the genus penicillium - cairo...

157
1 Monograph On The genus Penicillium A guide for historical, classification and identification of penicilli, their industrial applications and detrimental effects By Mohamed Refai 1 , Heidy Abo El-Yazid 1 and Wael Tawakkol 2 1. Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2. Department of Microbiology, Faculty of Pharmacy, Misr University for Science and Technology 2015

Upload: others

Post on 12-Feb-2020

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

1

Monograph

On

The genus Penicillium

A guide for historical, classification and identification of

penicilli, their industrial applications and detrimental effects

By

Mohamed Refai1, Heidy Abo El-Yazid

1 and

Wael Tawakkol2

1. Department of Microbiology, Faculty of Veterinary Medicine, Cairo University

2. Department of Microbiology, Faculty of Pharmacy, Misr University for Science and

Technology

2015

Page 2: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

2

Google: Examples of sites Ancient Egyptians and penicillin

22 Likes - Instagram instagram.com/p/sHcNA4R6YN/ ... as penicillium mold is used today). Imhotep an Egyptian was a polymath from the 27th century BC. He is one of the first physicians or doctors known to history. Ancient Egyptians used penicillin | Matter Of Facts https://matteroffactsblog.wordpress.com/.../ancient-egyptians-used-pencil... Oct 9, 2013 - Imhotep: a polymath from the 27th century BC. ... because of the presence of antibacterial molds (just as penicillium mold is used today).

Preface

When I was in El-Badrashen primary school (1944-1950) I used to visit my classmates living in

the nearby villages of Memphis and Sakkara. There, I heard from girls and women that they

liked to eat mouldy bread because they thought it rendered their hairs smooth and shiny. When,

I searched the internet using the key words Ancient Egyptians and Penicillium. Surprisingly, I

found several sites indicating that the Egyptian polymath, Imhoteb, was one of the first

physicians or doctors known to history, who prescribed mouldy bread for healing wounds, i.e. he

predicted the presence of antibiotics in moulds 4700 years ago.

Prof. Dr. Mohamed Refai, March 2015

Page 3: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

3

Contents 1. Introduction , 4

2. Penicillium history, 5

3. Penicillium classification17

2. 1. Classification after Raper and Thom, 1949, 17

3.2. Claasification according to Ramirez 1982, 21

3. 3. Classification according Houbraken & Samson (2011) , 27 3. 4. Updated Classification, 39

4. Morphology of Penicillium species, 49

4.1. Macromorphology of Penicillium species, 51

4.2. Micromorphology of Penicillium, 58

5. Extrolites produced by various Penicillium species, 66

5.1. Antibiotics, 66

5.2. Anti-cancer,66

5. 3. Penicillium pigments, 68

5.4. Enzymes ,68

5.5. Mycotoxins ,69

6. Molecular genetics of Penicillium ,72

6.1. Genome sequencing,72

6.2. Genetic transformation, 76

6.3. The biosynthetic pathway, 79

6.4. Virulence genes of Penicillium digitatum, 81 6.5. Sexual life cycle of P. roqueforti ,82

6.6. Genome shuffling ,83

6.7. Mechanism of conidiation in P. decumbens, 83

6.8. Expression and characterization of enzymes, 84

6.9. Molecular identification, 88

7. Industral applications of Penicillium species, 89

7.1. Penicillin, 89

7. 2. Griseofulvin, 95

7. 3. Roquefort cheese, 98

7. 4. Camembert cheese ,103

7. 5. Gorgonzola cheese ,108

7. 6. Cambozola cheese ,110

7. 7. Penicillium-cured salami, I110

7. 8. Penicillium pigments ,113

7. 9. Penicillium enzymes, 119

7. 10. Production of metal nanoparticles, 119

8. Health risks and economic losses caused by Penicillium species, 120

9. Penicillium species identification, 120

10.Gallery of Penicillia, 136

11. References. 149

Page 4: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

4

1. Introduction

Penicillium is a well known cosmopolitan genus of moulds that comprises more than 350 species playing

various roles in natural ecosystems, agriculture and biotechnology. They have double faces, a good and

beneficial one and a bad and economically destructive one. Examples of the beneficial roles are:

Penicillium chrysogenum produces the antibacterial antibiotic penicillin, Penicillium griseofulvum

produces the antifungal antibiotic griseofulvin, several Penicillium species produce anti-cancer

substances such as Penicillium albocoremium (Andrastin A), P. decumbens (Bredenin). Penicillium

roqueforti is used for the production of Roquefort cheese and Penicillium camemberti is used for the

production of Camembert cheese.

Several Penicillium species produce enzymes that are used in industry, e.g. cellulases and xylanases

produced by Penicillium species have broad applications in food and feed, the textile industry, and the

pulp and paper industries. Penicillium species are also used for biodegradation of oil and can be used in

restoring the ecosystem when contaminated by oil. Peroxidase enzyme of Penicillium species have

potential biodegradable activities that degrade Amaranth dye, Orange G, heterocyclic dyes like, Azure B

and Lip dye. Morepver, some species function as decomposers of dead materials and can be used in

recycling of waste products.

Recently, Penicillium species, such as P. aurantiogriseum, P. citrinum, and P. waksmanii, are used for

the eco-friendly biosynthesis of gold nanoparticles from a solution of AuCl. Gold nanoparticles are

formed fairly uniform with spherical shape with the Z-average diameter of 153.3 nm, 172 nm and 160.1

nm for the 3 species, respectively.

On the other hand, some species are known to cause postharvest diseases, e.g. Penicillium expansum is

one of the most prevalent post-harvest rots that infects apples. Although it is a major economic problem

in apples, this plant pathogen can be isolated from a wide host range, including pears, strawberries,

tomatoes, corn, and rice. This mould also produces the carcinogenic metabolite patulin, a neurotoxin that

is harmful in apple juice and apple products. patulin in food products is a health concern because many

are consumed by young children. In addition, a second secondary metabolite citrinin is produced as well.

Mould growth on citrus fruits during storage is a continuing problem that results in economic loss.

Although several fungal species have been reported to be involved in the spoilage of citrus products,

Penicillium digitatum (green mold) and Penicillium italicum (blue mold) are the primary organisms

involved.

Penicillium is one of the first fungi to grow on water-damaged materials and has been implicated in

causing allergic reactions, hypersensitivity pneumonitis, and a variety of severe lung complications. It

may cause sarcoidosis, fibrosis, or allergic alveolitis in susceptible individuals, or patients who have been

exposed over long periods of time, depending on the strain. P. oxalicum has also been reported to cause

genital infection of water buffalo.

