the l-e (torque) dynamical model:

43
The L-E (Torque) Dynamical Model: 1 1 1 n n n i i ij j kj k j i i j k j D qq C qqq hq b q Inert ial Force s Coriolis & Centrifu gal Forces Gravitati onal Forces Frictio nal Forces

Upload: nikkos

Post on 23-Feb-2016

40 views

Category:

Documents


1 download

DESCRIPTION

The L-E (Torque) Dynamical Model:. Gravitational Forces. Inertial Forces. Coriolis & Centrifugal Forces. Frictional Forces. Lets Apply the Technique -- . Lets do it for a 2-Link “Manipulator”. Link 1 has a Mass of m1; Link 2 a mass of m2. Before Starting lets define a L-E Algorithm:. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The L-E (Torque) Dynamical Model:

The L-E (Torque) Dynamical Model:

1 1 1

n n ni

i ij j kj k j i ij k j

D q q C q q q h q b q

Inertial Forces

Coriolis & Centrifugal

Forces

Gravitational Forces Frictional

Forces

Page 2: The L-E (Torque) Dynamical Model:

Lets Apply the Technique --

Z0

Y0

Cm1

X0

X1

Z1

X2

Y2

Y1

Cm2

Z2

Lets do it for a 2-Link “Manipulator”

Link 1 has a Mass of m1; Link 2 a mass of m2

Page 3: The L-E (Torque) Dynamical Model:

Before Starting lets define a L-E Algorithm:

Step 1 Apply D-H Algorithm to build Ai matrices and find Fi the “link frame”

Step 2 Set T00=I; i=1; D(q)=0

Step 3 Find ci the Homogenous coordinate of the center of mass of link I w.r.t. Fi

Step 4 Set Fc as the translation of Frame F1 to Cm of i Compute Inertia Tensor Di about Cm w.r.t. Fc

Step 5 Compute: zi-1(q); T0i; ci

bar(q); Di the Nor. Inertial Tensor

Page 4: The L-E (Torque) Dynamical Model:

Before Starting lets define a L-E Algorithm:

Step 6 Compute Special Case of Ji(q)

Step 7 Partition Ji and compute D(q) = D(q) + {ATmKA + BTDKB}

Step 8 Set i = i+1 go to step 3 else (i=n+1) set i=1 & continue

Step 9 Compute Ci(q); hi(q) and frictioni

Step 10 Formulate Torquei equation

Step 11 Advance “i” go to step 9 until i>n

Page 5: The L-E (Torque) Dynamical Model:

We Start with Ai’s

1 1 1 1

1 1 1 11

2 2 2 2

2 2 2 22

00

0 0 1 00 0 0 1

00

0 0 1 00 0 0 1

C S l CS C l S

A

C S l CS C l S

A

Not Exactly D-H Legal (unless there is more to the robot than these 2 links!)

Page 6: The L-E (Torque) Dynamical Model:

So Let’s find T02

T02= A1*A2

1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 1

1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 120

12 12 2 12 1 1

12 12 2 12 1 120

00

0 0 1 00 0 0 1:

00

0 0 1 00 0 0 1

CC S S C S S C l C C l S S l CS C C S S S C C l S C l C S l S

T

simplifiedC S l C l CS C l S l S

T

Page 7: The L-E (Torque) Dynamical Model:

I’ll Compute Similar Terms back – to – back rather than by the Algorithm

1 01

1

1 1

1 1 1 1

1 1 1 110

1 11

1 1 1 11 1 1

1 1 1 1

2001

01 0 0 0

00 1 0 0

0 0 1 00 0 1 0

0 0 0 1

22000

200 0 1 0 01

K

K

c H T cl

c c

C S l CS C l S

H T

l Cl

C S l Cl Sc S C l S

Page 8: The L-E (Torque) Dynamical Model:

C2(bar) Computation:2 0

2

2

2 2

12 12 2 12 1 1

12 12 2 12 1 120

2

12 12 2 12 1 12

12 12 2 12 1 1

2001

01 0 0 0

00 1 0 0

0 0 1 00 0 1 0

0 0 0 1

200000 0 1 01

K

K

c H T cl

c c

C S l C l CS C l S l S

H T

lC S l C l C

c S C l S l S

2 121 1

2 121 1

2

20

l Cl C

l Sl S

Page 9: The L-E (Torque) Dynamical Model:

Finding D1

Consider each link a thin cylinder

These are Inertial Tensors with respect to a Fc aligned with the link Frames at the Cm

21 1

1

21 1

22 2

2

22 2

0 0 0

0 012

0 012

0 0 0

0 012

0 012

m lD

m l

m lD

m l

Page 10: The L-E (Torque) Dynamical Model:

Continuing for Link 1

1 11 0 1 0

1 1 1 121 1

1 1 1 1 1

21 1

[ ]

0 0 00 00 0 0 0

120 0 1 0 0 1

0 012

TD R D R

C S C Sm lD S C S C

m l

Page 11: The L-E (Torque) Dynamical Model:

Simplifying:

2 22 1 1 1 11 1 1

2 221 1 1 1

1 1 1 1

21 1

21 1 12

21 11 1 1 1

012 12

012 12

0 012

00

120 0 1

m l m lS S C

m l m lD S C C

m l

S S Cm lD S C C

Page 12: The L-E (Torque) Dynamical Model:

Continuing for Link 2

2 22 0 2 0

12 12 12 1222 2

2 12 12 12 12

22 2

212 12 122

22 22 12 12 12

[ ]

0 0 00 00 0 0 0

120 0 1 0 0 1

0 012

00

120 0 1

TD R D R

C S C Sm lD S C S C

m l

S S Cm lD S C C

Page 13: The L-E (Torque) Dynamical Model:

Now lets compute the Jacobians

1

1 1

0

1 1

11 1 1

01

0

0

200

20 0

cJ q

Z

l S

c l CZ cq

Page 14: The L-E (Torque) Dynamical Model:

Finishing J1

1 1

1 1

1

02

020 00 00 01 0

l S

l C

J

Note the 2nd column is all zeros – even though Joint 2 is revolute – this is the special case!

Page 15: The L-E (Torque) Dynamical Model:

Jumping into J2

2 2

2 1 2

0 1

22

01

22

1 12

:

000

c cJ q q

Z Z

here

c Z cq

c Z c dq

This is 4th column of A1

Page 16: The L-E (Torque) Dynamical Model:

Continuing:

22

01

2 12 2 121 1 1 1

2 12 2 121 1 1 1

000

2 20 00 0

2 21 00 0

c Z cq

l C l Sl C l S

l S l Cl S l C

Page 17: The L-E (Torque) Dynamical Model:

And Again:

2 121 1

1 122 12

1 1 1 12

2 12

2 12

200

21 00

2

20

l Cl Cl C

c l Sl S l Sq

l S

l C

Page 18: The L-E (Torque) Dynamical Model:

Summarizing, J2 is:

2 12 2 121 1

2 12 2 121 1

2

2 2

2 20 00 00 01 1

l S l Sl S

l C l Cl C

J

Page 19: The L-E (Torque) Dynamical Model:

Developing the D(q) Contributions

D(q)I = (Ai)TmiAi + (Bi)TDiBi

Ai is the “Upper half” of the Ji matrix Bi is the “Lower Half” of the Ji matrix Di is the Normalized Inertial Tensor of Linki

defined in the Base space but acting on the link end

Page 20: The L-E (Torque) Dynamical Model:

Building D(q)1

D(q)1 = (A1)Tm1A1 + (B1)TD1B1

Here: 1 1

1 1 1

1

02

020 0

0 00 01 0

l S

l CA

B

Page 21: The L-E (Torque) Dynamical Model:

Looking at the 1st Term (Linear Velocity term)

1 1 1 1

1 1 1 11

1 1

1 1 1 11 1

1

2 2 2 2 21 1 1 1 1

1 1

21 1

0 02 2

1 : 0 02 20 1 0 1

02

002 2

20 0 10 1

0 0440 00 0

1 014

T

st

l S l S

l C l CTerm m

l S

l S l Cl Cm

l S l C lm m

m l

0 0

Page 22: The L-E (Torque) Dynamical Model:

Looking at the 2nd Term (Angular Velocity term)

Recall that D1 is:

Then:

21 1 12

21 11 1 1 1

00

120 0 1

S S Cm lD S C C

21 1 12

21 11 1 1

21 1

0 0 00 0 1

2 : 0 0 00 0 012

0 0 1 1 0

1 00 012

nd

S S Cm lTerm S C C

m l

Page 23: The L-E (Torque) Dynamical Model:

Putting the 2 terms together, D(q)1 is:

2 2

1 1 1 11

21 1

1 0 1 00 0 0 04 12

1 00 03

m l m lD q

m l

Page 24: The L-E (Torque) Dynamical Model:

Building the Full Manipulator D(q)

D(q)man = D(q)0 + D(q)1 + D(q)2

Where– D(q)2 = (A2)Tm2A2 + (B2)TD2B2

And recalling (from J2):

2 12 2 121 1

2 2 12 2 121 1

2

2 2

2 20 0

0 00 01 1

l S l Sl S

l C l CA l C

B

Page 25: The L-E (Torque) Dynamical Model:

Building the 1st D(q)2 Term:

2 22

2 12 2 121 1

2 12 2 121 1 1 1

2 12 2 122 1 1

2 12 2 12

2 222 2 1 2 21 1 2 2

2 2 22 1 2 2 2

2 202 2

2 200 02 2

4 4 2

4 2 4

Tm A A

l S l Sl Sl S l Cl S l C

l C l Cm l Cl S l C

l l l l Cl l l Cm

l l l C l

Page 26: The L-E (Torque) Dynamical Model:

How about term (1,1) details!

2 12 2 12 2 12 2 121 1 1 1 1 1 1 11,1

2 2 2 22 2 2 22 12 1 2 12 1 2 12 1 2 12 11 1 1 1

22 2 2 2 2212 12 1 1 1 1 2 12 1

2 2 2 2

2 24 2 4 2

4

l S l S l C l Cterm l S l S l C l C

l S l l S S l C l l C Cl S l C

l S C l S C l l S S C

12 1

2221 1 2 1 2 1 2 1 1 2 1 2 1

22 2 221 1 2 1 2 1 1 2 1 2 1 1 2

2221 1 2 2

4

4

4

C

l l l l S C C S S C C S S C

l l l l S C C S S C C C S S

l l l l C

similar reasoning for the other terms in the matrix

Page 27: The L-E (Torque) Dynamical Model:

Building the 2rd D(q)2 Term:

Recall D2(nor. In. Tensor):

Then:

212 12 122

22 22 12 12 12

00

120 0 1

S S Cm lD S C C

212 12 122

2 2 22 22 12 12 12

22 2

0 0 00 0 1

0 0 00 0 112

0 0 1 1 1

1 11 112

TS S C

m lB D B S C C

m l

Page 28: The L-E (Torque) Dynamical Model:

Combining the 3 Terms to construct the Full D(q) term:

2 222 2 1 2 2

2 21 1 2 21 1 2 2

2 2 22 1 2 2 2

2 2 2 2 221 1 2 2 2 2 1 2 2 2 2

2 1 1 2 2 2

2 2 22 1 2 2 2 2 2

2 2

1 0 1 14 4 20 0 1 13 12

4 2 4

3 4 12 4 2 12

4 2 12 4

Man

l l l l Cl l l Cm l m lD q m

l l l C l

m l l m l l l l C m lm l l l C m

l l l C m l lm m

22 2

12m l

Page 29: The L-E (Torque) Dynamical Model:

Simplifying then D(q) is:

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 22 1 2 2 2 2 2 2

3 3 2 3

2 3 3

man

m l m l m l l C m lm l m l l CD q

m l l C m l m l

NOTE: D(q)man is Square in the number of Joints!

Page 30: The L-E (Torque) Dynamical Model:

This Completes the Fundamental Steps:

Now we compute the Velocity Coupling Matrix and Gravitation terms:

,( ) ,( )

3

1

1( ) ( ) ( )2

( )

ikj man ij man kj

k i

nj

i k j kik j i

C q D q D qq q

h g m A q

Page 31: The L-E (Torque) Dynamical Model:

For the 1st Link

11 12 11 12

1 1 1 11

11 12 21 22

2 2 1 1

( ) ( ) ( ) ( )1

( ) ( ) ( ) ( )2kj

D q D q D q D qq q q q

CD q D q D q D qq q q q

man

here i = 1; j = 1 or 2; k = 1 or 2we take 'terms' from D(q)

Page 32: The L-E (Torque) Dynamical Model:

Plugging ‘n Chugging

From Earlier:

THUS:

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 22 1 2 2 2 2 2 2

3 3 2 3

2 3 3

man

m l m l m l l C m lm l m l l CD q

m l l C m l m l

2 2 2 2 22 21 1 2 2 2 1 2 2 2 2 1 1 2 2 2 1

2 1 2 1 2 2 2 1 2 1 2 2

1 1 11

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 2

3 3 2 3 3 312

3 3 2 3

kj

m l m l m l l C m l m l m l m l lm l m l l C m l m l l C

q q qC

m l m l m l l C m lm l m l l C

q q

22 2 2 2

1

222 22 1 2 2 2 2

1 1

2 3

32 3

C m l

q

m lm l l C m l

q q

Page 33: The L-E (Torque) Dynamical Model:

P & C cont:

11 2 2 2

1 2 2 2

1 2 2 2

0 0 0 010 02

20 0

11 2

kjC l l m Sl l m S

l l m S

Page 34: The L-E (Torque) Dynamical Model:

Finding h1:

Given: gravity vector points in –Y0 direction (remembering the model!)

gk =(0, -g0, 0)T

g0 is the gravitational constant In the ‘h’ model Aki

j is extracted from the relevant Jacobian matrix (– for Joint i)

Here:3 2

1 11 1

( )jk j k

k j

h g m A q

Page 35: The L-E (Torque) Dynamical Model:

Continuing:

2

1 21 2 21 0 1 21 2 21

1

1 1 2 121 0 1 2 1 1

1 2 2 120 2 1 1

2 2

2 2

jj

j

h g m A g m A m A

l C l Ch g m m l C

m m l Cg m l C

looking back to jacobians and substituting:

Note: Only k = 2 has a value for gk which is -g0!

Page 36: The L-E (Torque) Dynamical Model:

Stepping to Link 2

22

2

21 22 11 12

1 1 2 2

21 22 21 22

2 2 2 2

1 2 2 2

1( ) ( )2

( ) ( ) ( ) ( )1

( ) ( ) ( ) ( )2

1 12 41 04

kj j jkk

C D q D qq q

D q D q D q D qq q q q

D q D q D q D qq q q q

l l m S

Page 37: The L-E (Torque) Dynamical Model:

Computing h2

3 2

2 21 2

2 0 2 2 122 0 2 22( ) 2

jk j k

k j

h g m A

g m l Ch g m A q

Page 38: The L-E (Torque) Dynamical Model:

Building “Torque” Models for each Link

In General:

1 1 1

n n ni

i ij j kj k j i ij k j

D q q C q q q h q b q

Page 39: The L-E (Torque) Dynamical Model:

For Link 1:

The 1st terms:

2nd Terms:

1 11 1 12 21

2 221 2 2 1 2 2

2 1 2 1 2 2 1 2 23 3 3 2

n

j jj

D q q D q D q

m l l l l Cm l m l l C q m q

2 21 1 2 1 1 1 2

11 1 21 1 2 12 2 1 22 21 1

22 1 2 21 2 2 2 2 1 2

22

2 1 2 2 2 1

( )

0 02

2

jk k jk j

C q q q C q C q q C q q C q

m l l Sl l m S q q q

qm l l S q q

Page 40: The L-E (Torque) Dynamical Model:

Writing the Complete Link 1 Model

2 221 2 2 1 2 2

1 2 1 2 1 2 2 1 2 2

22 1 2 2 12

2 1 2 2 2 1 0 2 1 1 1 1

3 3 3 2

( )2 2 2

m l l l l Cm l m l l C q m q

q m m l Cm l l S q q g m l C b q

Page 41: The L-E (Torque) Dynamical Model:

And, Finally, For Link 2:

22 2 2 2 2

1 1 1

n n n

j j kj k jj k j

D q q C q q q h q b q

Page 42: The L-E (Torque) Dynamical Model:

Ist 2 terms:

1st Terms:

2nd Terms:

2 21 1 22 21

2 22 1 2 2 2 2

2 1 23 2 3

n

j jj

D q q D q D q

l l l C m lm q q

22 1 2 2 2 1 2 2 2 1 2 21 1 2 1 2

22 1 2 21

02 2 2

2

m l l S m l l S m l l Sq q q q q

m l l S q

Page 43: The L-E (Torque) Dynamical Model:

Finalizing Link 2 Torque Model:

2 222 1 2 2 2 2 2 1 2 2

2 2 1 2 1

0 2 2 122 2

3 2 3 2

( )2

l l l C m l m l l Sm q q q

g m l C b q