tim: assessing the sustainability of agricultural land management

22
Journal of Environmental Management (2000) 60, 267–288 doi:10.1006/jema.2000.0384, available online at http://www.idealibrary.com on TIM: Assessing the sustainability of agricultural land management C. S. Smith * , G. T. McDonald and R. N. Thwaites § TIM (Threat Identification Model) is a framework for the ex ante assessment of agricultural land management sustainability at the land unit scale that identifies sources of unsustainability within agricultural land management systems. The model explicitly links defined hazards to land productivity and environmental integrity, land resource data and information, and land management practice options using expert and local knowledge on land management and its potential effects. The model was tested in the Crystal Creek Subcatchment, a narrow coastal strip of land situated in north Queensland, Australia. This area was chosen due to the expansion of the sugar industry onto increasingly marginal land in the area, which represents a threat to sustainable land use and a requirement for careful land-use planning and land management. TIM may be used in a relational database as a stand alone decision support system for land-management planning. Its usefulness in land-use planning is greatest when it is linked to a Geographic Information System (GIS) as shown in this paper. GIS allows TIM outputs, such as constraints to agriculture and site-specific best-management practices, to be identified in a spatially explicit manner. The main advantages of TIM are that it can be done ex ante, it removes the need to define sustainability assessment criteria and indicators, it utilises current understanding of the causes and effects of land degradation and how different land-management practices influence these, and links this knowledge to definite land-management options. 2000 Academic Press Keywords: sustainable agriculture, land-use planning, land evaluation, sustainable development. Introduction Land-use planners and managers have tradi- tionally used the FAO Framework for Land Evaluation (FAO, 1976), or similar methods, to provide them with the land suitability information needed to make agricultural land-use planning decisions. The FAO docu- mentation states that land evaluation ‘takes into consideration the economics of the pro- posed enterprises, the social consequences for the people of the area and the coun- try concerned, and the consequences, bene- ficial or adverse, for the environment’ (FAO, 1976:2). Hence, land evaluation techniques related to the FAO Framework are pre- sumably based on the principles of sustain- ability, that is, development is economically feasible, socially acceptable, and compatible with the maintenance of ecological processes Email of corresponding author: [email protected]. edu.au L Corresponding author The Department of Geomatics, The University of Melbourne, Parkville, 3010 Victoria, Australia The Department of Geographical Sciences and Planning, University of Queensland, St. Lucia, 4072, Queensland, Australia § School of Food and Land, The University of Queensland, St Lucia, 4072 Queensland, Australia Received 20 August 1999; accepted 21 August 2000 (Pearce et al., 1993; WCED, 1990; Anon., 1990). However, agricultural land-use plan- ning based on land-evaluation methods, in Australia at least, has frequently not led to sustainable agricultural land use. One exam- ple is the Australian Sugar Industry, where land-evaluation techniques based on the FAO Framework have been used extensively for planning purposes (Wilson and Baker, 1990). A recent environmental audit of the Aus- tralian Sugar Industry concluded that it was performing poorly on a number of envi- ronmental issues including water manage- ment, land management, fertiliser manage- ment, vegetation conservation, compliance with environmental legislation and environ- mental awareness (Gutteridge et al., 1996) Why then have land-evaluation methods not lead to sustainable agricultural land use? Simply, current land-evaluation methods have not provided adequate information relating to the sustainable management of 0301–4797/00/120267C22 $35.00/0 2000 Academic Press

Upload: cs-smith

Post on 15-Jun-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

Jou

rnal

ofE

nviron

men

talM

anagem

ent

(2000)60,267–288doi:10.1006/jem

a.2000.0384,availableon

line

ath

ttp://ww

w.idealibrary.com

on

TIM

:Assessing

thesustainab

ilityo

fag

riculturallandm

anagem

ent

C.S

.Sm

ith†*,G

.T.M

cDo

nald‡

andR

.N.T

hwaites

§

TIM(ThreatId

entificationM

odel)is

afram

ework

forthe

exante

assessmentofagriculturalland

managem

entsustainab

ilityat

theland

unitscale

thatid

entifiessources

ofunsustainab

ilityw

ithinagricultural

landm

anagement

systems.

Them

odel

explicitly

linksd

efinedhazard

sto

landp

roductivity

andenvironm

entalintegrity,

landresource

data

andinform

ation,and

landm

anagement

practice

options

usingexp

ertand

localknowled

geon

landm

anagement

andits

potentialeffects.

Them

odelw

astested

inthe

CrystalC

reekS

ubcatchm

ent,anarrow

coastalstripofland

situatedin

northQ

ueensland,A

ustralia.Thisarea

was

chosend

ueto

theexp

ansionof

thesugar

industry

ontoincreasingly

marginalland

inthe

area,w

hichrep

resentsa

threatto

sustainable

landuse

anda

requirem

entfor

carefulland-use

planning

andland

managem

ent.TIM

may

be

usedin

arelationald

atabase

asa

standalone

decision

supp

ortsystemfor

land-m

anagement

planning.Its

usefulnessin

land-use

planning

isgreatestw

henitis

linkedto

aG

eographic

Information

System

(GIS

)as

shown

inthis

pap

er.G

ISallow

sTIM

outputs,

suchas

constraintsto

agricultureand

site-specific

best-m

anagement

practices,to

be

identified

ina

spatially

explicit

manner.

Them

ainad

vantagesof

TIMare

thatit

canb

ed

oneex

ante,it

removes

theneed

tod

efinesustainab

ilityassessm

entcriteria

andind

icators,it

utilisescurrent

understand

ingof

thecauses

andeffects

ofland

degrad

ationand

howd

ifferentland

-managem

entp

racticesinfluence

these,and

linksthis

knowled

geto

definite

land-m

anagement

options.

2000

Acad

emic

Press

Keyw

ords:

sustain

ableagricu

lture,

land-u

seplan

nin

g,lan

devalu

ation,

sustain

abledevelopm

ent.

Introd

uction

Lan

d-use

plann

ersan

dm

anagers

have

tradi-tion

allyu

sedth

eF

AO

Fram

ework

forL

and

Evalu

ation(F

AO

,1976),orsim

ilarm

ethods,

toprovide

them

with

the

land

suitability

inform

ationn

eededto

make

agricultu

rallan

d-use

plann

ing

decisions.

Th

eF

AO

docu-

men

tationstates

that

land

evaluation

‘takesin

tocon

siderationth

eecon

omics

ofth

epro-

poseden

terprises,th

esocial

consequ

ences

forth

epeople

ofth

earea

and

the

coun

-try

concern

ed,an

dth

econ

sequen

ces,ben

e-fi

cialor

adverse,for

the

environ

men

t’(FA

O,

1976:2).H

ence,

land

evaluation

techn

iques

relatedto

the

FA

OF

ramew

orkare

pre-su

mably

basedon

the

principles

ofsu

stain-

ability,th

atis,

developmen

tis

econom

icallyfeasible,

sociallyacceptable,

and

compatible

with

the

main

tenan

ceof

ecologicalprocesses

Em

ailofcorrespon

ding

auth

or:c.smith

@en

g.un

imelb.

edu.au

ŁC

orrespond

ingauthor

†The

Dep

artment

ofG

eomatics,The

University

ofMelb

ourne,Parkville,

3010V

ictoria,Australia

‡The

Dep

artment

ofG

eographicalS

ciencesand

Planning,U

niversityof

Queensland

,St.Lucia,

4072,Queensland

,A

ustralia

§S

choolofFoodand

Land,The

University

ofQ

ueensland,S

tLucia,

4072Q

ueensland,

Australia

Received

20A

ugust1999;accep

ted21

August2000

(Pearce

etal.,

1993;W

CE

D,

1990;A

non

.,1990).

How

ever,agricu

ltural

land-u

seplan

-n

ing

basedon

land-evalu

ationm

ethods,

inA

ustralia

atleast,

has

frequen

tlyn

otled

tosu

stainable

agricultu

ralland

use.O

ne

exam-

pleis

the

Au

stralianS

ugar

Indu

stry,w

here

land-evalu

ationtech

niqu

esbased

onth

eF

AO

Fram

ework

have

beenu

sedexten

sivelyfor

plann

ing

purposes

(Wilson

and

Baker,1990).

Arecen

ten

vironm

ental

audit

ofth

eA

us-

tralianS

ugar

Indu

strycon

cluded

that

itw

asperform

ing

poorlyon

an

um

berof

envi-

ronm

ental

issues

inclu

ding

water

man

age-m

ent,

land

man

agemen

t,fertiliser

man

age-m

ent,

vegetationcon

servation,

complian

cew

ithen

vironm

ental

legislationan

den

viron-

men

talawaren

ess(G

utteridge

etal.,1996)

Wh

yth

enh

avelan

d-evaluation

meth

odsn

otlead

tosu

stainable

agricultu

ralland

use?

Sim

ply,cu

rrent

land-evalu

ationm

ethods

have

not

providedadequ

atein

formation

relating

toth

esu

stainable

man

agemen

tof

0301–4797/00/120267C22

$35.00/0

2000A

cademic

Press

268C

.S.S

mith

etal.agricu

ltural

land.G

reateratten

tionn

eedsto

begiven

toh

owsu

stainable

land-m

anage-

men

tdecision

scan

bem

adeon

the

basisof

inform

ationobtain

edfrom

land

evalua-

tion(D

ent,

1991).F

armers

and

land

users

remain

the

ultim

atedecision

-makers

and

they

require

inform

ationdescribin

gth

oselan

d-man

agemen

toption

sth

atare

the

most

appropriatefor

the

resources

they

have.

Th

ese‘best

practices’willbe

those

that

main

-tain

land

productivity

and

environ

men

talin

tegrity,are

econom

icallyviable

and

easilyim

plemen

tedgiven

the

skillsan

dkn

owl-

edgeof

the

farmin

gpopu

lation.

Th

islan

d-m

anagem

ent

inform

ation,

know

ledgean

dassessm

ent

mu

stbe

incorporated

into

plan-

nin

gprocesses

toach

ievesu

stainable

agri-cu

lturallan

du

se.In

additionto

land

evaluation

,man

yalter-

natives

toth

eassessm

ent

ofagricu

ltural

sustain

abilityh

avebeen

publish

ed,eachw

ithth

eirow

nadvan

tagesan

ddisadvan

tages.For

adescription

ofboth

the

conceptu

alan

dm

ethodological

approaches

toagricu

ltural

sustain

abilityassessm

ent,

seeS

mith

and

McD

onald

(1998).Insu

mm

ary,mostm

ethods

fallinto

one

ofth

efollow

ing

categories:(i)

Su

stainability

asan

approachto

agricul-

ture:

žsu

stainability

asan

alternative

ideology(adh

erence

toprescribed

practices);ž

sustain

abilityas

aset

ofstrategies

(alter-n

ativeagricu

lture,organ

icfarm

ing);

(ii)S

ustain

abilityas

aproperty

ofagricu

l-tu

re:

žsu

stainability

asth

eability

tosatisfy

goals(m

ultiple

qualitative

and

quan

tita-tive

indicators,

sustain

abilityin

dicators,E

nviron

men

talIm

pactA

ssessmen

t(E

IA)

and

Strategic

En

vironm

ental

Assessm

ent

(SE

A));

žsu

stainability

asan

abilityto

contin

ue

(time

trend

analysis,

resilience

and

sen-

sitivityan

alysis,system

ssim

ulation

and

modelin

g).

Th

ispaper

outlin

esan

approachto

land

evalu-

ation,th

eT

hreat

Identifi

cationM

odel(TIM

),th

atbuilds

onth

eF

AO

basedlan

d-evaluation

techn

iques.

Itprovides

anim

proved‘lan

d-m

anagem

ent

based’assessmen

tfor

land-u

seplan

ners

and

man

agersto

use

instrategic

decision-m

aking,

exan

te,before

land

uses

areim

plemen

ted.It

relatesm

ostclosely

toth

oseagricu

ltural

sustain

abilityassessm

ent

meth

odsth

atview

sustain

abilityas

aprop-

ertyof

agricultu

re,m

orespecifi

callyas

the

abilityto

satisfygoals

(inth

iscase,

main

-tain

ing

land

productivity

and

environ

men

talin

tegrity).T

IMdoes

not

encom

passall

the

dimen

sions

and

scalesof

agricultu

ralsu

s-tain

abilityassessm

ent.

Itoperates

atth

elan

du

nit

scale,providing

anexplicit

meth

odfor

identifyin

gbest

land-m

anagem

ent

prac-tices.U

sing

this

inform

ationat

the

land

un

itscale

(e.g.fi

eldscale),

socio-econom

ican

aly-sis,based

onlan

d-man

agemen

trecomm

enda-

tions,can

beperform

edatth

een

terprisescale

(e.g.farmscale),an

dsu

bsequen

tly,biophysi-

callyan

dsocio-econ

omically

viablelan

d-use

patterns

canbe

examin

edat

the

catchm

ent

(orw

atershed)scale

toassess

the

cum

ulative

effectsof

land

man

agemen

t.L

and-u

seplan

nin

gin

the

Au

stralianS

ugar

Indu

stryis

used

inth

ispaper

todem

onstrate

the

applicationof

TIM

.U

nder

Qu

eenslan

d’sn

ewIn

tegratedP

lann

ing

Act

(IPA

)1998,

agricultu

raldevelopm

ents

arecon

sidereda

‘materialch

ange’in

the

use

ofthe

land,h

ence

localgovern

men

tsn

owh

aveth

epow

erto

applyen

vironm

ental

condition

sto

the

use

ofagricu

ltural

land.

TIM

canassist

this

agri-cu

ltural

land-u

seplan

nin

gprocess

intw

ow

ays:(i)identifyin

gth

een

vironm

entalissu

esrelevan

tto

futu

resites

ofagricu

ltural

devel-opm

ent;

(ii)defi

nin

gcon

ditions

forth

eu

seof

agricultu

rallan

d.B

othth

eseapplication

sare

demon

strated.

The

threatid

entificatio

nm

od

el(T

IM):an

overview

TIM

isbased

oniden

tifying

sources

ofu

nsu

stainability

with

inagricu

ltural

land-

man

agemen

tsystem

s.T

he

rationale

isth

atth

econ

ceptof

sustain

abilityis

difficu

ltto

defin

e,an

dit

isoften

easierto

identify

features

ofa

systemth

atare

un

sustain

-able

rather

than

those

that

aresu

stainable

(Jodha,

1990;S

vendsen

,1990).

Th

iscon

ceptof

un

sustain

abilityassessm

ents

issim

ilarto

that

used

inlan

d-evaluation

meth

odologies,w

here

limitation

sto

land

use

areiden

tified.

Itis

alsocon

sistent

with

the

Precau

tionary

Prin

ciple,wh

ichaim

sto

identify

and

prevent

the

causes

ofseriou

sor

irreversibleen

viron-

men

taldamage

(You

ng,1993).

Th

em

odelwas

testedin

the

CrystalC

reekS

ubcatch

men

t,an

arrowcoastalstrip

ofland

Sustainab

ilityo

fag

riculturallandm

anagem

ent269

020

40

Kilom

etres

Upperston

e

Palu

ma

Ingh

am

Abergow

rie Cardw

ell

N

Figure

1.Location

ofthe

Crystal

Creek

subcatchm

ent.Locations,ž,

Crystal

Creek

Sub

catchment

(),

Herb

erR

iverC

atchment

().

situated

inth

eL

ower

Herbert

River

Catch

-m

ent

near

Ingh

amin

north

Qu

eenslan

d,A

ustralia

(Figu

re1).

Un

tilrecen

tly,farm

-ers

inth

earea

grazedcattle

mostly

onn

ativepastu

res,or

grewpin

eapplesan

dm

angoes.

Alan

dsu

itabilityan

alysiscon

ducted

byth

eQ

ueen

sland

Departm

ent

ofP

rimary

Indu

s-tries

(Wilson

and

Baker,

1990)sh

owed

the

areato

besu

itablefor

sugarcan

eprodu

ction,

wh

ichgives

high

erretu

rns

than

other

uses.

Th

iscau

sedm

any

landh

oldersin

the

sub-

catchm

ent

toseek

mill

assignm

ents

togrow

sugarcan

e.Th

eexpan

sionofth

esu

garin

dus-

tryin

toth

eC

rystalC

reekS

ubcatch

men

traises

an

um

berof

importan

tlan

dm

anage-

men

tissu

es.M

ostof

the

areais

‘margin

allan

d’forcan

eprodu

ction,h

aving

more

severelim

itations

toprodu

ction,

and

high

erpoten

-tial

forlan

ddegradation

,th

anth

eexistin

gcan

eland

elsewh

erein

the

Low

erH

erbertR

iverC

atchm

ent.

Th

em

ajorityof

the

sub-

catchm

ent

iscovered

byD

uplex

soils,often

with

sodicsu

bsoils(S

odosolsin

the

Au

s-tralian

Soil

Classifi

cation(Isbell,

1996)or

Soloth

s,Solodic

Soils

and

Solodised

Solon

etzin

Great

Soil

Grou

ps(S

taceet

al.,1968)).

Th

esesoils

have

poorph

ysicalan

dch

emical

propertiesm

aking

them

difficu

ltto

man

age,are

deficien

tin

major

plant

macro-n

utrien

ts(N

,P

,K

,S

)an

dm

icro-nu

trients

(Zn

,C

u,

Mn

),and

lowin

organic

matter.T

heir

sodicity

makes

them

prone

tostru

ctural

decline

and

compaction

,dispersion

and

surface

crust-

ing,resu

lting

inpoor

water

infi

ltration,poor

water

retention

,w

aterlogging

and

soilero-

sion.T

hey

arealso

acid,increasin

gth

elikeli-

hood

ofalu

min

ium

and

heavy

metal

toxicitydevelopin

g.In

additionto

these

soilproperties,the

Su

b-catch

men

tis

alow

-lying

coastalplain

with

poorlateral

and

intern

al(vertical)

drainage,

hen

ceh

ighw

atertables

and

salinisation

throu

ghsalt-w

aterin

trusion

areh

azards.A

cidsu

lfatesoils

alsooccu

rin

the

areasadja-

cent

toth

ecoastlin

ean

dm

angrove

swam

ps.T

he

extent

and

locationof

these

have

not

beenm

apped.Floodin

gis

alsoa

hazard

with

the

flat

terrainan

dtropicalclim

ate.D

ue

toits

proximity

tocoastal

wetlan

dsan

ddrain

agein

toth

eG

reatB

arrierR

eefw

aters,n

utrien

t,pesticide

and

herbicide

leachin

gan

dru

noff,

along

with

soilerosion

have

the

potential

tocau

seseriou

soff-site

impacts.

Th

eC

rystalC

reekS

ubcatch

men

talso

contain

sm

any

riparianan

du

ncleared

areasof

native

vegetationkn

own

tosu

p-port

rarean

dth

reatened

native

flora

and

faun

aspecies,

most

notably

the

Mah

ogany

Glider

(Petau

rus

gracilis).R

iparianzon

edam

agean

dh

abitatdeclin

eare

therefore

additional

hazards

ofagricu

ltural

develop-m

ent.

270C

.S.S

mith

etal.

Itis

clearth

atth

eplan

nin

gof

canelan

dexpan

sionin

the

Crystal

Creek

Su

bcatch-

men

t,prim

arilyth

rough

the

cane

assign-

men

tprocess,

mu

staddress

man

yrisks

toecological

sustain

abilityan

dth

esu

bse-qu

ent

econom

icsu

stainability

ofth

ein

dus-

triesdepen

dant

onth

en

atural

resources

ofth

earea.S

oun

dplan

nin

gbased

onscien

tific

dataan

dkn

owledge

will

becru

cialto

the

sustain

ableagricu

ltural

developmen

tof

this

subcatch

men

t.H

ence,

itw

asch

osenas

the

case-study

areafor

TIM

.

The

elements

of

thethreat

identifi

cation

mo

del

Stag

e1:id

entifyin

gan

dratin

gp

otentialh

azards

tolan

d-u

sesu

stainab

ility

TIM

has

five

main

stagesin

wh

ichh

azardsto

land

productivity

and

environ

men

talin

te-grity,

land-resou

rcedata

and

land-m

anage-

men

tkn

owledge

arelin

ked.T

he

first

stageof

TIM

issim

ilarto

conven

tional

land

suitability

analysis

inth

atlan

d-resource

dataare

used

torate

land-u

selim

itations.

Th

edifferen

cesare

that

potential

hazard

sto

land

productivity

and

environ

men

talin

tegrityreplace

limitation

s,an

dh

azardratin

gsreplace

limitation

ratings.

Inlan

dsu

itabilityan

alysislim

itationratin

gsrelate

toboth

land

attributes

and

land-u

tilisationtype.

Hen

ce,fora

givenlan

dattribu

televel,

the

limitation

rating

may

differfor

different

land

uses

since

different

cropsh

avediffer-

ent

sensitivities

toth

eiren

vironm

ent

and

different

land

uses

implem

ent

different

land-

man

agemen

tpractices.

InT

IM,

hazard

rat-in

gsn

eedon

lyrelate

tolan

dattribu

televels

since

land-m

anagem

ent

practices,wh

ichw

illdiffer

fordifferen

tlan

du

ses,are

assessedspecifi

callyfor

eachh

azard.F

orexam

ple,in

TIM

the

land

attributes

ofsoiltypean

dslope

wou

ldbe

used

torate

the

erosionpoten

tialof

land.

Th

enin

dividual

land-m

anagem

ent

practicessu

chas

trashblan

keting

orcu

lti-vation

wou

ldbe

assessedas

goodor

poorpractice.

Poten

tialh

azardsto

land

use

sustain

-ability

areth

oseeffectin

gon

-siteprodu

cti-vity,bu

talso

inclu

depossible

off-siteim

pactsn

otin

cluded

intradition

allan

dsu

itabilityan

alysis.Table

1sh

ows

the

potentialh

azardsin

the

Crystal

Creek

Su

bcatchm

ent,

classed(H

1to

H4)

according

toth

eirorigin

(onor

off-site)an

deffect

(onor

off-site).T

oqu

antify

these

hazards,

itis

neces-

saryto

identify

land

attributes

that

canbe

used

tom

easure

the

severityof

eachh

az-ard

acrossth

elan

dscape,sim

ilarto

the

way

land

attributes

areu

sedin

the

assessmen

tof

limitation

sin

land

suitability

analysis.

Hazards

arisefrom

soilattribu

tes,lan

d-form

attributes,

climatic

attributes,

locationattribu

tes,vegetation

attributes

ora

combi-

nation

ofth

ese.T

able2

outlin

esth

elan

dattribu

tesu

sedto

assesssom

eofth

eh

azardsof

the

CrystalC

reekS

ubcatch

men

t.O

nce

land

attributes

have

beeniden

tified,

land

attribute

levelscan

bedeterm

ined

toqu

antify

the

severityof

eachh

azardon

each

Tab

le1.

Potentialhazard

sassessed

inthe

CrystalC

reekS

ubcatchm

ent

H1

Hazard

s—m

ostlyon-site

inorigin

andH

2H

azards—

mostly

on-sitein

originand

onand

on-sitein

effectoff-site

ineffect

SA

:S

oilacidification

AS

:A

cidsulfate

soildisturb

anceS

C:

Soild

ispersion

orsurface

crustingW

G:

Ground

water

fluctuationS

D:

Soilstructurald

eclineor

comp

actionW

I:S

alinisationor

saltw

aterintrusion

SE

:S

urfacesoilerosion

SM

:H

eavym

etaloralum

iniumtoxicity

H3

Hazard

s—m

ostlyon-site

inorigin

andoff-site

ineffect

SN

:S

oilnutrientd

eclineS

O:

Soilorganic

matter

decline

HD

:H

abitat

lossS

S:

Sod

icor

salinesub

soilLN

:P

esticide,herb

icide

andnutrient

leachingS

T:S

hallowtop

soilorsub

soilexposure

RD

:R

iparian

zoned

amage

WL:

Waterlogging

RN

:P

esticide,herb

icide

andnutrient

runoffW

R:

Poor

soilwater

retentionH

4H

azards—

mostly

off-sitein

originand

on-sitein

effectC

L:P

oorclim

aticcond

itionsP

D:

Pests,w

eeds

andd

iseasesW

F:Flood

ing

Sustainab

ilityo

fag

riculturallandm

anagem

ent271

Tab

le2.

Landattrib

utesused

toassess

some

hazards

inthe

CrystalC

reekS

ubcatchm

ent

Hazard

Land-attrib

uteclass

Landattrib

utes

AS

:Acid

sulfatesoild

isturbance

Locationž

Elevation

above

mean

sealevel

CL:P

oorclim

aticcond

itionsS

oil,climate

žS

oilwater

deficit

žTem

perature

HD

:Hab

itatloss

Vegetation

žC

onservationstatus

SA

:Soilacid

ificationS

oilž

pH

buffering

capacity

(pH

BC

)

Tab

le3.

Acid

sulfatesoild

isturbance

hazardrating

usingthe

land-attrib

uteelevation

Acid

sulfateN

egligible

hazardM

inorhazard

Mod

eratehazard

Strong

hazardS

everehazard

hazard(A

S)

(1)(2)

(3)(4)

(5)

Elevation

(m)

>5

5—4

4—3

3—2

<2

Tab

le4.

Thep

rimary

andsecond

aryhazard

sfor

thetexture

contrastsoils

ofthe

Crystal

Creek

Sub

catchment

Soiltyp

eP

rimary

hazards

Second

aryhazard

s

Althaus

CL

HD

RD

SA

SC

SD

SE

SN

SO

SS

ST

WG

WL

WR

AS

LNP

DR

NS

MW

FW

IB

yabra

CL

HD

SA

SC

SD

SE

SM

SN

SO

SS

ST

WG

WL

WR

AS

LNP

DR

NW

FW

ILannercost

CL

HD

RD

SA

SC

SD

SE

SM

SN

ST

WG

WL

WR

AS

LNP

DR

NW

FW

IM

anorA

SC

LH

DR

DS

AS

CS

DS

ES

NS

TW

FW

GW

IWL

WR

LNP

DR

NS

MS

OS

SY

urugaC

LH

DS

AS

CS

DS

ES

MS

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

WF

WI

land

un

itor

land

type(T

able3),

againsim

ilarto

land

suitability

analysis,

wh

ichu

sesa

five-class

systemof

limitation

s(F

AO

,1976).

Hazard

ratings

determin

eboth

primary

and

second

aryh

azardsfor

eachlan

du

nit.

Prim

aryh

azardsare

the

domin

ant

hazards

oneach

land

un

it,defi

ned

asm

oderate(3),

strong

(4)or

severe(5)

hazards.

Secon

daryh

azardsare

leastsign

ifican

th

azardson

eachlan

du

nit

and

areh

azardsw

itha

rating

of1

or2

(negligible

and

min

orh

azards).T

able4

show

sth

em

ostcom

mon

primary

and

secondary

hazards

forth

etextu

recon

-trast

soilsof

the

Crystal

Creek

Su

bcatch-

men

t.T

hese

soilsh

aveth

eprim

aryh

azardsof

surface

crustin

g(S

C),

structu

raldeclin

e(S

D),

soilerosion

(SE

),w

aterlogging

(WL

)an

dpoor

soilw

aterreten

tion(W

R).

All

ofth

esesoils

aresu

sceptibleto

structu

raldeclin

ean

dsu

rfacecru

sting

due

toth

eirpoor

physical

and

chem

icalch

aracteristics.T

his

alsom

akesth

emh

ighly

susceptible

tosoil

erosion.D

ue

toth

eirsh

allowtopsoil(S

T)an

dim

permeable

sodicsu

bsoil(S

S),

allof

these

soilsh

avelow

plant

availablew

ater-holdin

gcapacity

(PA

WC

)an

dpoor

soilw

aterreten

-tion

(WR

).S

hallow

rooting

depthan

dlow

PA

WC

makes

them

drough

tin

tolerant

and

susceptible

topoor

climatic

condition

s(C

L).

Th

eirpoor

intern

aldrainage

alsom

akesth

emh

ighly

susceptible

tow

aterlogging

(WL

).T

hese

soilsh

avelow

pHbu

ffering

capacityan

dh

aveacidic

topsoils,h

ence

soilacid-

ification

(SA

)an

dm

etaltoxicity

(SM

)are

comm

onprim

aryh

azards.S

oilorgan

icm

at-ter

decline

(SO

)is

anoth

ercom

mon

primary

hazard

due

toth

elow

carbonto

nitrogen

ratioof

these

soils.T

he

soilsare

bothch

em-

icallyan

dph

ysicallyin

fertilean

dall

have

soiln

utrien

tdeclin

e(S

N)

asa

primary

haz-

ard.D

ue

toth

eposition

ofth

esesoils

ona

flood

plainat

the

baseof

am

oun

tainran

ge,sprin

gsare

comm

onan

dgrou

ndw

a-ter

tablescan

beclose

toth

esu

rface.Hen

ce,grou

ndw

aterfl

uctu

ation(W

G)

canbe

aprob-

lemon

most

ofth

esoils

asin

dicatedby

the

strong

mottlin

gof

their

subsoil.

Du

eto

the

extensive

clearing

ofth

eH

erbertR

iverC

atchm

ent,

rarean

dth

reatened

veg-etation

typesare

comm

on.

Th

erefore,h

abi-tat

loss(H

D)

isa

comm

onprim

aryh

azard.C

learing

has

alsoleft

littleriparian

vege-tation

,m

aking

riparianzon

edam

age(R

D)

anaddition

alprim

aryh

azardon

most

land

types.

272C

.S.S

mith

etal.S

tage

2:iden

tifying

land

-man

agem

ent

option

s

Th

isstage

ofTIM

identifi

esth

elan

d-man

age-m

ent

options

availableto

land

users

form

anagin

gth

eirlan

d,an

alternative

totradition

allan

devalu

ation,

wh

ichevalu

-ates

the

suitability

oflan

dfor

aparticu

larlan

d-utilisation

type(L

UT

)w

ithgiven

land

man

agemen

tpractices.

For

example,

Wilson

and

Baker

(1990)u

seda

prescribedset

ofm

anagem

ent

practicesto

evaluate

the

suit-

abilityof

land

forsu

garcane

production

inth

eIn

gham

districtof

North

Qu

eenslan

d.F

romth

elan

dsu

itabilityan

alysisof

this

LU

T,

the

land

user

know

sw

here

traditional

rainfed

and

fully

mech

anised

sugarcan

epro-

duction

issu

itableor

un

suitable,

and

wh

atlim

itations

most

limit

production

atparti-

cular

locations.T

he

suitability

analysis

doesn

otin

dicateh

owth

eL

UT

shou

ldch

ange

toadapt

todifferen

tlan

dtypes

orlocation

s,nor

doesit

indicate

wh

atis

bestpractice

fordif-

ferent

land

typesor

locations.

For

example,

wh

ereis

irrigationben

eficial

and

wh

attype

ofirrigation

practiceis

best(fl

ood,spray

ortrickle)?

Sh

ould

farmers

use

groun

dw

aterto

irrigateor

wou

ldsu

rfacew

aterbe

better?W

here

areu

ndergrou

nd

pipesn

eededto

con-

trolsalin

ityor

waterloggin

g?W

here

shou

ldgypsu

mbe

applied?W

hat

varietiesare

bestto

planton

flood

prone

land?

Wh

atcultivation

practicesare

bestfor

different

soils?A

setof

land-m

anagem

ent

options

canbe

identifi

edth

rough

interview

sw

ithlocal

farmers,

land

man

agersan

dresou

rcem

an-

agemen

tprofession

als.Interview

sw

ithlocal

farmers

and

land

man

agersw

ereu

sedto

identify

the

specific

land

-man

agemen

tprac-

ticesavailable

foru

sein

the

Crystal

Creek

Su

bcatchm

ent

(Table

5).T

hese

were

per-son

alin

terviews

condu

ctedon

aon

e-to-one

basis.Visu

alaidsw

ereu

sedin

the

interview

sto

assistfarm

ersin

describing

the

different

man

agemen

tpractices

they

used

onth

edif-

ferent

land

types.T

hese

were:

(i)soil

maps

ofeach

propertyin

the

casestu

dyarea;

and

(ii)soil

profile

photograph

sof

the

main

soiltypes

inth

ecase-stu

dyarea.

AG

eographic

Inform

ationS

ystem(G

IS)

contain

ing

digitalsoil

maps

and

the

Digital

Cadastre

Data

Base

(DC

DB

)ofthe

case-study

area,alon

gw

ithdigital

photograph

sof

soilprofi

les,installed

ona

laptopcom

puter

were

used

toprovide

these.

Stag

e3:relation

ship

/reversibility

rating

—ratin

gth

erelation

ship

sb

etween

land

man

agem

ent

and

hazard

sto

sustain

ability

On

ceavailable

land-m

anagem

ent

practicesh

avebeen

identifi

ed,th

eirrelation

ship

toh

azardsm

ust

bedefi

ned

soth

atbest

prac-tices,

ifth

eyexist,

canbe

identifi

ed.In

TIM

,relation

ships

arebased

onexperien

ceof

the

natu

rean

dstren

gthof

the

relation-

ship

between

hazards

and

land-m

anagem

ent

practices,an

dth

ereversibility

ofan

ylan

ddegradation

that

may

result

fromh

azards.T

hese

areterm

edrelation

ship/

reversibility(R

/R

)ratin

gsan

dcan

bedeterm

ined

byeith

erm

odeling

wh

ererelation

ships

arekn

own

,orth

rough

the

use

ofexpertan

dlocal

know

ledgew

here

relationsh

ipscan

not

beenqu

antifi

ed.

Th

en

ature

ofrelation

ship

s

Relation

ships

between

land-m

anagem

ent

practicesan

dh

azardsm

aybe

benefi

cialrela-

tionsh

ips(B

),ad

verserelation

ships

(A)

and

no

relationsh

ip(N

).A

benefi

cialrelation

ship

(B)

existsw

hen

alan

d-man

agemen

tpracticepreven

ts,reduces,

orreverses

the

developmen

tof

ah

azard.F

orexam

ple,the

relationsh

ipbetw

eentrash

blanketin

gan

dsoil

erosionm

aybe

consid-

eredben

eficial

because

trashblan

keting

canpreven

tor

reduce

surface

soilloss.A

nad

verserelation

ship

(A)

existsw

hen

alan

d-man

agemen

tpractice

promotes,

in-

creasesor

facilitatesth

edevelopm

ent

ofa

hazard.

An

example

isth

eu

seof

heavy

equipm

ent

causin

gsoilcom

paction.

No

relationsh

ip(N

)exists

wh

ena

land-

man

agemen

tpractice

doesn

otpreven

t,redu

ceor

reverseth

edevelopm

ent

ofa

haz-

ard;nor

doesit

promote,in

creaseor

facilitateth

edevelopm

ent

ofa

hazard.

An

example

isveh

icular

traffic

and

soilacidifi

cationsin

cetraffi

cing

soilisu

nlikely

toch

ange

itspH

.In

defin

ing

benefi

cialrelationsh

ips(B

),TIM

incorporates

am

easure

ofben

efit

strength

since

some

land

man

agemen

tpractices

may

bem

oreeffective

inpreven

ting,

reducin

gor

reversing

the

developmen

tof

ah

azardth

anoth

ers.Lim

ing,for

example,can

improve

soildrain

agean

dcan

bea

benefi

cialpracticew

ithrespect

toa

waterloggin

gh

azard.H

owever,

Sustainab

ilityo

fag

riculturallandm

anagem

ent273

Tab

le5.

Land-m

anagement

practice

options

forthe

CrystalC

reekS

ubcatchm

ent

Cod

eLand

-managem

entp

racticeC

ode

Land-m

anagement

practice

Sub

surfaced

rainage(S

)Trash

blanketing

(T)S

1N

osub

surfaced

rainageT1

Surface

trashb

lanketingS

2S

ubsurface

drainage

(Ag

pip

e)T2

Trashincorp

orationFlood

mitigation

works

(M)

Pad

dock

design

(Y)

M1

No

floodm

itigationw

orksY

1G

rassedw

aterways

M2

Floodm

itigationw

orks(levee

banks)

Y2

Flatb

ottomd

rillsand

hilling-upR

otation(R

)Y

3D

iversiond

rainsR

1P

lough-outand

replant

Clearing

(Z)

R2

Sp

rayfallow

Z1

10m

riparian

andb

ufferzones

R3

Leguminous

manure

cropZ

220

mrip

arianand

buffer

zonesR

4B

arefallow

Z3

30m

riparian

andb

ufferzones

Surface

drainage

(D)

Z4

40m

riparian

andb

ufferzones

D1

Unstep

ped

topsoilleveling

(straightleveling)

Soilam

eliorates(L)

D2

Step

ped

topsoilleveling

(micro

terracing)L1

No

soilameliorates

D3

Sub

soillevelingL2

Lime

(topsoilrem

ovalandrep

lacement)

D4

Shallow

drains

(spoon

drains)

L3M

gLim

eD

5D

eepd

rains(channeld

rains)L4

Gyp

sumIrrigation

(I)L5

Dolom

iteI1

No

irrigationL6

Surface

app

licationI2

Floodirrigation

L7S

ubsurface

orslotted

app

licationI3

Sp

rayirrigation

Traffic(V

)I4

Trickleirrigation

V1

TrucksI5

0to

1M

L/hap

erirrigation

V2

Doub

leb

intrailers

I61

to2

ML/ha

per

irrigationV

3Trip

leb

intrailers

I7Irrigation

fromsurface

water

V4

High

flotationeq

uipm

entI8

Irrigationfrom

subsurface

water

V5

Trafficon

dry

soilC

ultivation(C

)V

6Traffic

onm

oderately

moist

soilC

1D

eeprip

ping

V7

Trafficon

moist

soilC

2C

utterb

arV

8Traffic

onw

etsoil

C3

Disc

harrowor

off-setterP

est,weed

andd

iseasecontrol(P

)C

4R

otaryhoe

P1

Cultivation

C5

Tynep

loughor

chiselplough

P2

Trashb

lanketingC

6C

ultivationon

dry

soilP

3H

otw

atertreatm

entC

7C

ultivationon

mod

eratelym

oistsoil

P4

Clean

seedp

lantingC

8C

ultivationon

moist

soilP

5G

ramoxone

C9

Cultivation

onw

etsoil

P6

2,4D

/Atrazine

Fertiliserap

plication

(F)P

7D

iuronF1

Mineralfertilisers

P8

Stom

pF2

Slow

releaseor

organicfertilisers

P9

Velp

arK

4F3

Fertilisershigher

inN

itrogen(N

)P

10Tord

anthan

currentlyused

P11

Suscon

Blue

F4Fertilisers

higherin

Sulfur

(S)

Variety

selection(X

)than

currentlyused

X1

Q96

F5Fertilisers

higherin

Potassium

(K)

X2

Q115

thancurrently

usedX

3Q

117F6

Fertilisershigher

inP

hosphorous

(P)

X4

Q119

thancurrently

usedX

5Q

124F7

Fertilisershigher

inm

icronutrients(Z

n,Cu,M

n)X

6Q

127than

currentlyused

X7

Q136

F8Fertilisers

lessthan

thestand

ardrate

X8

Q138

F9Fertilisers

atthe

standard

rateX

9Q

142F10

Fertilisersgreater

thanthe

standard

rateX

10Q

152F11

Fertilisationb

asedon

soiltestsX

11Q

157X

12Q

158X

13Q

162X

14Q

164X

15C

assius

274C

.S.S

mith

etal.specifi

cdrain

agew

orkssu

chas

topsoillevel-

ing

may

befar

more

effectivein

improvin

gsoil

drainage,

and

hen

cebe

am

oreben

e-fi

cialpractice

with

respectto

waterloggin

g.F

urth

ermore,

the

same

land-m

anagem

ent

practicem

ayh

avevaryin

gdegrees

ofben

efit

ondifferen

tlan

dtypes.L

imin

g,forexam

ple,m

aybe

am

oreben

eficial

practiceon

high

lydispersive

sodicsoils

inth

epreven

tionof

soildispersion

than

itis

onn

on-sodic

soils.H

ence,

there

areth

reecategories

ofben

efit

strength

represented

inT

IM:

strongly

ben-

eficial

(SB

),m

oderately

benefi

cial(M

B)

and

weakly

benefi

cial(W

B).

As

forben

efit

strength

,T

IMalso

incorpo-

ratesa

measu

reof

the

strength

ofad

verserelation

ships

(A)becau

sesom

elan

d-man

age-m

ent

practicesprom

ote,increase

orfacilitate

the

developmen

tofhazards

more

than

others.

Hen

ce,th

ereare

three

categoriesof

adver-sity

strength

represented

inT

IM:

strongly

adverse

(SA

),m

oderately

adverse

(MA

)an

dw

eaklyad

verse(W

A).

Th

ereversib

ilityof

hazard

s

InT

IMh

azardsare

splitin

totw

ocate-

gories:reversible

(R)

and

irreversible(I).

Reversible

(R)

hazards

cause

degradationth

atcan

berepaired

usin

gth

eran

geof

land-m

anagem

ent

practicesavailable

tolan

du

sers.S

oilacidifi

cationcan

bereversed

bylim

ing,

and

soiln

utrien

tdeclin

ecan

bereversed

byfertiliser

application.

Irre-versible

(I)h

azardscau

sedegradation

that

cann

otbe

repairedu

sing

the

range

oflan

d-m

anagem

ent

practicesavailable

tolan

du

sers.An

example

issoilerosion

.If

ah

azardis

considered

reversible(R

),T

IMin

corporatesan

estimate

ofreversibil-

itydu

rationsin

cesom

eform

sof

degradationm

aybe

repairablein

the

short-term

,w

hile

the

repairof

others

may

bea

long-term

pro-cess.T

here

areth

reecategories

ofreversibil-

itydu

ration:

reversiblein

the

short-term

(S),

reversiblein

the

med

ium

-term(M

)an

dreversible

inth

elon

g-term(L

).H

azardsth

atare

reversiblein

the

short-term

(S)

areth

oseth

atcan

berepaired

with

inon

ecroppin

gor

man

agemen

tcycle.

Th

isis

generally

with

in5

yearsfor

sugarcan

eprodu

ctionin

North

Qu

eenslan

d(plan

t-cane

plus

four

ratoons).

Hazards

that

arereversible

inth

em

edium

-term

(M)

areth

oseth

atcan

only

berepaired

overseveral

cropping

orm

anagem

ent

cycles.T

his

equates

toapproxim

ately25

years(fi

vecroppin

gcycles

of5years

each)for

sugarcan

eprodu

ctionin

North

Qu

eenslan

d.H

azardsth

atare

reversiblein

the

long-term

(L)

areth

oseth

atcan

only

berepaired

overm

any

cropping

orm

anagem

ent

cycles(greater

than

25years

forsu

garcane

production

inN

orthQ

ueen

sland).

Th

ereversibility

ofh

azardsalso

chan

gesaccordin

gto

the

leveloftechn

ologyem

ployedan

dth

elan

d-man

agemen

tpractices

avail-able

tolan

du

sers.For

example,soil

nu

trient

declin

em

ight

bereversible

inth

esh

ort-term(R

S)ifm

ineralfertilisers

areavailable

tolan

du

sers.How

ever,m

ostlan

du

sersin

volvedin

slashan

dbu

rnagricu

lture

don

oth

avem

in-

eralfertilisersavailable

toth

em,an

drely

onn

atural

nu

trient

recycling

torestore

soilfer-

tility.Un

dersu

cha

man

agemen

tregim

esoil

nu

trient

decline

may

only

bereversible

inth

em

ediu

m-term

(RM

).Hen

ce,wh

atisreversible

inth

esh

ort-termin

high

-inpu

tw

esternagri-

cultu

rem

aybe

reversiblein

the

long-term

,or

evenirreversible,in

low-in

put

subsisten

cefarm

ing.

Calib

rating

TIM

Usin

gR

/Rratin

gs,ad

ecisionm

atrixw

ascon

-stru

ctedfor

the

main

landscape

un

it(L

U5)

ofth

eC

rystalC

reekS

ubcatch

men

t,textu

recon

trastsoils

ofth

ecreek

alluvial

plains

orS

odosolsu

nder

the

Au

straliansoil

classifica-

tionsystem

(Isbell,1996).Lan

dresou

rcesci-

entists

and

land-m

anagem

ent

professionals

workin

gin

Federal,

State

and

Local

govern-

men

tagen

ciesas

well

asin

dustry

groups

were

interview

edto

determin

eR

/Rratin

gs.A

consen

sus

formin

gtech

niqu

e,com

mon

lykn

own

asD

EL

PH

I,was

used

toreach

consen

-su

sin

the

decisionm

atrix.Th

isis

aniterative

processw

hereby

the

results

ofthe

first

roun

dofin

terviews

arepresen

tedto

allthe

intervie-

wees,

modifi

edif

necessary

and

the

processrepeated

un

tilconsen

sus

isreach

ed.A

ppendix

1con

tains

asu

bsetof

the

rela-tion

ship

matrix

constru

ctedfor

the

texture

contrast

soilsof

the

Crystal

Creek

Su

bcatch-

men

t.A

ppendix

2is

the

hazard

reversibil-ity

matrix,

wh

ichalso

inclu

desin

formation

onth

ecertain

tyof

the

reversibilityratin

gs.T

hese

certainty

ratings

canbe

used

toqu

alifyth

ereliability

ofkn

owledge

inth

edecision

matrix.

Sustainab

ilityo

fag

riculturallandm

anagem

ent275

Stag

e4:p

racticeclassifi

cationan

dlan

d-m

anag

emen

trecom

men

dation

sfor

sustain

ability

Stage

4of

TIM

uses

the

results

ofth

eearlier

stagesto

rateth

efavou

rabilityof

eachlan

d-m

anagem

ent

practicefor

use

oneach

land

un

it,u

sing

apractice

classification

systemsh

own

inT

able6.F

orexam

ple,the

relation-

ship

matrix

inA

ppendix

1sh

ows

the

practiceD

1(u

nstepped

topsoilleveling)to

bestron

glyben

eficial(S

B)w

ithrespect

toa

waterloggin

gh

azard(W

L).T

he

hazard

reversibilitym

atrixin

Appen

dix2

show

sth

atw

aterlogging

(WL

)is

reversiblein

the

short-term

(RS

).H

ence,

the

R/R

rating

forpractice

D1

with

respectto

hazard

WL

isS

BR

S.

Usin

gth

epractice

classification

systemin

Table

6,practice

D1

wou

ldbe

classedas

afavou

rablepractice

(F2)

with

respectto

aw

aterlogging

hazard.

Th

epractice

classification

systemrefl

ectsth

eprem

iseth

atlan

d-man

agemen

tpractices

preventin

g,reducin

g,orreversin

gth

edevel-

opmen

tof

ah

azard(ben

eficial

practices)on

aparticu

larlan

du

nit

arefavou

rablefor

the

man

agemen

tof

that

land

un

it.Practices

that

increase

the

developmen

tof

ah

azard(adverse

practices)on

aparticu

larlan

du

nit

areu

nfavou

rablefor

the

man

agemen

tofth

atlan

du

nit.

Th

eresu

ltsofpractice

classification

canbe

used

toprovide

land

man

agemen

trecomm

en-

dations

and

identify

‘bestlan

d-man

agemen

tpractices’

forin

dividual

land

un

its.T

his

isillu

stratedu

sing

asm

allsu

bsetof

the

results

fromth

eC

rystalCreek

Su

bcatchm

ent

(Table

7),w

hich

show

sth

eprim

aryan

dsec-

ondary

hazards

forth

reelan

du

nits.

Th

esew

eredeterm

ined

instage

1of

TIM

.T

able8

isa

subset

ofth

epractice

classification

Tab

le6.

Landm

anagement

practice

classificationsystem

usingrelationship

/reversibility

ratings

Relationship

/reversibility

Practice

classificationrating

NN

eutralpractice

(N)

SB

I,MB

I,SB

RL

Essentialp

ractice(F1)

SB

RS

,MB

RS

,WB

RS

,Favourab

lep

ractice(F2)

SB

RM

,MB

RM

,WB

RM

,M

BR

L,WB

RL,W

BI

SA

RS

,MA

RS

,WA

RS

Cond

itionalpractice

(F3)M

AR

L,WA

RL,S

AR

M,

Unfavourab

leM

AR

M,W

AR

M,W

AI

practice

(U)

SA

RL,S

AI,M

AI

Prohib

itivep

ractice(P

)

matrix

forth

etextu

recon

trastsoils

ofth

eC

rystalC

reekS

ubcatch

men

t.Itw

asderived

usin

gth

erelation

ship

matrix

and

reversibil-ity

matrix

show

nin

Appen

dices1

and

2,an

dth

epractice

classification

systemsh

own

inT

able6.

Usin

gth

epractice

classification

matrix,

land-m

anagem

ent

practicescan

bedivided

into

favourable

and

condition

alprac-tices

forprim

aryh

azards,un

favourable

prac-tices

forprim

aryh

azards,an

dcon

ditional

and

un

favourable

practicesfor

secondary

hazards.

Table

9u

sesT

able8

todo

this

forth

eh

azardsof

land

un

it1

inT

able7.

As

show

nin

Table

9,a

land-m

anagem

ent

practicem

aybe

favourable

foron

eprim

aryh

azardbu

tu

nfavou

rablefor

anoth

erprim

aryh

azard.By

identifyin

gan

delim

inatin

gth

esepractices,

alan

d-man

agemen

trecom

men

da-tion

foreach

land

un

itcan

begen

erated.T

hese

land

man

agemen

trecom

men

dations

arebased

onth

eprem

iseth

atfavou

rable(N

,F

1or

F2)or

cond

itional(F

3)practicesfor

the

primary

hazard

sof

alan

du

nit

canbe

imple-

men

tedw

ithm

inim

um

riskof

mediu

m-term

,lon

g-termor

irreversibledam

ageto

the

land

resource.P

racticesth

atare

un

favourable

(Uor

P)

foran

yprim

aryh

azards

shou

ldbe

avoided.T

hose

practicesth

atare

favourable

orcon

ditional

foron

eor

more

primary

haz-

ardsof

alan

du

nit

but

not

un

favourable

foran

yoth

erprim

aryh

azardsof

that

land

un

itare

termed

primary

practices(best

practices).T

hese

areD

eeprippin

g,Cu

tterbar

and

Tyn

eplou

ghor

Ch

iselplough

inT

able9.

Stag

e5:id

entifyin

gp

otential

second

aryh

azards

tosu

stainab

ilityfor

prim

aryp

ractices

Th

efi

nal

stageof

TIM

identifi

espoten

tialsecon

daryh

azardsto

land

man

agemen

t.P

otential

second

aryh

azards

result

fromth

eim

plemen

tationofprim

arypractices,an

dare

Tab

le7.

Prim

aryand

secondary

hazards

forthree

landunits

inthe

CrystalC

reekS

ubcatchm

ent

LandP

rimary

hazards

Second

aryunit

hazards

1C

LS

AS

CS

DS

ES

MS

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

WF

WIR

DH

D2

CL

SA

SC

SD

SE

SM

SN

SO

SS

ST

WG

WL

WR

AS

LNP

DR

NW

FW

IRD

HD

3C

LS

AS

CS

DS

ES

MS

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

WF

WIR

DH

D

276C

.S.S

mith

etal.T

able

8.S

ubset

ofthe

practice

classificationm

atrixfor

thetexture

contrastsoils

ofthe

Crystal

Creek

Sub

catchment

Hazard

Deep

Clutter

Disc

Harrow

Rotary

hoeTyne

plough

ripp

ingb

aror

off-setter(C

4)or

chisel(C

1)(C

2)(C

3)p

lough(C

5)

Poor clim

atic conditions (C

L)N

NN

NN

Soil acid

ication (SA

)N

NN

NN

Soil d

ispersion or surface crusting (S

C)

NN

F3F3

NS

oil structural decline or com

paction (S

D)

NN

UU

NS

urface soil erosion (SE

)N

NU

PN

Heavy m

etal or aluminium

toxicity (SM

)N

NN

NN

Soil nutrient d

ecline (SN

)N

NN

NN

Soil organic m

atter decline (S

O)

NN

UP

NS

odic or saline sub

soil (SS

)N

NN

NN

Shallow

topsoil or sub

soil exposure (S

T)N

NN

NN

Ground

water fluctuation (W

G)

NN

NN

NW

aterlogging (WL)

NN

NN

NP

oor soil water retention (W

R)

F2F2

UU

NA

cid sulfate soil d

isturbance (A

S)

NN

NN

NP

esticide, herb

icide and

nutrient leaching (LN)

NN

NN

NP

ests, weed

s and d

iseases (PD

)N

NF2

F2F2

Pesticid

e, herbicid

e and nutrient runoff (R

N)

NN

F3F3

NFlood

ing (WF)

NN

NN

NS

alinisation or salt water intrusion (W

I)N

NN

NN

Rip

arian zone dam

age (RD

)N

NN

NN

Hab

itat loss (HD

)N

NN

NN

Shad

edhazard

sare

prim

aryhazard

sfor

landunit

1in

Table

7.

Tab

le9.

Land-m

anagement

practices

inTab

le8

grouped

intofavourab

leand

conditional

practices

forthe

prim

aryhazard

s,unfavourab

lep

racticesfor

thep

rimary

hazards,

andcond

itionaland

unfavourable

practices

forthe

secondary

hazards

oflandunit

1in

Table

7

Favourable

andcond

itionalpractices

forp

rimary

hazards

žA

llpractices

neutral(N)for

poor

climatic

conditions

(CL)

žA

llpractices

neutral(N)for

soilacidification

(SA

Deep

ripp

ing,Cutter

bar

andTyne

plough

orchiselp

loughneutral(N

)forsoild

ispersion

orsurface

crusting(S

C)

žD

ischarrow

oroff-setter

andR

otaryhoe

conditional(F3)for

soildisp

ersionor

surfacecrusting

(SC

Deep

ripp

ing,Cutter

bar

andTyne

plough

orchiselp

loughneutral(N

)forsoilstructurald

eclineor

comp

action(S

D)

žD

eeprip

ping,C

utterb

arand

Tynep

loughor

chiselplough

neutral(N)for

soilsurfaceerosion

(SE

Allp

racticesneutral(N

)forheavy

metalor

aluminium

toxicity(S

M)

žA

llpractices

neutral(N)for

soilnutrientd

ecline(S

N)

žD

eeprip

ping,C

utterb

arand

Tynep

loughor

chiselplough

neutral(N)for

soilorganicm

atterd

ecline(S

O)

žA

llpractices

neutral(N)for

sodic

orsaline

subsoil(S

S)

žA

llpractices

neutral(N)for

shallowtop

soilorsub

soilexposure

(ST)

žA

llpractices

neutral(N)for

groundw

aterfluctuation

(WG

Allp

racticesneutral(N

)forw

aterlogging(W

L)ž

Tynep

loughor

chiselplough

neutral(N)for

poor

soilwater

retention(W

R)

žD

eeprip

ping

andC

utterb

arfavourab

le(F2)for

poor

soilwater

retention(W

R)

Unfavourab

lep

racticesfor

prim

aryhazard

Disc

harrowor

off-setterand

Rotary

hoeunfavourab

le(U

)forsoilstructurald

eclineor

comp

action(S

D)

žD

ischarrow

oroff-setter

andR

otaryhoe

unfavourable

(U)for

soilsurfaceerosion

(SE

Disc

harrowor

off-setterand

Rotary

hoeunfavourab

le(U

)forsoilorganic

matter

decline

(SO

Disc

harrowor

off-setterand

Rotary

hoeunfavourab

le(U

)forp

oorsoilw

aterretention

(WR

)

Cond

itionalandunfavourab

lep

racticesfor

secondary

hazards

žD

ischarrow

oroff-setter

andR

otaryhoe

conditional(F3)for

pesticid

e,herbicid

eand

nutrientrunoff(R

N)

Sustainab

ilityo

fag

riculturallandm

anagem

ent277

those

second

aryh

azards

that

arecon

dition

al(F

3)or

un

favourable

(Uor

P)

with

respectto

primary

practices.InT

able9,th

eelim

inated

practicesD

isch

arrowor

off-setteran

dR

otaryh

oeboth

have

the

potentialsecon

daryh

azardof

pesticide,h

erbicidean

dn

utrien

tru

noff.

How

ever,the

primary

practicesD

eeprippin

g,C

utter

bar,T

yne

plough

orC

hisel

plough

have

no

potentialsecon

daryh

azards.P

otentialsecon

daryh

azardsresu

lting

fromth

eim

plemen

tationof

primary

practiceson

the

Alth

aus

soiltype

(texture

contrast

soil)of

the

Crystal

Creek

Su

bcatchm

ent

aresu

mm

arisedin

Table

10.Agroch

emicalru

noff

(RN

)is

apoten

tialh

azardw

ithan

yform

oflan

ddrain

agean

dT

IMdetected

this

forth

edrain

agepractices

D3

and

D4.

Ina

similar

way,

agrochem

icalru

noff

isa

riskw

here

chem

icalform

sof

pest,w

eedan

ddisease

control

areu

sed.H

ence

practicesP

5to

P11

were

associatedw

ithth

ispoten

tialsecon

daryh

azard.O

verirrigation

may

leadto

run

offproblem

san

dm

ayalso

leadto

secondary

salinisation

.T

IMh

ighligh

tedth

isby

associating

flood

irrigation(I2)

and

1to

2M

L/h

aper

irrigation(I6)

with

the

potential

secondary

hazards

ofagroch

emical

run

off(R

N)

and

salinisation

orsalt

water

intru

sion(W

I).O

nth

eA

lthau

ssoiltypes,severalfertilisa-

tionpractices

(F1,

F2,

F3,

F6,

F8,

F9,

F10,

F11)

were

associatedw

ithh

eavym

etalor

alum

inu

mtoxicity

(SM

).F

ertilisersten

dto

acidifyagricu

lturalsoils

overtim

e,and

ifthe

pHof

the

soildrops

below5Ð5,m

etaltoxicity

problems

may

occur.

Inaddition

,ph

ospho-

rous

fertilserscon

taincadm

ium

(Cd),

wh

ichalso

accum

ulates

inagricu

ltural

soilsover

time.

Fin

ally,fl

ooding

(WF

)w

asdetected

asa

potential

secondary

hazard

wh

eren

ofl

oodm

itigationw

orks(M

1)w

ererecom

men

ded.

Tab

le10.

Them

ostcom

mon

prim

aryp

racticesand

potential

secondary

hazards

forthe

Althaus

texturecontrast

soiloftheC

rystalCreek

Sub

catch-m

ent

Soiltyp

eP

rimary

practices

Potential

secondary

hazards

Althaus

D3,D

4R

NF1,F2,F3,F6,F8,F9,

SM

F10,F11I2,I6

RN

,WI

M1

WF

P5,P

6,P7,P

8,P9,P

10,P11

RN

Op

erationalasp

ectsand

outp

utso

fT

IMfo

rp

lanning

TIM

canbe

implem

ented

usin

ga

relational

database,su

chas

Microsoft

Access,

asa

stand

alone

decisionsu

pportsystem

forlan

d-man

agemen

tplan

nin

g.Its

usefu

lness

inlan

d-use

plann

ing

isgreatest

wh

enit

islin

kedto

aG

IS.

GIS

allows

TIM

outpu

tsto

bem

appedan

din

tegratedw

ithoth

erspatial

inform

ation.In

itsapplication

toth

eC

rystalC

reekS

ubcatch

men

t,T

IMw

aslin

kedto

ArcV

iew,

aP

C-based

GIS

.F

igure

2sh

ows

the

curren

tform

ofT

IMin

ArcV

iewan

dits

five

outpu

ttables:

Table

1,favou

rable(N

,F

1an

dF

2)an

dcon

dition

al(F

3)practices

forth

eprim

aryh

azardsof

eachlan

du

nit;

Table

2,u

nfavou

rable(U

and

P)

practicesfor

the

primary

hazards

ofeach

land

un

it;T

able3,con

dition

al(F3)an

du

nfavou

rable(U

and

P)practices

forth

esecon

daryh

azardsof

eachlan

du

nit;T

able4,prim

arypractices

foreach

land

un

it;T

able5,

potential

second

aryh

azards

foreach

land

un

it.E

achof

these

tablesare

linked

(viaa

man

y-to-one

link)

toth

eattribu

tetable

ofa

land

un

itm

apof

the

CrystalC

reekS

ubcatch

men

t.B

yqu

erying

the

appropriatetable

inA

rcView

,T

IMcan

produce

five

basictypes

ofou

tput

that

canbe

used

forassess-

ing

land-m

anagem

ent

sustain

ability:(i)lan

dattribu

tean

dh

azardm

aps;(ii)

Favou

rablepractice

maps;

(iii)U

nfavou

rablepractice

maps;

(iv)P

rimary

practiceor

‘bestpractice’

maps;(v)

Poten

tialsecondary

hazard

maps.

Figu

re3

show

sh

owT

IMcan

beu

sedto

map

hazards

tolan

dprodu

ctivityan

den

vironm

ental

integrity.

Th

issoil

erosionh

azard(S

E)m

apfor

the

texture

contrastsoils

(LU

5)of

the

Crystal

Creek

Su

bcatchm

ent

show

sth

atmostofth

esoils

areh

ighly

erosivedu

eto

their

tenden

cyto

dispersew

hen

wet.

Figu

re4

depictsth

oseareas

wh

ereirrigat-

ing

ata

rateof

1to

2M

L/h

aper

irrigationis

considered

tobe

aprim

arypractice.

Note

that

the

most

low-lyin

gareas

areexclu

dedsin

ceth

eseare

areaspron

eto

salinisation

and

run

offto

wetlan

ds.

Prod

ucin

gb

estm

anag

emen

tp

racticeg

uid

elines

InJu

ne

1995,th

eC

anegrow

ersC

oun

cilcom

mission

edan

environ

men

talau

ditof

278C

.S.S

mith

etal.Fig

ure2.

Querying

TIM(w

herep

racticeM

2is

unfavourable).

04

12

Kilom

etres

N

8

Soil E

rosion H

azard 2-M

inor h

azard 3-M

oderate hazard

4-Stron

g hazard

5-Severe h

azard M

angroves

Figure

3.S

oilerosionhazard

map

forthe

CrystalC

reekS

ubcatchm

ent.

Sustainab

ilityo

fag

riculturallandm

anagem

ent279

04

12

Kilom

etres

N

8

Lan

dscape Un

it 51 to 2 M

L/h

a per irrigation-P

rimary P

racticeM

angroves

Figure

4.A

reasw

here1

to2

ML/ha

per

irrigationis

ap

rimary

practice

within

thetexture

contrastsoils

(LU5)ofthe

CrystalC

reekS

ubcatchm

ent.

the

Qu

eenslan

dC

anegrow

ing

Indu

stryin

response

toth

edevelopm

ent

ofn

ewQ

ueen

s-lan

dG

overnm

ent

environ

men

tallegislation

(Gu

tteridgeet

al.,1996).

Th

eau

ditsh

owed

that

the

sugar

indu

stryw

asperform

ing

poorlyon

an

um

berof

environ

men

talissu

esin

cludin

gw

aterm

anagem

ent,

land

man

-agem

ent,

fertiliserm

anagem

ent,

vegetationcon

servation,

complian

cew

ithen

vironm

en-

tallegislationan

den

vironm

entalaw

areness.

Inrespon

seto

these

fin

dings,

and

toen

sure

cane

farmers

have

legaldefen

seu

nder

the

En

vironm

ental

Protection

Act

1994,C

ane-

growers

developeda

‘Code

ofP

racticefor

Su

stainable

Can

eG

rowin

g’(C

anegrow

ers,1998).

Wh

ileth

esecodes

ofpractice

pro-vide

goodpractical

guidan

cefor

farmers,

they

arebroad

and

oflim

itedu

sefor

land-u

seplan

nin

gbecau

seth

eyare

not

locationspecifi

c.In

addition,

no

explicitm

ethod

was

used

togen

erateth

eman

dh

ence

itis

impossible

toexam

ine

the

logicbeh

ind

any

decisionbased

onth

eiru

se.F

orplan

nin

gpu

rposes,lan

d-man

agemen

tgu

idelines

need

tobe

locationspecifi

c,fl

ex-ible

and

basedon

soun

dn

atural

resource

dataan

dlan

dm

anagem

ent

know

ledge.

Gu

idelines

mu

stalso

begen

eratedu

sing

anexplicit

meth

odth

atallow

su

sersto

examin

eth

elogic

behin

dlan

d-man

agemen

tdecision

san

du

nderstan

dw

hy

certainlan

d-m

anagem

ent

practicesare

more

sustain

ableth

anoth

ers.In

afu

llycalibrated

TIM

,best

man

age-m

ent

practicegu

idelines

canbe

developedfor

individu

alfarm

sbased

onth

eirlan

dresou

rces.T

he

primary

and

secondary

haz-

ardsfor

eachlan

du

nit

ofth

efarm

canbe

identifi

edan

da

listof

bestpractices

and

potential

secondary

hazards

generated

foreach

.F

orexam

ple,T

able11

liststh

elan

du

nits

ofa

sugarcan

efarm

inth

eC

rystalC

reekS

ubcatch

men

tan

dth

eirprim

aryan

dsecon

daryh

azards.N

oteth

atth

ereis

some

variationin

the

spatialdistribu

tionof

haz-

ardson

the

farm.

Th

ish

azardin

formation

canbe

used

togu

idelan

dm

anagem

ent.A

ppendix

3provides

asu

bsetof

the

primary

practicesgen

eratedby

TIM

foreach

land

un

itin

Table

11.P

rimary

practicesare

equivalen

tto

‘bestpractices’

and

areth

oseth

atare

likelyto

prevent

long-term

orirreversible

damage

toth

elan

dresou

rce.

280C

.S.S

mith

etal.T

able

11.P

rimary

andsecond

aryhazard

sfor

theland

unitsof

asugarcane

farmin

theC

rystalC

reekS

ubcatchm

ent

Landunit

numb

erP

rimary

hazards

Second

aryhazard

s

1067C

LS

AS

CS

DS

ES

NS

TW

GW

LW

RA

SLN

PD

RN

SM

SO

SS

WF

WI

1215C

LS

AS

CS

DS

ES

NS

TW

GW

LW

RA

SLN

PD

RN

SM

SO

SS

WF

WI

1169C

LS

AS

CS

DS

ES

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

SM

WF

WI

1127A

SC

LH

DS

AS

CS

DS

NS

TW

FW

GW

IWL

WR

LNP

DR

NS

ES

MS

OS

S1129

AS

CL

HD

SA

SC

SD

SN

ST

WF

WG

WIW

LW

RLN

PD

RN

SE

SM

SO

SS

1178C

LH

DS

AS

CS

DS

ES

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

SM

WF

WI

1195C

LH

DS

AS

CS

DS

ES

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

SM

WF

WI

1196C

LS

AS

CS

DS

ES

NS

OS

SS

TW

GW

LW

RA

SLN

PD

RN

SM

WF

WI

Tab

le12.

Them

ostcomm

onland

-managem

entpractices

usedb

ysugarcane

farmers

inthe

CrystalC

reekS

ubcatchm

ent

Practice

groupLand

-managem

entp

ractice

Sub

surfaced

rainageN

osub

surfaced

rainage(S

1)S

urfaced

rainageS

hallowd

rains(D

4)Flood

mitigation

works

No

floodm

itigationw

orks(M

1)Irrigation

Sp

rayirrigation

(I3)0to

1M

L/hap

erirrigation

(I5)C

ultivationD

eeprip

ping

(C1)D

ischarrow

oroff-setter

(C3)

TrafficTruck

(V1)

Fertiliserap

plication

Mineralfertilisers

(F1)Fertiliserap

plication

atthe

standard

rate(F9)

Soilam

elioratesLim

e(L2)

Rotation

Leguminous

manure

crop(R

3)Trash

blanketing

Surface

trashb

lanketing(T1)

Pest,w

eedand

disease

controlC

ultivation(P

1)Trash

blanketing

(P2)

Hot

water

treatment

(P3)

Gram

oxone(P

5)2,4

D/A

trazine(P

6)D

iuron(P

7)S

usconB

lue(P

11)V

arietyselection

Q124

(X5)

Q138

(X8)

Q158

(X12)

Pad

dock

design

Grassed

waterw

ays(Y

1)C

learing10

mrip

arianand

buffer

zones(Z

1)

Assessin

gcu

rrent

land

man

agem

ent

TIM

has

beendesign

edfor

use

inth

eex

ante

assessmen

tof

land

man

agemen

t,bu

tit

canalso

beu

sedto

identify

the

sustain

abil-ity

weakn

essesof

curren

tlan

d-man

agemen

tpractices.T

able12

sum

maries

the

most

com-

mon

land-m

anagem

ent

practicesu

sedby

sugarcan

efarm

ersin

the

CrystalC

reekS

ub-

catchm

ent.

Ifth

esepractices

areapplied

toth

eexam

plelan

du

nits

inT

able11,

favourable

and

un

favourable

practicescan

beseparated.T

his

issh

own

inT

able13.T

he

reasons

wh

ysom

epractices

areu

nfavou

rableon

specific

land

un

itscan

alsobe

examin

ed,as

show

nin

Table

14,w

here

the

hazards

listedu

nder

eachlan

du

nit

areth

oserelatin

gto

un

favourable

practices.F

orexam

ple,n

o

flood

mitigation

work

(M1)

was

considered

un

favourable

onlan

du

nits

1127an

d1129

due

toth

eh

ighrisk

oftidal

inu

ndation

oflan

dby

saltw

ater.D

iscplou

ghin

gor

disch

arrowin

gw

ascon

sideredu

nfavou

rableon

alllan

du

nits

due

toth

eh

ighrisk

ofsoil

structu

raldecline

(SD

),soilerosion(S

E),soil

organic

matter

decline

(SO

)an

dredu

cedsoil

water

retention

(WR

).In

asim

ilarw

ay,th

eu

seof

trucks

was

considered

un

favourable

due

toth

eh

ighrisk

ofsoil

structu

raldeclin

e(S

D),

soilerosion

(SE

)an

dredu

cedsoil

water

retention

(WR

).F

inally,

cultivation

asa

mean

sof

pest,w

eedan

ddisease

con-

trolw

ascon

sideredu

nfavou

rablealso

due

toth

eh

ighrisk

ofsoil

structu

raldeclin

e(S

D),

soilerosion

(SE

),soil

organic

matter

decline

(SO

)an

dredu

cedsoil

water

reten-

tion(W

R).

Sustainab

ilityo

fag

riculturallandm

anagem

ent281

Tab

le13.

Favourable

andunfavourab

lep

racticesfor

theland

unitsin

Table

11in

relationto

them

ostcom

mon

practices

usedin

theC

rystalCreek

Sub

catchment

(Table

12)

Practice

Landunit

10671215

11691127

11291178

11951196

No

surfaced

rainagep

pp

pp

pp

pS

hallowd

rains(sp

oond

rains)p

pp

pp

pp

pN

oflood

mitigation

works

pp

ðp

pp

Sp

rayirrigation

pp

pp

pp

pp

0to

1M

L/hap

erirrigation

pp

pp

pp

pp

Deep

ripp

ingp

pp

pp

pp

pD

ischarrow

oroff-setter

ðð

ðð

ðð

ðð

Trucksð

ðð

ðð

ðð

ðM

ineralfertilisersp

pp

pp

pp

pFertilisers

asthe

standard

ratep

pp

pp

pp

pLim

ep

pp

pp

pp

pLegum

inousm

anurecrop

pp

pp

pp

pp

Surface

trashb

lanketingp

pp

pp

pp

pC

ultivation(for

pests

andw

eeds)

ðð

ðð

ðð

ðð

Trashb

lanketingp

pp

pp

pp

pH

otw

atertreatm

entp

pp

pp

pp

pG

ramoxone

pp

pp

pp

pp

2,4D

/Atrazine

pp

pp

pp

pp

Diuron

pp

pp

pp

pp

Suscon

Blue

pp

pp

pp

pp

Q124

pp

pp

pp

pp

Q138

pp

pp

pp

pp

Q158

pp

pp

pp

pp

Grassed

waterw

aysp

pp

pp

pp

p10

mrip

arianand

buffer

zonesp

pp

pp

pp

pp

,favourable

practice

forthat

landunit;ð

,unfavourable

practice

forthat

landunit.

Tab

le14.

Hazard

srelating

toeach

unfavourable

practice

inTab

le13

forthe

landunits

inTab

le11

Practice

Landunit

10671215

11691127

11291178

11951196

No

floodm

itigationw

orksW

FW

FD

ischarrow

oroff-setter

SD

SD

SD

SD

SD

SD

SD

SD

SE

SE

SE

WR

WR

SE

SE

SE

WR

WR

SO

SO

SO

SO

WR

WR

WR

WR

TrucksS

DS

DS

DS

DS

DS

DS

DS

DS

ES

ES

EW

RW

RS

ES

ES

EW

RW

RW

RW

RW

RW

RC

ultivation(for

pests

andw

eeds)

SD

SD

SD

SD

SD

SD

SD

SD

SE

SE

SE

WR

WR

SE

SE

SE

WR

WR

SO

SO

SO

SO

WR

WR

WR

WR

From

the

inform

ationsu

ppliedby

TIM

,if

the

most

comm

onlan

d-man

agemen

tprac-

ticesu

sedfor

sugar

production

inth

eC

rys-tal

Creek

Su

bcatchm

ent

were

implem

ented

onth

eexam

plelan

du

nits,

soilstru

ctural

decline,

soilerosion

,soil

organic

matter

decline,

and

reduced

soilw

aterreten

tionw

ould

beth

elikely

forms

oflan

ddegra-

dation.

On

the

coastallan

du

nits,

floodin

g

bytidal

waters

wou

ldbe

alikely

problem.

Hen

ce,to

main

tainth

esu

stainability

ofth

efarm

,th

efarm

erw

ould

need

tolook

foraltern

ativesto

Disc

plough

ing

and

Disc

harrow

ing,

usin

gtru

cksin

harvestin

goper-

ations

and

cultivatin

gfor

pest,w

eedan

ddisease

control.

Good

options

wou

ldbe

tou

sea

Tyn

eor

Ch

iselplou

gh,

high

floatation

equipm

ent,

trashblan

keting,

orkn

ockdown

282C

.S.S

mith

etal.h

erbicidesan

dpesticides

forpest

and

weed

control.

TIM

and

canelan

dassig

nm

ent

Inth

epast,local

assignm

ent

boardscon

sist-in

gm

ostlyof

localcan

efarm

erscon

trolledcan

eland

assignm

ent.

Un

derQ

ueen

sland’s

new

Integrated

Plan

nin

gA

ct(IP

A)

1998,agricu

ltural

developmen

tsare

considered

a‘m

aterialchan

ge’inth

eu

seofth

elan

d,hen

ceth

econ

sent

oflocalgovernm

ent

mu

stn

owbe

sough

tbefore

they

areallow

edto

proceed.L

ocalgovern

men

tsn

owh

aveth

epow

erto

applyen

vironm

ental

condition

sto

the

use

ofagricu

ltural

land.

TIM

canassist

localgovern

men

tplan

ners

inth

eassessm

ent

ofagricu

ltural

land

developmen

tapplication

sin

two

ways:

(i)iden

tifying

the

environ

men

-tal

issues

relevant

tofu

ture

sitesof

agri-cu

ltural

developmen

t,th

eh

azardsto

land

productivity

and

environ

men

talin

tegrity;(ii)defi

nin

gcon

ditions

forth

eu

seofth

atlan

dbased

onresou

rcedata

asw

ellas

localan

dexpertkn

owledge

ofland

man

agemen

t.Th

eseare

the

primary

practices(best

practices)an

dpoten

tialsecon

daryh

azardsgen

eratedby

TIM

.B

othth

eseapplication

sof

TIM

have

beendem

onstrated.

Th

eadded

benefi

tof

usin

gT

IMin

the

developmen

tapproval

processis

that

the

meth

odis

objective,tran

sparent

and

basedon

resource

dataan

dlan

d-m

anagem

ent

know

ledge.K

now

ledgecom

-piled

fromseveral

sources,

inclu

ding

that

fromscien

tists,exten

sionoffi

cersan

dlocal

farmers,

canbe

used

simu

ltaneou

slyin

the

decision-m

aking

process.T

he

use

ofT

IMin

the

canelan

dassign

-m

ent

processis

not

restrictedto

localgovern-

men

t.Exten

sionoffi

cers,incon

jun

ctionw

ithcan

efarm

ers,can

alsou

seT

IMin

the

for-m

ulation

ofdevelopm

ent

applications.

Th

esam

edata

and

know

ledgebase

canbe

used

inboth

the

production

and

assessmen

tof

developmen

tplan

s,dram

aticallystream

lin-

ing

and

providing

accoun

tabilityto

the

devel-opm

ent

approvalprocess.Lan

dcarean

dlocal

Integrated

Catch

men

tM

anagem

ent

(ICM

)grou

psm

ayalso

use

TIM

asa

basisfor

the

developmen

tof

their

strategicplan

san

d,by

show

ing

thatth

eirplan

nin

gis

basedon

soun

ddata

and

know

ledge,asa

mean

sofim

proving

their

chan

ceof

obtainin

gproject

fun

ding.

The

role

of

TIM

inho

listicsustainab

ilityassessm

ent:farm

andcatchm

entscales

Su

stainable

land

man

agemen

tis

bothm

ulti-

scaledan

dm

ulti-dim

ension

aland

ultim

atelyn

eedsto

beassessed

with

ina

largerh

olisticfram

ework.

Th

isfram

ework

mu

staddress

not

only

the

biophysical

factorsin

flu

encin

glan

dm

anagem

entsu

stainability,bu

talsoth

eecon

omic

and

socialfactors

most

importan

tfor

achievin

gsu

stainability

and

atw

hat

scaleth

eyoperate

(Sm

ithan

dM

cDon

ald,1998).T

IMis

one

partof

this

holistic

frame-

work,

operating

atth

elan

d-un

itscale,

pro-vidin

glan

du

sersan

dm

anagers

with

anassessm

ent

oflan

d-man

agemen

tfavou

ra-bility

basedon

resource

dataan

dexpert

know

ledge.A

lthou

ghprodu

cedat

the

land

un

itscale,

TIM

outpu

tsh

avebeen

designed

with

other

scalesim

portant

tosu

stainability

assessmen

tin

min

d,an

dcan

providen

ec-essary

inpu

tin

toboth

farman

dcatch

men

tscale

sustain

abilityan

alysis(F

igure

5).A

tth

efarm

scale,an

econom

icevalu

ationoflan

dm

anagem

entis

necessary

togau

geth

eviability

ofanagricu

lturalen

terprise.Before

anecon

omic

evaluation

canbe

condu

cted,best

land-m

anagem

ent

practicesh

aveto

beiden

tified

forin

dividual

land

un

itsso

that

they

canbe

costedan

dcom

paredto

expectedtotalretu

rns.Joh

nson

and

Cram

b(1992)per-

formed

anecon

omic

land

evaluation

forth

eH

erbertRiver

Catch

men

t.How

ever,the

eval-u

ationw

asbased

oncom

mon

practice,wh

ichis

not

necessarily

bestpractice.

Ina

similar

way,

the

skillsan

dkn

owledge

required

toim

plemen

tbest

land-m

anagem

ent

practicescan

becom

paredw

ithth

eexistin

gskills

offarm

ersan

dth

ekn

owledge

they

have

accessto

throu

ghexten

sionservices.

Th

isw

ould

providea

measu

reof

the

socialviability

offarm

ing

operations.

At

the

catchm

ent

scale,bestlan

d-man

age-m

ent

practicesth

atare

socio-econom

icallyviable

canbe

mapped

acrossth

elan

dscapeto

produce

alan

d-use

pattern.

Th

islan

du

sepattern

canth

enbe

used

inth

eassess-

men

tof

the

potential

cum

ulative

impacts

ofagricu

lture

ondrain

age,w

aterqu

ality,bio-

diversity,etc.,

providing

am

easure

ofth

eecological

soun

dness

ofan

agricultu

rallan

d-scape.S

paling

and

Sm

it(1995),

and

Spalin

g(1995)provide

examples

ofthe

assessmen

tof

Sustainab

ilityo

fag

riculturallandm

anagem

ent283

Ecological S

oun

dness

CA

TC

HM

EN

TIC

M

Viable

Lan

d-use pattern

Natu

ral drainage requ

iremen

tsH

abitat viability and con

nectivity

Water qu

ality and qu

antity

biodiversity

Socio-econ

omic viabilityFarm

er skillsE

xtension

servicesFarm

er attitudes

Skills an

d know

ledgeR

equired to im

plemen

t

FA

RM

Net retu

rns

Price

Total retu

rns

Cost

Favourable

Man

agmen

t regime

Yield

Man

agemen

t practicesavailable

Hazards

FIE

LD

/LA

ND

UN

ITL

and u

nit

PMP

Figure

5.H

olisticsustainab

ilityassessm

entfram

ework.

the

cum

ulative

impacts

ofagricu

ltural-lan

ddrain

ageat

acatch

men

tscale

usin

glan

d-use

patterns.H

eatwole

etal.(1985)show

how

the

CR

EA

MS

(Ch

emicals,R

un

offand

Erosion

forA

gricultu

ralM

anagem

ent

System

s)m

odelcan

beu

sedto

assessth

ecu

mu

lativeim

pactsof

anagricu

ltural

land-u

sepattern

onw

aterqu

ality.E

PA

(1994)provides

areview

ofth

eassessm

entofcu

mu

lativeim

pactsin

environ

-m

entalim

pactassessm

ent.

Figu

re5

alsoin

dicatesth

escales

coveredby

curren

tagricu

ltural

land-u

seplan

nin

gin

itiativesin

Au

stralia,n

amely

Property

Man

agemen

tP

lann

ing

(PM

P)an

dIC

M.P

MP

encom

passesth

elan

du

nit

and

farmscales

and

involves

land

man

agemen

tplan

nin

gas

wellas

econom

icviability

assessmen

t.Hen

ce,T

IMh

asth

epoten

tialtoprovide

usefu

linpu

tdirectly

into

the

PM

Pprocess.

Th

estrategic

plann

ing

ofICM

operatesat

abroader

catch-

men

tscale.TIM

canprovide

asou

nd

basisfor

ICM

byprovidin

gth

elan

ddegradation

and

land-m

anagem

ent

inform

ationn

ecessaryfor

planform

ulation

and

catchm

ent

scalean

aly-sis

ofsu

stainability.

Co

nclusion

Man

yresou

rcem

anagem

ent

problems

have

resulted

fromth

ein

discrimin

ateu

seof

agri-cu

ltural

inpu

tssu

chas

fertilisers,water

and

pesticides,asw

ellas

indiscrim

inate

clearing

and

cultivation

practices.T

oday,th

ereis

an

eedfor

more

preciselan

dm

anagem

ent

and,

therefore,a

need

form

ethods

that

allowlan

dm

anagers

totailor

the

man

agemen

tof

land.

From

the

philosoph

iesof

un

sustain

abilityassessm

ent

and

the

Precau

tionary

Prin

ciple,th

eT

IMw

asdeveloped

toaid

land

man

agersin

the

identifi

cationofbestlan

d-man

agemen

t

284C

.S.S

mith

etal.practices

forspecifi

clan

dtypes.

TIM

recog-n

isesth

efact

that

we

cann

otprove

that

alan

d-man

agemen

tpractice

issu

stainable,

only

that

one

practiceis

betterth

anan

other.

We,

therefore,

mu

strely

onexistin

gkn

owl-

edgeof

cause

and

effectto

determin

ew

hich

land

man

agemen

taltern

ativesare

bestprac-

ticeon

different

land

un

its,an

dw

hich

have

the

potential

tocau

selon

g-termor

irre-versible

damage.

Th

em

ainadvan

tagesof

this

typeof

assessmen

tare:

(1)it

canbe

done

exan

te,before

land

man

agemen

tprac-

ticesare

implem

ented;

(2)it

removes

the

need

todefi

ne

sustain

abilityassessm

ent

criteriaan

din

dicators;(3)

itu

tilisesou

rcu

rrent

un

derstandin

gof

the

causes

and

effectsof

land

degradationan

dh

owdifferen

tlan

d-man

agemen

tpractices

infl

uen

ceth

ese;(4)

itlin

ksth

iskn

owledge

todefi

nite

land-

man

agemen

toption

s.T

IMis

apoten

tiallyvalu

abletool

inlan

d-use

plann

ing,

particularly

wh

enlin

kedw

ithdatabase

systems

and

GIS

.L

and-

man

agemen

tscen

arioscan

beexam

ined

forth

eirpoten

tialim

pactson

land

productivity

toassist

the

land

plann

erin

deciding

not

only

wh

ereagricu

ltural

land

uses

arem

ostsu

it-able

but

alsow

hat

land-m

anagem

ent

prac-tices

areappropriate.

Th

ein

formation

that

TIM

providesfor

land-u

seplan

nin

gis

asign

ifican

tim

prove-m

ent

onth

atprovided

bytradition

allan

devalu

ation.T

he

main

improvem

ents

are:(1)itiden

tifies

and

maps

land-degradation

haz-

ardsth

ath

aveth

epoten

tialto

reduce

land

productivity

and

environ

men

talin

tegrity.T

raditional

land

evaluation

son

lyiden

tifyan

dm

aplim

itations

toagricu

ltural

produc-

tivity.(2)Itrelateslan

d-man

agemen

toptions

topossible

land-degradation

consequ

ences.

Tradition

alland

evaluation

sassu

me

that

the

land

uses

being

evaluated

aresu

stainable

and

don

otevalu

ateth

epoten

tialforin

divid-u

allan

d-man

agemen

tpractices

toredu

ceor

aggravatelan

ddegradation

.T

he

aimof

tra-dition

allan

devalu

ationis

tofi

nd

land

that

issu

itablefor

au

se.T

he

aimof

TIM

isto

describea

land

use,

inclu

ding

man

agemen

tpractices,

that

issu

stainable

onth

elan

d.(3)It

links

land-m

anagem

ent

practicesto

the

potential

secondary

effectsof

land

man

age-m

ent.

Tradition

allan

devalu

ations

don

otexam

ine

the

potential

secondary

effectsof

agricultu

rallan

dm

anagem

ent.

(4)It

pro-vides

recomm

endation

sfor

the

sustain

able

man

agemen

tof

the

land

resource,

that

is,best

land-m

anagem

ent

practices.Tradition

allan

devalu

ations

don

otiden

tifygood

and

badpractice

forlan

du

nits.

Th

eyon

lyiden

tifylan

du

sesth

atlan

du

nits

aresu

itablefor.

Th

eadded

benefi

tofu

sing

TIM

inth

eagri-

cultu

raldevelopmen

tapprovalprocessis

that

itis

anobjective,

non

-ambigu

ous

meth

odof

land-m

anagem

entassessm

ent,an

dis

explicitin

itsreason

ing

asto

wh

ydecision

sh

avebeen

made.

Incan

alsoprovide

aw

ayof

stream-

linin

gth

edevelopm

ent

approvalprocess

and

provideaccou

ntability

indecision

-makin

g.A

partfrom

itsadvan

tagesover

tradi-tion

allan

devalu

ation,T

IMh

assom

esign

if-ican

tlim

itations

that

shou

ldbe

noted.F

irst,T

IMou

tputs

arelim

itedto

the

land

un

itscale,

excludin

gsocio-econ

omic

and

cum

ula-

tiveim

pactassessm

ents

that

aren

eededat

broaderscales

toobtain

acom

pletepictu

reof

the

sustain

abilityof

anagricu

ltural

land-

scape.H

owever,

TIM

outpu

tscan

providen

ecessaryin

put

into

bothfarm

and

catch-

men

tscale

analysis.S

econd,th

eavailability,

forman

dscale

oflan

dresou

rcedata

limit

the

quality

ofT

IMou

tputs.

Proxy

measu

resare

needed

wh

eredata

doesn

otexist

and

the

scaleof

the

land

resource

datalim

itsth

eresolu

tionof

land

man

agemen

trecom

men

-dation

s.T

he

third

limitation

ofT

IMis

the

availabilityan

daccessibility

ofkn

owledge

pertainin

gto

the

relationsh

ipsbetw

eenlan

d-m

anagem

ent

practicesan

dlan

d-degradationh

azards,as

well

asth

ereversibility

ofh

az-ards.T

his

know

ledgeis

oftenpatch

y,confl

ict-in

gan

du

ncertain

,makin

git

difficu

ltto

reachcon

sensu

sam

ong

experts.How

ever,this

dis-advan

tageis

alsoon

eofth

estren

gths

ofTIM

,th

atis,its

abilityto

revealconfl

ictsan

dgaps

inkn

owledge.

Alth

ough

TIM

has

beendescribed

inth

econ

textof

the

Au

stralianS

ugar

Indu

stryin

this

paper,th

em

odelitself

isgen

eric.W

orkis

curren

tlyu

nderw

ayto

developa

TIM

foragricu

ltural

and

environ

men

talw

eedm

an-

agemen

tin

the

stateof

Victoria,

Au

stralia.T

he

model

will

allowlan

dm

anagers

toiden

-tify

bestpractices

forw

eedm

anagem

ent

ina

spatiallyexplicit

man

ner.

Th

eecon

omics

ofw

eedm

anagem

ent

will

alsobe

addedto

this

new

model.T

he

Victorian

State

Govern

-m

ent

Departm

ent

ofN

atural

Resou

rcean

dE

nviron

men

t(D

NR

E)

isalso

interested

inadoptin

gT

IMas

anaddition

alm

ethod

ofagricu

ltural-lan

devalu

ationin

the

state.

Sustainab

ilityo

fag

riculturallandm

anagem

ent285

Ackno

wled

gem

ents

Th

eau

thors

sincerely

than

kth

efarm

ersof

the

Crystal

Creek

Su

bcatchm

ent,

North

Qu

eenslan

d,for

their

inpu

tin

toth

efarm

ersu

rvey;Dr

An

drewW

oodan

dM

rD

avidH

orsleyfrom

Colon

ialS

ugar

Refi

neries

(CS

R),

Mr

Rick

Beattie

and

Mr

John

Ragh

anzan

ifromth

eB

ureau

ofSu

garE

xperimen

tS

tations

(BS

ES

),Dr

Ch

ristianR

othan

dD

rR

obertB

ramely

fromth

eC

omm

onw

ealthS

cientifi

can

dIn

dustrial

Research

Organ

isation(C

SIR

O),

and

Mr

Peter

Wilson

,M

rT

erryD

onn

ollanan

dM

rD

oug

Sm

ithfrom

the

Qu

eenslan

dD

epartmen

tof

Natu

ralR

esources

(QD

NR

)for

their

techn

icalassistan

ce,critical

feedbackan

din

put

into

the

land

man

agemen

tkn

owledge

base;M

rR

aymon

dD

eL

aian

dM

rM

arkN

oonan

fromth

eH

erbertR

esource

Inform

ationC

entre

(HR

IC)

foraccess

toth

eirlan

dresou

rcedata;

Mr

Den

isB

akerfrom

QD

NR

foraccess

toQ

ueen

sland’s

Soil

and

Lan

dIn

formation

System

;an

dth

eC

ooperativeR

esearchC

entre

forS

ustain

ableS

ugar

Produ

ctionfor

fin

ancialsu

pport.

References

An

on.

(1990).S

ustain

abledevelopm

ent.

InC

om-

mission

ofIn

quiry

into

Con

servation,

Man

age-m

ent

and

Use

ofF

raserIslan

dan

dth

eG

reatS

and

yR

egion.

Fin

alD

iscussion

Paper,

vol.1:

Backgrou

nd,

pp.281–297.

Brisban

e,Q

ueen

s-lan

d:Govern

men

tP

rinter.

Can

egrowers

(1998).Cod

eof

Practice

forS

ustain

-able

Can

eG

rowin

g.Brisban

e:Can

egrowers.

Den

t,D.(1991).In

trodu

ctoryR

eview.In

Lan

dU

seP

lann

ing

Application

s.P

roceedings

ofth

eF

AO

Expert

Con

sultation

,10–14

Decem

ber,1990.

World

Soil

Resou

rcesR

eportN

o.68,

pp.1–9.

FA

O:R

ome.

EP

A(1994).

Assessm

ent

ofC

um

ulative

Impacts

and

Strategic

Assessm

ent

inE

nviron

men

talIm

pactA

ssessmen

t.P

reparedfor

the

Com

-m

onw

ealthE

nviron

men

tP

rotectionA

gency

byJ.D

.Cou

rtand

Associates

Pty.L

td.An

dG

uth

rieC

onsu

lting:A

ustralia.

FA

O(1976).

AF

ramew

orkfor

Lan

dE

valuation.

FA

OS

oilsB

ulletin

No.32.F

AO

:Rom

e.G

utteridge,

Haskin

san

dD

avey(1996).

En

viron-

men

talA

ud

itof

the

Qu

eenslan

dC

anegrow

ing

Ind

ustry:

Su

mm

ary.G

utteridge,

Haskin

san

dD

aveyP

tyL

td:Brisban

e.

Heatw

ole,C.D

.,Bottch

er,A.B

.and

Baldw

in,L

.B.

(1985).Basin

Scale

Assessm

ent

ofBest

Man

age-m

entP

ractices.Am

ericanS

ocietyofA

gricultu

ralE

ngin

eersP

apern

o.85–2042.

Mich

iganS

tateU

niversity:E

astL

ansin

g.Isbell,R

.F.(1996).T

he

Au

stralianS

oilClassifi

ca-tion

.Victoria:C

SIR

O.

Jodha,

N.

S.

(1990).S

ustain

abilityof

mou

ntain

agricultu

re:some

imperatives.E

ntw

icklun

gu

nd

Lan

dlich

erR

aum

3/90,16–19.Joh

nson

,A

.K

.L

.an

dC

ramb,

R.

A.

(1992).A

Review

ofC

urren

tA

gricultu

ralL

and

Evalu

a-tion

Tech

niqu

es.R

eportto

the

Lan

dan

dW

aterR

esources

Research

and

Developm

ent

Corpora-

tionon

Developin

gA

lternative

Procedu

resin

Lan

dE

valuation

.Volu

me

3.39pp.

Pearce,D

.,Tu

rner,R

.K.,O

’Riordan

,T.,A

dger,N.,

Atkin

son,G

.,Brisson

,I.etal.(1993).B

lueprin

t3:M

easurin

gS

ustain

ableD

evelopmen

t.Lon

don:

Earth

scan.

Sm

ith,C

.S.an

dM

cDon

ald,G.T

.(1998).Assessin

gth

esu

stainability

ofagricultu

reat

the

plann

ing

stage.J

ourn

alof

En

vironm

ental

Man

agemen

t52,15–37.

Spalin

g,H

.(1995).

An

alysing

cum

ulative

envi-

ronm

ental

effectsof

agricultu

rallan

ddrain

agein

south

ernO

ntario,

Can

ada.A

gricultu

re,E

co-system

san

dE

nviron

men

t53,279–292.

Spalin

g,H

.an

dS

mit,

B.

(1995).A

conceptu

alm

odelof

cum

ulative

environ

men

taleffects

ofagricu

ltural

land

drainage.

Agricu

lture,

Eco-

systems

and

En

vironm

ent

53,99–108.S

tace,H

.C

.T

.,H

ubble,

G.

D.,

Brew

er,R

.,N

orthcots,K

.H.,S

leeman

,J.R.,M

ulcah

y,M.J.

and

Hallsw

orth,

E.

G.

(1968).A

Han

dbook

ofA

ustralian

Soils.

Glen

side,S

outh

Au

stralia:R

ellimT

echn

icalPu

blications.

Sven

dsen,

M.

(1990).S

ustain

abilityin

irrigatedagricu

lture.E

ntw

icklun

gu

nd

Lan

dlich

erR

aum

3/90,12–15.W

CE

D(1990).

Ou

rC

omm

onF

utu

re,A

ustralian

edn.

Melbou

rne,

Au

stralia:O

xfordU

niversity

Press.

Wilson

,P

.R

.an

dB

aker,D

.E

.(1990).

Soils

and

Agricu

ltural

Lan

dS

uitability

ofth

eW

etT

rop-ical

Coast

ofN

orthQ

ueen

sland

:In

gham

Area.

Qu

eenslan

dD

epartmen

tof

Prim

aryIn

dustries

Lan

dR

esources

Bu

lletinQ

V90001.

Brisban

e,Q

ueen

sland:Q

ueen

sland

Govern

men

t.Y

oun

g,M

.D

.(1993).

For

Ou

rC

hild

ren’s

Ch

il-d

ren:

Som

eP

racticalIm

plications

ofIn

ter-G

eneration

alE

quity

and

the

Precau

tionary

Prin

ciple.R

esource

Assessm

ent

Com

mission

Occasion

alP

ublication

Nu

mber

6.C

anberra,

Au

stralia:Resou

rceA

ssessmen

tC

omm

ission.

286C

.S.S

mith

etal.

Appendix 1

Subset of the relationship matrix for the texture contrast soils of the Crystal Creek subcatchment

Subsurface Surface drainage Flood Irrigation Cultivationdrainage mitigation

S1 S2 D1 D2 D3 D4 D5 M1 M2 I1 I2 I3 I4 I5 I6 I7 I8 C1 C2 C3 C4 C5 C6 C7 C8 C9

SN

SO MA SA WA WA WA WA

SD MA SA MA WA MA MA

SC MA WA WA WA WA SA MA SA MA WA MA MA

SS SA

SA

WR SB SB SB SB SB SB SB WB WB WA MA MA WA MA MA

H1

Haz

ards

WL WB SB SB SB MB MB MA SA

ST SA WA SA

SE SA SA MA WA MA MA WA MA MA

SM

WG WB

WI WB MA MA MAH2

Haz

ards

AS

RN WA WA WA WA WA MA SA WA WA MA MA WA MA MA

LN

RD MA

H3

Haz

ards

HD

WF WA WB

PD WB WB WB WB WB WB WB WB WB WB WB WB WB WB WB WBH4

Haz

ards

CL SB SB SB SB SB SB SB

Sustainab

ilityo

fag

riculturallandm

anagem

ent287

Appendix 2

Hazard reversibility matrix for the Crystal Creek Subcatchment

Reversibility Duration Certainty

I R S M L C1 C2 C3 C4

Soil nutrient decline SNp p p

Soil organic matter decline SOp p p

Soil structural decline or compaction SDp p p

Soil dispersion or surface crusting SCp p p

Sodic or saline subsoil SSp p

Soil acidification SAp p p

H1

Haz

ards

Poor soil water retention WRp p p

Waterlogging WLp p p

Shallow topsoil or subsoil exposure STp p

Soil erosion SEp p

Heavy metal or aluminium toxicity SMp p p

Groundwater fluctuation WGp p p

Salinisation or salt water intrusion WIp p p

H2

Haz

ards

Acid sulfate soil disturbance ASp p p

Pesticide, herbicide or nutrient runoff RNp p p

Pesticide, herbicide or nutrient leaching LNp p p

Riparian zone damage RDp p p

H3

Haz

ards

Critical habitat decline HDp p

Flooding WFp p p

Pests, weeds and diseases PDp p p

H4

Haz

ards

Poor climatic conditions CLp p

C1, Certain; C2, uncertain but confident; C3, uncertain but expected; C4, uncertain.

288C

.S.S

mith

etal.

Appendix 3

A subset of the primary practices (best practices) generated by TIM for each land unit in Table 11

Land unit Subsurface Surface drainage Flood Irrigation Cultivationnumber drainage mitigation

S1 S2 D1 D2 D3 D4 D5 M1 M2 11 12 13 14 15 16 17 18 C1 C2 C3 C4 C5 C6 C7 C8 C9

1067p p p p p p p p p p p p p p p p

1215p p p p p p p p p p p p p p p p

1169p p p p p p p p p p p p p p p p

1127p p p p p p p p p p p p p

1129p p p p p p p p p p p p p

1178p p p p p p p p p p p p p p p p

1195p p p p p p p p p p p p p p p p

1196p p p p p p p p p p p p p p p p

1207p p p p p p p p p p p p p p p p

1208p p p p p p p p p p p p p p p p

1252p p p p p p p p p p p p p p p p

1235p p p p p p p p p p p p p p p p

1236p p p p p p p p p p p p p p p p

1212p p p p p p p p p p p p p p p p

p, Primary practice.