Page 5: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

5

2. Penicillium history

1809, Link created the genus Penicillium, he described 3 species, namely P. candidum,

P. expansum and P. glaucus

1824, Link called all green Penicillia, P. glaucum

Heinrich Friedrich Link

1837-1839, Corda illustrated the morphology of several P. species

1874, Brefeld published his detailed report on production of ascospore by P.

glaucum

1880, Saccardo described P. digitatum

Saccardo August Karl Corda Julius Oscar Brefeld

1889, Zukal described P. luteum

Page 6: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

6

1892, Ludwig proposed the name Eupenicillium for the ascosporic species

1895, Wehmer published his studies of Penicillia occurring upon rotting fruits.

He described P. italicum

1901, Dierckx published his essai, in which he proposed 25 new P. species. Accepted

species are: P. citreonigrum , P. corylophilum , P. roseopurpureum , P. brevicompactum , P.

aurantiogriseum ,.P. hirsutum ., P. griseofulvum ,P. verrucosum

1906, Thom published his study on Penicillia in connection with chease

1911, Westling described series of the genus Penicillium: P. frequentans, P. lividum ,P. piscarium ,P. glabrum , P. turbatum , P. lanosum , P.

viridicatum , P. solitum , P. cyclopium , P. palitans , P. frequentans

1912, Sopp described 60 P. species in his monograph including P.canescens , P.

albidum, P.islandicum, P. variabile Sopp

1907-1912, Bainier published description of several species of P. Penicillium paxilli , P. herquei 1912., P. olsonii 1912.

1915, Thom published on the group concept of classification of the genus

Penicillium

1915 Grig.-described P. multicolor

1923, Biourge redescribed 125 species of Penicillium, his monograph represented the

most comprehensive and elaborate study of the genus made up to that time, with

drawings and colored plates and classified Penicillium into sections,

subsections and series, the accepted species are: P. aurantioviolaceum, P. roseomaculatum , P. fuscum , P. fellutanum P. sanguifluum , P.

cinerascens P. chermesinum ,P. coeruleum, P. janthinellum , P. ochrochloron ,

P.cyaneum, P. dierckxii, P. sublateritium, P. rubens

1923, Demelius described P. glaucoroseum P. clavigerum

1927, Zaleski described 35 new P. species and one variety. Accepted species are: P.

trzebinskii , P. miczynskii , P. chrzaszczii , P. godlewskii ,

Page 7: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

7

P. steckii , P. waksmanii , P. westlingii , P. namyslowskii , P. raciborskii , P. adametzii ,

Penicillium janczewskii, P. jensenii, P. bialowiezense , P. soppii , P. swiecickii , P.

polonicum

1927, J.C. Gilman & E.V. Abbott described Penicillium restrictum , Penicillium vinaceum .

1928, Flemming and Florey discovered the penicillin

Sir Alexander Fleming Lord Florey of Adelaide

Beyma 1929-1940: described P. baarnense, and P. javanicum J. 1929 , P. phoeniceum , 1933 , P.

egyptiacum, 1933, P. velutinum . 1935 P. sclerotiorum , 1937, . Penicillium euglaucum .

1940 and Penicillium novae-zeelandiae . 1940

1906-1930, Thom, described many species, the following are the currently accepted species:

P. camemberti . 1906, P. decumbens . 1910. P. spinulosum 1910, P. chrysogenum . 1910,

P. citrinum 1910. P. commune, 1910.,P. biforme . 1910, P. atramentosum , 1910., P.

lanosocoeruleum, 1930, P. oxalicum . 1915., P. crustosum . 1930, P. roqueforti . 1930, P.

rolfsii, 1930 P. simplicissimum ,1930, P. melinii . 1930,

1930, Thom published his comprehensive monograph. He reexamined all material up

to that time from cultures grown in the laboratory under uniform conditions.

He emphasized the group concept of classification and separated

Paecilomyces, Gliocladium and Scopulariopsis from Penicillum and treated them

as related genera.

Page 8: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

8

1931, Hetherington, A. C., and H. Raistrick. 1931. Were the first to isolate Citrinin

from Penicillium citrinum Thom

Charles Thom

1934, Shear described P. asperum

1939, Oxford, Raistrick and Simonart discovered griseofulvin from P.

griseofulvum. It was developed initially as an agricultural product and later as

a systemic fungistatic for human and veterinary application, griseofulvin

proved a revolutionary agent in treating Dermatophytoses.

1943, Anslow et al. isolated patulin, an antibiotic, from Penicillium patulum, known at

present as a mycotoxin and the fungus is currently named P. griseofulvum. 1949, Raper and Thom published their famous Manual of the Penicillia, which

described 99 accepted species and varieties of Penicillium sensu stricto and

listed almost 700 species

Page 9: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

9

Kenneth Raper

1950, Chalabuda.,. described the following species” P. glauco-lanosum, P. bilaiae, P. kurssanovii, P. cinereo-atrum

albo-cinerascens, P. arenicola, Penicillium cremeogriseum

1955, Benjamin created the genus Talaromyces for the ascosporic species of

Penicillium, which comprise the P. luteum series of Raper and Thom

1959-1983, Udagawa et al.

P. cinnamopurpureum 1959. , P. ochrosalmoneum . 1959 , P. hirayamae .

1959 , P.fractum . 1968 , P. reticulisporum . 1968 , P. ornatum ,1968, P. ludwigii .

1969 , P. philippinense . 1972, P. rubidurum 1973 , P. rubidurum . 1973 , P.

gracilentum . 1973 , P.caperatum . 1973 , P. meloforme . 1973, P.

lineolatum . 1977 , P. sinaicum,1982, P. nepalense , . 1983, P. angustiporcatum , .

1983

1957-1974, Stolk and Samson described the following species: P. isariiforme 1957., P. anatolicum ,P. katangense , P. abidjanum, P.

shearii 1967, P. striatisporum 1969, P. hordei . 1969., P. donkii . 1973..P.

osmophilum . 1974

1968, D.B. Scott described the following species P. alutaceum , , P. erubescens , P. catenatum , P. meridianum , P. terrenum , P.

inusitatum , P. senticosum , P. stolkiae

1968, Baghdadi described the following species P. arabicum, P. baradicum, P. eben-bitarianum, P. damascenum Baghdadi

P. gorlenkoanum P. harmonense, P. sizovae, P. yarmokense, P. kabunicum

Page 10: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

10

1971, Stolk and Samson created the genus Hamigera for the species of

Talaromyces characterized by asci developing singly from croziers,

and redefined the genus Talaromyces by restricting it to species

which produce asci in chains.

1972, Stolk & Samson Published their book on the Genus Talaromyces

1973, Stolk & Samson Published their book on the Genus Eupenicillium

Stolk & Samson 1972 Stolk & Samson 1983

1973, Pitt published his appraisal of identification methods for Penicillium

species:Novel taxonomic criteria based on temperature and water relations

1974, Pitt published a synoptic key to the genus Eupenicillium and to sclerotigenic

Penicillium species

1978-1984C. Ramírez et al. described the following species” P. grancanariae . 1978. ,P. hispanicum 1978., P. palmense ,.P. fagi , P. malacaense ,P.

valentinum . P. vasconiae . P. galliacum .,1980, P. onobense 1981, P.flavidostipitatum .

1984, P. jugoslavicum . 1984.

1979, Pitt published his book The genus Penicillium and its teleomorphic states

Eupenicillium and Talaromyces. Pitt divided Penicillium into

four subgenera based on conidiophore morphology and branching

pattern: Aspergilloides, Biverticillium, Furcatum, and Penicillium.

Page 11: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

11

John I Pitt

1981, Frisvad suggested that extrolites could be used directly in penicilli

Taxonomy

1982, Carlos Ramirez published his Manual and Atlas of the Penicllia. It contains

description of 227 species and varieties of Penicillium , 252 coloured plates of

Penicillium cultures, each plate presents a type species grown upon three

standard media(Czapek, Czapek-yeast and Malt extract agars, viewed from the

obverse and reverse, and 38 SEM plates

Cuau Ramirez Angel T Martinez

1976-2011, Seifert et al.,. described the following species:

Page 12: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

12

P. concentricum 1985, P. vulpinum 1985, P.glandicola 1985, P. coprophilum 1985, P.

kananaskense . P. terrigenum 2011

1994, Tzean, Shean-Shong published Penicillium and related teleomorphs from

Taiwan.

Tzean, Shean-Shong Long Wang

2000.-2014, Wang etal. described the following species.

Penicillium ellipsoideosporum L2000, Penicillium macrosclerotiorum 2007, Penicillium saturniforme ,. Penicillium zhuangii . 2014., Penicillium fusisporum 2014

2000, Robert A. Samson and John Pitt published their book

Page 13: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

13

1990-2013, Frisvad et al. described the following species P. coprobium . 1990., P. mononematosum, . 1990, P. scabrosum . 1990, P. confertum . 1990 ,

, P. tricolor 1994, P. carneum 1996 , P. paneum . 1996, P. flavigenum . 1997, P. discolor .

1997., P. albocoremium . 2000 , P. albocoremium . 2000 , P. venetum 2000 , P.

cavernicola. , P. marinum . 2000, P. dipodomyicola 2000, P. dipodomyis 2000 P.

radicicola . 2003., P. tulipae . 2003., P. thymicola,2004, P. freii ,2004, P.,

melanoconidium, 2004, P. ribium, 2006, P. jamesonlandense 2006, P. svalbardense 2007.

P. halotolerans 2012., P. tardochrysogenum 2012, P. allii-sativi . 2012., P. vanluykii .

2012, P. desertorum 2012.,P. buchwaldii . 2013., P. spathulatum

2000-2014, Wang et al. described the following species P. ellipsoideosporum , 2000. ,. P. saturniforme , P. persicinum ., 2004, P. brevistipitatum ,

2005, P. macrosclerotiorum . 2007Penicillium kongii . 2013, P. zhuangii . 2014., P.

fusisporum 2014

2008, Genome sequencing and analysis of the filamentous fungus Penicillium

chrysogenum were published by Marco A van den Berg

1, Richard Albang

2, Kaj Albermann

2, Jonathan H Badger

3, Jean- Marc Daran

4,5, Arnold J

M Driessen4,6

, Carlos Garcia-Estrada7, Natalie D Fedorova

3, Diana M Harris

4,5, Wilbert H M Heijne

8, Vinita

Joardar3, Jan A K W Kiel

9, Andriy Kovalchuk

6, Juan F Martín

7,10, William C Nierman

3,11, Jeroen G Nijland

6,

Jack T Pronk4,5

, Johannes A Roubos8, Ida J van der Klei

4,9, Noël N M E van Peij

8, Marten Veenhuis

9, Hans

von Döhren12

, Christian Wagner2, Jennifer Wortman

3 & Roel A L Bovenberg

2010-2014, Houbraken et al, described the following species” P. psychrosexualis . P. hetheringtonii , P. tropicoides , P. tropicum ,P. argentinense , P.

atrofulvum , P. aurantiacobrunneum , P. cairnsense , P. christenseniae , . P. copticola , P.

cosmopolitanum , . P. nothofagi , P. pancosmium , P. pasqualense , P. quebecense , P.

raphiae , P. ubiquetum , P. vancouverense , P. araracuaraense , P. elleniae , P. penarojense , P.

vanderhammenii ,P. wotroi , P. hennebertii , P. longisporum , P. porphyreum , P. laeve , P.

ovatum , P. bovifimosum , P.malachiteum, P. subrubescens, Penicillium armarii ),

Penicillium athertonense , Penicillium austroafricanum , P. bussumense ,P. cartierense , P.

contaminatum ,P. grevilleicola , P. hoeksii , P. kiamaense, P. pulvis , P. ranomafanaense , P.

rudallense , P. sterculiniicola , P. sublectaticumm, P . subspinulosum , P. tsitsikammaense , P.

vagum , P. verhagenii

2011, K.G. Rivera et al. described the following species P. cainii ,, P. guanacastense , P. mallochii , P. jacksonii ., Penicillium johnkrugii .

2011, Robert A. Samson and Jos Houbraken published their book : Phylogenetic and

taxonomic studies on the genera Penicillium and Talaromyces (Studies in Mycology, 70

(September 2011)

Page 14: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

14

2012, Complete mitochondrial genome of compactin-producing

fungus Penicillium solitum and comparative analysis

ofTrichocomaceae mitochondrial genomes

Michael A. Eldarov , Andrey V. Mardanov , Alexey V. Beletsky , Vakhtang

V. Dzhavakhiya , Nikolai V. Ravin , Konstantin G. Skryabin

Marco A van den Berg

1 Michael A. Eldarov Marina

2012, Genome sequence of the necrotrophic fungus Penicillium digitatum, the

main postharvest pathogen of citrus

Marina Marcet-Houben, Ana-Rosa Ballester, Beatriz de la Fuente, Eleonora

Harries, Jose F Marcos, Luis González- Candelas3* and Toni Gabaldón

2013, Genomic and Secretomic Analyses Reveal Unique Features of the

Lignocellulolytic Enzyme System of Penicillium decumbens

Guodong Liu., Lei Zhang., Xiaomin Wei., Gen Zou., Yuqi Qin, Liang Ma , Jie

Li, Huajun Zheng , Shengyue Wang , Chengshu Wang , Luying Xun, Guo- Ping

Zhao, Zhihua Zhou, Yinbo Qu

Marcet-Houben Guodong Liu

Page 15: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

15

2013-2014, Visagie, et al.,. described the following species

P. arianeae ,. P. alexiae , P. maximae , P. amaliae , P. vanoranjei ,P. infra-aurantiacum , P.

clavistipitatum , P. flavisclerotiatum , P. brunneoconidiatum , P. longicatenatum , P.

malmesburiense , P. turcosoconidiatum , P. infrapurpureum , P. sucrivorum . P.

dunedinense , P. magnielliptisporum , P. mexicanum , P. lenticrescens, P. alfredii

Robert Samson Jos Houbraken

2014, Robert A Samson, Cobus M Visagie, Jos Houbraken published a book on

Species Diversity in Aspergillus, Penicillium and Talaromyces. 49 Penicillium and 18

Talaromyces; 22 that were described as new) have been identified and barcoded using the ITS gene, as well as Beta-tubulin for Penicillium and Talaromyces.

Cobus M Visagie Jens Frisvad

Page 16: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

16

2014, Draft Genome Sequence of Penicillium expansum Strain R19, Which

Causes Postharvest Decay of Apple Fruit

Jiujiang Yu, Wayne M. Jurick II, Huansheng Cao, Yanbin Yin,Verneta L.

Gaskins, Liliana Losada, Nikhat Zafar, Maria Kim,Joan W.

Bennettd, William C. Nierman

2014, Multiple recent horizontal transfers of a large genomic region in cheese

making fungi by

Kevin Cheeseman, Jeanne Ropars, Pierre Renault, Joëlle Dupont, Jérôme

GouzyAntoine Branca, Anne-Laure Abraham, Maurizio Ceppi, Emmanuel Conseiller,

Robert Debuchy, Fabienne Malagnac, Anne Goarin, Philippe Silar, Sandrine Lacoste, Erika

Sallet, Aaro Bensimon,Tatiana Giraud & Yves Brygoo

2014, Genome sequencing and analysis of the paclitaxel-producing endophytic

fungus Penicillium aurantiogriseumNRRL 62431

Yanfang Yang , Hainan Zhao , Roberto A Barrero, Baohong Zhang, Guiling

Sun, Iain W Wilson, Fuliang Xie, Kevin D Walker, Joshua W Parks, Robert

Bruce, Guangwu Guo, Li Chen, Yong Zhang, Xin Huang, Qi Tang, Hongwei

Liu, Matthew Bellgard, Deyou Qiu*, Jinsheng Lai and Angela Hoffman

Huansheng Cao Jeanne Ropars

Roberto A Barrero3

Page 17: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

17

3. Penicillium classification

2. 1. Classification after Raper and Thom, 1949

1. The Monoverticillata

Penicillium javanicum Series

1. Penicillium javanicum van Beyma, 2. PenicilUum parvum Raper and Fennel 3. Peniculium brefeldiamon Dodge 4. Penicillium ehrlichii Klebahn 5. Peniciuium levitum Raper and Fennell

Penicillium thomii Series

6. Penicillium thomii Maire 7. Penicillium scleroliorum van Beyma 8. Penicillium lapidosum Raper and Fennell 9. Penicillium turbatum Westling,

Penicillium frequentans series

10. Penicillium frequentans Westling

11. Penicillium purpurrescens (Sopp)

12. Penicillium spinulosum Thom

Penicillium lividum Series

13. PenicilUum lividum Westling

14. PenicilUum aurantio-violaceum Biourge

15. PenicilUum trzebinskii Zaleski

Penicillium implicatum Series

16. Penicilum implicatum Biourge

17. Peniciluum multicolor

18. PeniciluUum sublateritium Biourge

Penicillium decumbens Series

19. Penicillium decumhens Thom,

20. Penicillium fellutanum Biourge

21. Penicilum chermesinum Biourge

22. Penicilium citreo-viride Biourge

23. Penicilium roseo-purpureum Dierckx

Penicillium restrictum Series

24. Penicillium restrictum Oilman and Abbott

25. Penicillium fuscum (Sopp)

Penicillium adametzi Series

26. Penicillium adametzi Zaleski

27. Penicillium terlikowskii Zaleski

28. Penicillium vinaceum Oilman and Abbott

29. Penicillium phoeniceum van Beyma,

The Ramigena Series

30. Penicillium capsulatnm Raper and Fennell

31. Penicillium cyaneum (B. and S.) Biourge

32. Penidllium waksmani Zaleski

33. Penicillium charlesii Smith

34. Penicillium velutinum van Beyma

Page 18: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

18

2. The ASYMMETRICA

2.1.ASYMMETRICA Sub-section: DIVARICATA Carpenteles Series

35. Penicillium asperum (Shear)

36. Penicillium haarnense van Beyma

37. Penicillium egyptiacum van Beyma

Penicillium raistrickii series

38. Penicillium raistrickii Smith

39. Penicillium pulvillorum Turfitt

40. Penicillium soppi Zaleski

41. Penicillium rolfsii Thom

Penicillium lilacinum Series

42. Penicillium lilacinum Thom,

Penicillium janthinellum Series

43. Penicillium daleae Zaleski

44. Penicillium janthinellum Biourge

45. Penicillium simplicissimum (Oud.) Thorn

46. Penicillium ochro-chloron Biourge

47. Penicillium miczyjnskii Zaleski

Penicillium canescens series

48. Penicillium canescens Sopp

49. Penicillium nalgiovensis

50. Penicillium jensenii

Penicillium nigricans Series

51. P. nigricans (Bainier) Thorn

52. P. albidum Sopp

53. P. kapuscinskii Zaleski

54. P. melinii Thom

55. P. raciborskii Zaleski

2.2. ASYMMETRICA Sub-section:VELUTINA P. citrinum series

56. P. corylophilum Dierckx

57. P. citrinum Thom

58. P. steckii Zaleski

P. chrysogenum series

59. P. chrysogenum Thom

60. P. meleagrinum Biourge

61. P. notatum Westling

62. P. cyaneofulvum Biourge

P. oxalicum series

63. P. oxalicum Currie and Thom

64. P. atramentosum Thom

P. digitatum series

65. P. digitatum Sacc.

P. roqueforti series

66. P. roqueforti Thom

67. P. casei Staub

P. brevi-compactum series

68. P. hrevi-compactum Dierckx

69. P. stoloniferum Thom

70. P. paxilli Bainier

Page 19: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

19

2.3. ASYMMETRICA Sub-section: LANATA

P. camemberti series

71. Penicillium caseicolum Bainier

72. Penicillium camemherti Thom

P. commune series

73. Penicillium commune Thom

74. Penicillium lanosum Westling

75. Penicillium. lanosoviride

76. Penicillium. lanosocoeruleum

77. Penicillium lanosogriseum

78. Penicillium biforme

79. Penicillium. aurantiocandidum

2.4. ASYMMETRICA Sub-section: FUNICULOSA

Penicillium terrestre Series

80. Penicillium psittacinum Thom,

81. Penicillium terrestre Jensen

82. Penicillium solitum Westling

83. Penicillium resticulosum Birkinshaw

Penicillium pallidum Series

84. Penicillium pallidum Smith

85. Penicillium putterillii Thom

86. Penicillium lavendulum Raper and Fennell

87. Penicillium namysloivskii Zaleski

2.5. ASYMMETRICA Sub-section: FASCICULATA P. gladioli series

86. P. gladioli Machacek

P. raistrickii series

87. Penicillium raistrickii

P. ochraceum series

88. Penicillium ochraceum (Bainier) Thorn

89. Penicillium carneo-lutescens Smith

P. viridicatum series

90. Penicillium viridicatum Westling

91. Penicillium olivino-viride Biourge

92. Penicillium palitans Westling,

P. cyclopium series

93. Penicillium cyclopium Westling

94. P. cyclopiumvar . echinulatum

95. Penicillium. martensii Biourge

96. Penicillium aurantio-virens Biourge

97. Penicillium puberulum Bainier

P. expansum series

98. Penicillium expansum Link

99. P. crustosum Thorn

P. ilalicum series

100. P. italicum Wehmer

P. urticae series

Page 20: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

20

101. P. urticae Bainier

P. granulatum series

102. PenicilUum corymhiferum

103. Penicillium granulatmn Bainier

Penicillium claviforme Series

104. Penicillium claviforme Bainier

3. BIVERTICILLATA-SYMMETRICA

Penicillium luteum Series

105. Penicillium luteum Zukal

106. Penicillium striatum Raper and Fennell

Penicillium duclauxi Series

107. Pemcillium dudauxi Delacroix

Penicillium funiculosum Series

108. Penicillium funiculosum. Thom

109. Penicillium verruculosum Peyronel

110. Penicillium islandicum Sopp

111. Penicillium varians Smith

112. Penicillium piceum Raper and Fennell

Penicillium purpurogenum Series

113. Penicillium purpurogenum Stoll

114. Penicillium rubrum Stoll

115. Penicillium variahile Sopp

Penicillium rugulosum Series

116. Penicillium rugulosum Thom

117. Pemcillium diversum Raper and Fennell

Penicillium herquei Series

118. Penicillium novae-zeelandiae van Beyma

4. POLYVERTICILLATA GLIOCLADIUM, PAECILOMYCES, AND SCOPULARIOPSIS

Page 21: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

21

3.2. Claasification according to Ramirez 1982

1. The Monoverticillata P. thomii series

1. P. thomii Matre

2. P. scleratiorum van Beyma

3. P. syriacum Baghdadi

4. P. turbatum Westling

5. P. pusillum Smith

6. P. indicum Sandhu et Sandhu

7. P. donkii Stolk

8. P. grancanariae Ramirez, Martinez et Ferrer

P. frequentans series 9. P. frequentans Westling

10. P. purpurescens (Sopp) Raper et Thom 11. P. spinulosum thom 12. P. cremeo-griseum Chalabuda 13. P. griseo-azureum Moreau et MOREAU ex Ramirez 14. P. luteo-aurantium Smith 15. P. abeanum Smith 16. P. odoratum Christensen et Backus 17. P. tarrconense Ramirez et Martinez

P. lividum series 18. P. lividum Westling 19. P. aurantio-violaceum Biourge 20. P. trzebinskii Zaleski 21. P. trezbinskianaum Abe ex Ramirez 22. P. valentinum Ramirez et Martinez 23. P. multicolor Grigorieva-Manoilova et Poradielova 24. P. implicatum Biourge 25. P. sublateritium Biourge 26. P. aeneum Smith 27. P. ramusculum Batista et MAAIA 28. P. palmensis Martinez et Ferrer 29. P. hispanicum Martinez, Ferrer et Martinez 30. P. ardesiacum Novobranova 31. P. gallaicum Ramirez, Martinez et Berenguer

P. decumbens series 32. P. decumbens Thom 33. P. chermesinum Biourge 34. P. citreo-viride Biourge 35. P. fellutanum Biourge 36. P. roseo-purpureum Dierckx 37. P. glauco-lanosum Chalabuda 38. P. brevissimum Rai et Wadhwani 39. P. bilaiae Chalabuda 40. P. kurssanovii Chalabuda 41. P. cinereo-atrum Chalabuda 42. P. taxicarium Miyake et R%amirez 43. P. gerundense Ramirez et Martinez 44. P. alicantinum Ramirez et Martinez 45. P. malacaense Ramirez et Martinez

P. restrictum series 46. P. restrictum Gilman et Abbott

Page 22: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

22

47. P. montanense Christensen et Backus 48. P. atra-virens Smith 49. P. fuscum (Sopp)Raper et Thom 50. P. arabicum Baghdadi 51. P. raperi Smith 52. P. dimorphosporum Swart 53. P. striatisporum Stolk 54. P. vascaniae Ramirez et Martinez

P. adametzii series 55. P. adametzii Zaleski 56. P. terlikowskii Zaleski 57. P. spinulo-ramigenum Sasaki et Ramirez 58. P. griseolum Smith 59. P. adametzioides Abe et Smith 60. P. resedanum McLennan, Ducker et Thrower 61. P. lilacino-echinulatum Abe 62. P. kazachstanicum Novobranova 63. P. albo-cinerascens Chalabuda 64. P. sacculum Dale 65. P. vinaceum Gilman et Abbott 66. P. phoeniceum van Beyma

The Ramigena series

67. P. capsulatum Raper et Fennell 68. P. cyaneum (Bainier et Sartory) Biourge 69. P. waksmanii Zaleski 70. P. charlesii Smith 71. P. velutinum van Beyma 72. P. sartoryi Thom

2. The Asymmetrica

2.1. The Asymmetrica-divaricata sub-section

P. raistrickii series

73. P. raistrickii Smith 74. P. pulvillorum Turfitt 75. P. soppii Zaleski 76. P. rolfsii Thom 77. P.rolfii Thom var. sclerotiale Novobranova 78. P. pedemontanum Luppi-Mosca et Fontana 79. P. mirabile Beeljakova Milko

P. lilacinum series

80. P. lilacinum Thom 81. P. humuli van Beyma 82. P. argillaceum Stolk 83. P. cylindrosporum Smith

P. janthinellum series

84. P. janthinellum Biourge 85. P. daleae Zaleski 86. P. simplicissima (oudemans) Thom 87. P. ochro-chloron Biourge 88. P. piscarium Westling 89. P. miczynskii Zaleski 90. P. asturianum Ramirez et Martinez 91. P. aragonense Ramirez et Martinez

Page 23: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

23

P. godlewskii series

92. P. P. godlewskii Zaleski 93. P.botryosum Batista et Maia 94. P. baradicum Baghdadi 95. P. eben-bitarianum Baghdadi 96. P. damascenum Baghdadi 97. P. gorlenkoanum Baghdadi 98. P. harmonense Baghdadi 99. P. sizovae Baghdadi 100. P. novae-caledoniae Smith

101. P. novae-caledoniae Smith var album Ramirez et Martinez

102. P. citreo-virens Abe ex Ramirez

P. canescens series

103. P. canescens Sopp

104. P.nalgiovense Laxa

105. P. jensenii Zaleski

106. P.murcianum Ramirez et Martinez

107. P. turolense Ramirez et Martinez

P. nigricans series

108. P. nigricans (Bainier) Thom

109. P. albidum Sopp

110. P. kapuscinskii Zaleski

111. P. melinii Thom

112. P. raciborskii Zalenski

113. P. radulatum Smith

114. P. granatense Ramirez, Martinez et Berenguer

115. P. inflatum Stolk et Malla

116. P. megasporum Orpurt et Fennell

117. P. avetense Ramirez et Martinez

118. P. yarmokense Baghdadi

P. atro-sanguineum series

119. P. atro-sanguineum Dong

120. P. griseo-purpureum Smith

P. brasilianum series

121. P. brasilianum Batista

122. P. kabunicum Baghdadi

123. P.moldavicum Milko et Beljakova

124. P. onobense Ramirez et Martinez

125. P. castellonense Ramirez et Martinez

2.2. Asymmetrica-velutina sub-section

P. citrinum series 126. P. citrinum Thom

127. P. corylophilum Diercks

128. P. stecki Zaleski

129. P. matriti Smith

130. P. chrysogenum Thom

131. P. chrysogenum Thom mut. Fulvescens Takashima

P. oxalicum series

132. P. oxalicum Currie et Thom

133. P. atramentosum Thom

134. P. fennelliae Stolk

135. P. digitatum Saccardo

136. P. japonicum Smith

Page 24: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

24

P. roqueforti series

137. P. roqueforti Thom

138. P. fagi Martinez et Ramirez

139. P. cardubense Ramirez et Martinez

140. P. mali Novobranova

141. P. farinsum Novobranova

P. brevi-compactum

142. P. brevi-compactum Diercks

143. P. stoloniferum Thom

144. P. paxilli Bainier

145. P. volgaense Baljakova

146. P. skrjabinii Shmotina et Golovleva

147. P. arenicola Chalabuda

148. P. brunneo-stoloniferum Abe et Ramirez

2.3. Asymmetrica-lanata sub-section

P. camembertii series

149. P. camembertii Thom

150. P. griseum Bonorden

P. commune series

151. P. commune Thom

152. P. lanosum Westling

153. P. echinosporum Nehira et Ramirez

154. P. giganteum Roy et Singh

2.4.Asymmetrica-funiculosa sub-section

P. pallidum series

155. P. pallidum Smith

156. P. putterilli Thom

157. P. namyslowskii Zaleski

158. P. lavendulum Raper et Fennell

159. P. gladioli McCulloch et Thom

2.5.Asymmetrica-fasciculata sub-section

P. verrucosum Diercks complex 160. P. verrucosum Diercks var cyclopium (Westling) Samson, Stolk et

Hadlok

161. P. verrucosum Diercks var verrucosum Samson, Stolk et Hadlok

162. P. verrucosum Diercks var album (Smith) Samson, Stolk et Hadlok

163. P. verrucosum Diercks var melanochlorum Samson, Stolk et Hadlok

164. P. verrucosum Diercks var ochraceum (Thom) Samson, Stolk et Hadlok

165. P. verrucosum Diercks var corymbiferum (Westling) Samson, Stolk

et Hadlok

166. P. echinulatum Fassatiova

167. P. verrucosum Diercks var cyclopium Samson et al.strain

ananas-olens Ramirez

168. P. expansum Link

169. P. italicum Wehmer var. italicum Samson, Stolk et Hadlok

170. P. italicum Wehmer var. avellaneum Samson, et Gutter

171. P. hispalense Ramirez et Martinez

172. P.griseo-fulvum Diercks

Page 25: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

25

173. P.granulatum Bainier

174. P. claviforme Bainier

175. P. claviforme Bainier mut. Candicans

176. P. claviforme Bainier mut. olivicolor

177. P. clavigerum

178. P.hordei Stolk

179. P. isariforme Stolk et Meyer

180. P. concentricum Samson, Stolk et Hadlok

181. P. kojigenum Smith

182. P.marneffei Segretain, Capponi et Sureau ex Ramirez

3. The Biverticillata-symmetrica or Lanceolata

P. herquei series

183. P. herquei Bainier et Sartory

184. P. novae-zeelandiae van Beyma

185. P.para-herquei Abe ex Smith

186. P.olsonii Bainier et Sartory

187. P. caralligerum Nicot et Pionnat

188. P.atro-venetum Smith

189. P. estinogenum Komatsu et Abe ex Smith

P. funiculosum series

190. P. funiculosum Thom

191. P. verruculosum Peyronei

192. P.islandicum Sopp

193. P. variana Smith

194. P. piceum Raper et Fennell

195. P.allahabadense Mehrotra et Kumar

196. P. lignorum Stolk

197. P. korosum Rai, Wadhwani et Tewari

198. P. brunneum Udagawa

199. P.ilerdanum Ramirez,Martinez et Berenguer

200. P.aurantiacum Miller, Giddens et Foster

201. P.asperosporum Smith

202. P. rubicundum Miller, Goddena etFoster

203. P.gaditanum Ramirez et Martinez

P. duclauxii series

204. P. P. duclauxii Delacroix

205. P. pseudostromaticum Hodges, Werner et Rogerson

P. purpurogenum series

206. P. purpurogenum Stoll

207. P. rubrum Stoll

208. P.aculeatum Raper et Fennell

209. P. variabile Sopp

210. P. aurantio-flammiferum Ramirez, Berenguer et Martinez

211. P.brasiliense Thom

P. rugulosum series

212. P. rugulosum Thom

213. P.tardum Thom

214. P.diversum Raper et Fennell

215. P.diversum var. aureum Raper et Fennell

Page 26: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

26

Closely related species 216. P. zacinthae Ramirez et Martinez

217. P. phialosporum Udagawa

218. P. albo-aurantium Smith

219. P. ingelheimense van Beyma

4. The Polyverticillata 220. P. albicans Bainier

221. P. canadense Smith

222. P. sclerotigenum Yamamoto

223. P. brevi-compactum Diercks var. magnum var nov

224. P. avellaneum Thom et Turesson

Addendum

225. P. dendriticum Pitt

226. P. loliense Pitt

227. P. erythromellis Hocking

Based on the inferred phylogenetic relationships among the Penicillia, they proposed

a sectional classification and subdivided Penicillium into two subgenera and 25

sections, with section Aspergilloides being one of them.

Following the concepts of nomenclatural priority and single name nomenclature,

All accepted species of Penicillium subgenus Biverticillium were transferred to

Talaromyces. including teleomorph and anamorph characters

Eupenicillium and several other genera were considered as synonyms to

Penicillium species(Houbraken & Samson 2011),

Aspergillus paradoxus, A. crystallinus and A. malodoratus were shown to belong

to Penicillium and were transferred in Visagie et al. (2014).

Several species described as Penicillium belongs to other genera and not

to Penicillium.

Page 27: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

27

3. 3. Classification according Houbraken & Samson (2011)

The genus Aspergillus is classified into two subgenera and 25 sections.

A. Penicillium subgenus Aspergilloides.

1: Section Aspergilloides:

1. Penicillium ardesiacum Novobranova, Novosti Sist. Nizs. Rast. 11: 228. 1974.

2. Penicillium asperosporum Smith, Trans. Br. Mycol. Soc. 48: 275. 1965.

3. Penicillium crocicola Yamamoto, Scient. Rep. Hyogo Univ. Agric., Agric. Biol. Ser. 2, 2: 28. 1956.

4. Penicillium fuscum (Sopp) Biourge, Cellule 33: 103. 1923 (Stolk & Samson 1983).

5. Penicillium georgiense Peterson & Horn, Mycologia 101: 79. 2009.

6. Penicillium glabrum (Wehmer) Westling, Ark. Bot. 11: 131. 1911 (syn. P. terlikowskii; Barreto et al.

2011).

7. Penicillium kananaskense Seifert, Frisvad & McLean, Can. J. Bot. 72: 20. 1994 (unpubl. data, K.A.

Seifert).

8. Penicillium lapatayae Ramírez, Mycopathol. 91: 96. 1985 (Frisvad et al. 1990c).

9. Penicillium lividum Westling, Ark. Bot. 11: 134. 1911.

10. Penicillium montanense Christensen & Backus, Mycologia 54: 574. 1963.

11. Penicillium odoratum Christensen & Backus, Mycologia 53: 459. 1962 (this study, Fig. 8).

12. Penicillium palmense Ramírez & Martínez, Mycopathol. 66: 80. 1978.

13. Penicillium patens Pitt & Hocking, Mycotaxon 22: 197. 1985.

14. Penicillium quercetorum Baghdadi, Nov. Sist. Niz. Rast. 5: 110. 1968.

15. Penicillium saturniforme (Wang & Zhuang) Houbraken & Samson, Stud. Mycol. 70: 48. 2011 (this study).

16. Penicillium spinulosum Thom, Bull. Bur. Anim. Ind. U.S. Dep. Agric. 118: 76. 1910.

17. Penicillium subericola Barreto, Frisvad & Samson, Fungal Diversity 49: 32. 2011.

18. Penicillium thiersii Peterson, Bayer & Wicklow, Mycologia 96: 1283. 2004.

19. Penicillium thomii Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 189. 1917.

2: section Sclerotiora Houbraken & Samson, sect. nov.MycoBank

20. Penicillium adametzii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat.,

1927: 507. 1927.

21. Penicillium adametzioides Abe ex Smith, Trans. Br. Mycol. Soc. 46: 335. 1963.

22. Penicillium angulare Peterson, Bayer & Wicklow, Mycologia 96: 1289. 2004.

23. Penicillium bilaiae Chalabuda, Bot. Mater. Otd. Sporov. Rast. 6: 165. 1950.

24. Penicillium brocae Peterson, Pérez, Vega & Infante, Mycologia 95: 143. 2003.

Page 28: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

28

25. Penicillium cainii Rivera & Seifert, Stud. Mycol. 70: 147. 2011.

26. Penicillium guanacastense Rivera, Urb & Seifert, Mycotaxon, in press. 2011.

27. Penicillium herquei Bainier & Sartory, Bull. Soc. Mycol. France 28: 121. 1912.

28. Penicillium hirayamae Udagawa, J. Agric. Sci. Tokyo Nogyo Daigaku 5: 6. 1959.

29. Penicillium jacksonii Rivera & Seifert, Stud. Mycol. 70: 151. 2011.

30. Penicillium johnkrugii Rivera & Seifert, Stud. Mycol. 70: 151. 2011.

31. Penicillium jugoslavicum Ramírez & Muntañola-Cvetkovic, Mycopathol. 88: 65. 1984.

32. Penicillium malachiteum (Yaguchi & Udagawa) Houbraken & Samson, Stud. Mycol. 70: 47.

2011 (this study).

33. Penicillium mallochii Rivera, Urb & Seifert Mycotaxon, in press. 2011.

34. Penicillium nodositatum Valla, Plant and Soil 114: 146. 1989.

35. Penicillium sclerotiorum van Beyma, Zentralbl. Bakteriol., 2. Abt., 96: 418. 1937.

36. Penicillium viticola Nonaka & Masuma, Mycoscience 52: 339. 2011.

3: section Charlesia Houbraken & Samson, sect. nov. MycoBank

37. Penicillium charlesii Smith, Trans. Br. Mycol. Soc. 18: 90. 1933.

38. Penicillium coffeae Peterson, Vega, Posada & Nagai, Mycologia 97: 662. 2005.

39. Penicillium fellutanum Biourge, Cellule 33: 262. 1923.

40. Penicillium georgiense Peterson & Horn, Mycologia 101: 79. 2009.

41. Penicillium indicum Sandhu & Sandhu, Can. J. Bot. 41: 1273. 1963 (syn. P. gerundense, Peterson & Horn

2009).

42. Penicillium phoeniceum van Beyma, Zentralbl. Bakteriol., 2. Abt., 88: 136. 1933.

4: section Thysanophora Houbraken & Samson, sect. nov. MycoBank

43. Penicillium asymmetricum (Subramanian & Sudha) Houbraken & Samson, Stud. Mycol. 70: 47.

2011 .

44. Penicillium coniferophilum Houbraken & Samson, Stud. Mycol. 70: 47. 2011 .

45. Penicillium glaucoalbidum (Desmazières) Houbraken & Samson, Stud. Mycol.70: 47. 2011 .

46. Penicillium hennebertii Houbraken & Samson, Stud. Mycol. 70: 47. 2011 .

47. Penicillium longisporum (Kendrick) Houbraken & Samson, Stud. Mycol. 70: 47. 2011

48. Penicillium melanostipe Houbraken & Samson, Stud. Mycol. 70: 47. 2011.

49. Penicillium taiwanense (Matsushima) Houbraken & Samson, Stud. Mycol. 70: 48.

50. Penicillium taxi Schneider, Zentralblatt für Bakteriologie und Parasitenkunde, Abteilung 2, 110:

43. 1956.

Page 29: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

29

5: section Ochrosalmonea Houbraken & Samson, sect. nov. MycoBank

51. Penicillium isariiforme Stolk & Meyer, Trans. Br. Mycol. Soc. 40: 187. 1957.

52. Penicillium ochrosalmoneum Udagawa, J. Agric. Sci. Tokyo Nogyo Daigaku 5: 10. 1959.

6: Section Cinnamopurpurea Houbraken & Samson, sect. nov. MycoBank

53. Penicillium chermesinum Biourge, Cellule 33: 284. 1923.

54. Penicillium cinnamopurpureum Udagawa, J. Agric. Food Sci., Tokyo 5: 1. 1959.

55. Penicillium ellipsoideosporum Wang & Kong, Mycosystema 19: 463. 2000.

56. Penicillium idahoense Paden, Mycopath. Mycol. Appl. 43: 261. 1971 (Peterson & Horn 2009, this study).

57. Penicillium incoloratum Huang & Qi, Acta Mycol. Sin. 13: 264. 1994.

58. Penicillium malacaense Ramírez & Martínez, Mycopathologia 72: 186. 1980 (syn. P. ovetense, this

study) (Peterson & Horn 2009).

59. Penicillium nodulum Kong & Qi, Mycosystema 1: 108. 1988.

60. Penicillium parvulum Peterson & Horn, Mycologia 101: 75. 2009.

61. Penicillium shennangjianum Kong & Qi, Mycosystema 1: 110. 1988.

7: section Ramigena Thom, The Penicillia: 225. 1930.

62. Penicillium capsulatum Raper & Fennell, Mycologia 40: 528. 1948.

63. Penicillium cyaneum (Bainier & Sartory) Biourge, Cellule 33: 102. 1923.

64. Penicillium dierckxii Biourge, Cellule 33: 313. 1923.

65. Penicillium hispanicum Ramírez, Martínez & Ferrer, Mycopathol. 66: 77. 1978

66. Penicillium ornatum Udagawa, Trans. Mycol. Soc. Japan 9: 49.1968.

67. Penicillium ramusculum Batista & Maia, Anais Soc. Biol. Pernamb. 13: 27. 1955 (

68. Penicillium sublateritium Biourge, Cellule 33: 315. 1923.

8: section Torulomyces (Delitsch) Stolk & Samson, Adv. Pen. Asp. Syst.:

169. 1985.

69. Penicillium cryptum Gochenaur, Mycotaxon 26: 349. 1986.

70. Penicillium lagena (Delitsch) Stolk & Samson, Stud. Mycol. 23:100. 1983.

71. Penicillium laeve (K. Ando & Manoch) Houbraken & Samson, Stud. Mycol. 70: 47. 2011

72. Penicillium lassenii Paden, Mycopathol. Mycol. Appl. 43: 266. 1971.

73. Penicillium ovatum (K. Ando & Nawawi) Houbraken & Samson, Stud. Mycol. 70: 48. 2011

Page 30: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

30

74. Penicillium parviverrucosum (K. Ando & Pitt) Houbraken & Samson, Stud. Mycol. 70: 48.

2011

75. Penicillium porphyreum Houbraken & Samson, Stud. Mycol. 70: 48. 2011 (this study).

9: section Fracta Houbraken & Samson, sect. nov. MycoBank

76. Penicillium fractum Udagawa, Trans. Mycol. Soc. Japan 9: 51. 1968.

77. Penicillium inusitatum Scott, Mycopathol. Mycol. Appl. 36: 20. 1968.

10: section Exilicaulis Pitt, The Genus Penicillium: 205. 1980.

78. Penicillium alutaceum Scott, Mycopathol. Mycol. Appl. 36: 17. 1968.

79. Penicillium atrosanguineum Dong, Ceská Mycol. 27: 174. 1973.

80. Penicillium burgense Quintanilla, Avances Nutr. Mejora Anim. Aliment. 30: 176. 1990.

81. Penicillium catenatum Scott, Mycopathol. Mycol. Appl. 36: 24. 1968.

82. Penicillium chalybeum Pitt & Hocking, Mycotaxon 22: 204. 1985.

83. Penicillium cinerascens Biourge, Cellule 33: 308. 1923.

84. Penicillium cinereoatrum Chalabuda, Bot. Mater. Otd. Sporov. Rast. 6: 167, 1950 (Frisvad et al. 1990c).

85. Penicillium citreonigrum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901.

86. Penicillium corylophilum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901.

87. Penicillium decumbens Thom, Bull. Bur. Anim. Ind. U.S. Dep. Agric. 118: 71. 1910.

88. Penicillium dimorphosporum Swart, Trans. Br. Mycol. Soc. 55: 310. 1970.

89. Penicillium dravuni Janso, Mycologia 97: 445. 2005.

90. Penicillium erubescens Scott, Mycopathol. Mycol. Appl. 36: 14. 1968.

91. Penicillium fagi Ramírez & Martínez, Mycopathol. 63: 57. 1978.

92. Penicillium flavidostipitatum Ramírez & González, Mycopathol. 88: 3. 1984 (preliminary sequencing

results show that this species is closely related to P. namyslowskii).

93. Penicillium guttulosum Gilman & