamaño dificultaba la introducción de nuevas unidades de disco. Además su conector con la fu

ente de alimentación inducía fácilmente al error siendo numerosos los casos de gente que freía la placa al conectar indebidamente los dos juegos de cables. El conector de teclado es el DIN 5 del IBM PC.-Formato de Placa Baby ATIBM presenta en 1985 el formato Baby AT, que es funcionalmente equivalente a la AT, pero significativamente menor : 8,5 pulgadas de ancho y de 10 a 13 pulgadas de profundo. su menor tamaño favorece las cajas más pequeñas y facilita la ampliación, por lo que toda la industria se vuelca en él abandonando del AT. No obstante sigue heredando los problemas de diseño del AT, con la multitud de cables que dificultan la ventilación y con el micro alejado de la entrada de alimentación. Todo esto será resuelto por el formato ATX.

El formato ATX (Advanced Technology Extended') es presentado por Intel en 1995. con un tamaño de 12 pulgadas de ancho por 9,6 pulgadas de profundo, este formato disuelve todos los inconvenientes que perjudicaron a la Baby AT. Los puertos más habituales (impresora Centronics, RS-232 en formato DB-9, la toma de joystick/midi y de tarjeta de sonido, los puertos USB y RJ-45 (para red a 100) y en algunos casos incluso la salida de monitor VGA, se agrupan en el lado opuesto a los slots de ampliación. El puerto DIN 5 de teclado es sustituido por las tomas PS/2 de teclado y ratón llamadas así por introducirlas IBM en su gama de ordenadores PS/2 y rápidamente adoptada por todos los grandes fabricantes y situados en el mismo bloque. Todo esto conlleva el que muchas tarjetas necesarias se integren en al placa madre, bajando los costes y ventilación. Inmediatamente detrás se sitúa el zócalo o slot de procesador y las fijaciones del ventilador, al lado de la nueva conexión de fuente de alimentación que elimina el quemado accidental de la placa. Cabe mencionar la versión reducida de este formato las placas mini ATX.

-Formato de Placa microATXEl formato microATX también conocida como µATX es un formato de tarjeta madre pequeño con un tamaño máximo de 9,6 x 9,6 pulgadas empleada principalmente en cajas tipo cubo y SFF. Debido a sus dimensiones sólo tiene sitio para 1 o 2 slots PCI y/o AGP, por lo que suelen incorporar puertos FireWire y USB 2 en abundancia que permiten conectar unidades externas de disco duro y regrabadoras de DVD.-Formato de Placa LPXBasada en un diseño de Western Digital, permite el uso de cajas más pequeñas en una placa ATX situando los slots de expansión en una placa especial llamada riser card que es una placa de expansión en sí misma, situada en un lateral de la placa base como puede verse en esta imagen. Este diseño sitúa a las placas de ampliación en paralelo con la placa madre en lugar de en perpendicular. Generalmente es usado sólo por grandes ensambladores como IBM, Compaq, HP o Desh, principalmente en sus equipos SFF (Small Form Format o cajas de formato pequeño). Por eso no suelen tener más de 3 slots cada uno.

Volver

ASUS: 75.89

ECS: 70.54

INTEL: 84.82

GIGABYTE: 141.96

FOXCONN: 93.75

volver

MEMORIA RAM

1. CONCEPTO

2.IMAGENESvolver

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferromágnetico de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1024 bytes, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.

En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4096 bytes en un empaque de 16 pines,1 mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento2 se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.

volver

volver

PROCESADOR

1.CONCEPTO

2.IMAGENESvolver

Este es el cerebro del computador. Dependiendo del tipo de procesador y su velocidad se obtendrá un mejor o peor rendimiento. Hoy en día existen varias marcas y tipos, de los cuales intentaremos darles una idea de sus características principales.Las familias (tipos) de procesadores compatibles con el PC de IBM usan procesadores x86. Esto quiere decir que hay procesadores 286, 386, 486, 586 y 686. Ahora, a Intel se le ocurrió que su procesador 586 no se llamaría así sino "Pentium", por razones de mercadeo.Existen, hoy en día tres marcas de procesadores: AMD, Cyrix e Intel. Intel tiene varios como son Pentium, Pentium MMX, Pentium Pro y Pentium II. AMD tiene el AMD586, K5 y el K6. Cyrix tiene el 586, el 686, el 686MX y el 686MXi. Los 586 ya están totalmente obsoletos y no se deben considerar siquiera. La velocidad de los procesadores se mide en Megahertz (MHz =Millones de ciclos por segundo). Así que un Pentium es de 166Mhz o de 200Mhz, etc. Este parámetro indica el número de ciclos de instrucciones que el procesador realiza por segundo, pero sólo sirve para compararlo con procesadores del mismo tipo. Por ejemplo, un 586 de 133Mhz no es más rápido que un Pentium de 100Mhz. Ahora, este tema es bastante complicado y de gran controversia ya que el rendimiento no depende sólo del procesador sino de otros componentes y para que se utiliza el procesador. Los expertos requieren entonces de programas que midan el rendimiento, pero aun así cada programa entrega sus propios números. Cometeré un pequeño pecado para ayudar a descomplicarlos a ustedes y trataré de hacer una regla de mano para la velocidad de los procesadores. No incluyo algunos como el Pentium Pro por ser un procesador cuyo mercado no es el del hogar

volver

volver

UNIDAD DE DVD

CONCEPTO:

IMÁGENES:

volver

A comienzo de los años 1990, dos estándares de almacenamiento óptico de alta densidad estaban desarrollándose: uno era el multimedia compact disc (MMCD), apoyado por Philips y Sony; el otro era el súper density (SD), apoyado por Toshiba, Time Warner, Panasonic, Hitachi, Mitsubishi Electric, Poner, Thompson y JVC.

Philips y Sony se unieron y su formato MMCD y acordaron con Toshiba adoptar el SD, pero con una modificación: la adopción del EFM Plus de Philips, creado por Kees Immink, que a pesar de ser un 6% menos eficiente que el sistema de codificación de Toshiba (de ahí que la capacidad sea de 4,7 GB en lugar del los 5 GB del SD original), cuenta con la gran ventaja de que EFM Plus posee gran resistencia a los daños físicos en el disco, como arañazos o huellas. El resultado fue la creación del Consorcio del DVD, fundado por las compañías anteriores, y la especificación de la versión 1.5 del DVD, anunciada en 1995 y finalizada en septiembre de 1996. En mayo de 1997, el consorcio DVD (DVD Consortium) fue reemplazado por el foro DVD (DVD Forum) con los siguientes miembros

Los DVD se dividen en dos categorías: los de capa simple y los de doble capa. Además el disco puede tener una o dos caras, y una o dos capas de datos por cada cara; el número de caras y capas determina la capacidad del disco. Los formatos de dos caras apenas se utilizan fuera del ámbito de DVD-Video.

Los DVD de capa simple pueden guardar hasta 4,7 gigabytes según los fabricantes en base decimal, y aproximadamente 4,38 gigabytes en base binaria o gibibytes (se lo conoce como DVD-5), alrededor de siete veces más que un CD estándar. Emplea un láser de lectura con una longitud de onda de 650 nm (en el caso de los CD, es de 780 nm) y una apertura numérica de 0,6 (frente a los 0,45 del CD), la resolución de lectura se incrementa en un factor de 1,65. Esto es aplicable en dos dimensiones, así que la densidad de datos física real se incrementa en un factor de 3,3.

El DVD usa un método de codificación más eficiente en la capa física: los sistemas de detección y corrección de errores utilizados en el CD, como la comprobación de redundancia cíclica CRC, la codificación Reed Solomon - Product Code (RS-PC), así como la codificación de línea Eight-to-Fourteen Modulation, la cual fue reemplazada por una versión más eficiente, EFM Plus, con las mismas características que el EFM clásico. El subcódigo de CD fue eliminado. Como resultado, el formato DVD es un 47% más eficiente que el CD-ROM, que usa una tercera capa de corrección de errores.

Tipos de DVD

Los DVD se pueden clasificar:

Según su contenido: DVD-Video: películas (vídeo y audio). DVD-Audio: audio de alta fidelidad. Por ejemplo: 24 bits por muestra, una velocidad de muestreo de 48 000 Hz y un rango dinámico de 144 dB.[cita requerida] DVD-Data: todo tipo de datos. Según su capacidad de regrabado (La mayoría de las grabadoras de DVD nuevas pueden grabar en ambos formatos y llevan ambos logotipos, «+RW» y «DVD-R/RW»): DVD-ROM: solo lectura, manufacturado con prensa. DVD-R y DVD+R: grabable una sola vez. La diferencia entre los tipos +R y -R radica en la forma de grabación y de codificación de la información. En los +R los agujeros son 1 lógicos mientras que en los –R los agujeros son 0 lógicos. DVD-RW y DVD+RW: regrabable. DVD-RAM: regrabable de acceso aleatorio. Lleva a cabo una comprobación de la integridad de los datos siempre activa tras completar la escritura. DVD+R DL: grabable una sola vez de doble capa. El DVD-ROM almacena desde 4,7 GB hasta 17 GB.

Según su número de capas o caras:

DVD-5: una cara, capa simple; 4,7 GB o 4,38 GiB. Discos DVD±R/RW. DVD-9: una cara, capa doble; 8,5 GB o 7,92 GiB. Discos DVD+R DL. La grabación de doble capa permite a los discos DVD-R y los DVD+RW almacenar significativamente más datos, hasta 8,5 GB por disco, comparado con los 4,7 GB que permiten los discos de una capa. Los DVD-R DL (dual layer) fueron desarrollados para DVD Forum por Pioneer Corporation. DVD+R DL fue desarrollado para el DVD+R Alliance por Philips y Mitsubishi Kagaku Media. Un disco de doble capa difiere de un DVD convencional en que emplea una segunda capa física ubicada en el interior del disco. Una unidad lectora con capacidad de doble capa accede a la segunda capa proyectando el láser a través de la primera capa semitransparente. El mecanismo de cambio de capa en algunos DVD puede conllevar una pausa de hasta un par de segundos. Los discos grabables soportan esta tecnología manteniendo compatibilidad con algunos reproductores de DVD y unidades DVD-ROM. Muchos grabadores de DVD soportan la tecnología de doble capa, y su precio es comparable con las unidades de una capa, aunque el medio continúa siendo considerablemente más caro. DVD-10: dos caras, capa simple en ambas; 9,4 GB o 8,75 GiB. Discos DVD±R/RW. DVD-14: dos caras, capa doble en una, capa simple en la otra; 13,3 GB o 12,3 GiB. Raramente utilizado.

VelocidadEvolución del precio del DVD.Coste por MB en DVD.Coste de los dispositivos de lectura y escritura en DVD.

La velocidad de transferencia de datos de una unidad DVD está dada en múltiplos de 1350 KB/s.

Las primeras unidades lectoras CD y DVD leían datos a velocidad constante (velocidad lineal constante o CLV). Los datos en el disco pasaban bajo el láser de lectura a velocidad constante. Como la velocidad lineal (metros/segundo) de la pista es tanto mayor cuanto más alejados esté del centro del disco (de manera proporcional al radio), la velocidad rotacional del disco se ajustaba de acuerdo a qué porción del disco se estaba leyendo. Actualmente, la mayor parte de unidades de CD y DVD tienen una velocidad de rotación constante (velocidad angular constante o CAV). La máxima velocidad de transferencia de datos especificada para una cierta unidad y disco se alcanza solamente en los extremos del disco. Por tanto, la velocidad media de la unidad lectora equivale al 50-70% de la velocidad máxima para la unidad y el disco. Aunque esto puede parecer una desventaja, tales unidades tienen un menor tiempo de búsqueda, pues nunca deben cambiar la velocidad de rotación del disco.

Velocidad Mbit/s MB/s MiB/s

1x 10,80 1,35 1,292x 21,60 2,70 2,572,4x 25,92 3,24 3,092,6x 28,08 3,51 3,354x 43'20 5,40 5,156x 64,80 8,10 7,72

8x 86,40 10,80 10,30

10x 108,00 13,50 12,87

12x 129'60 16'20 15,45

16x 172'80 21'60 20,60

18x 194,40 24,30 23,17

20x 216,00 27,00 25,75

22x 237,60 29,70 28,32

24x 259,20 32,40 30,90

VOLVER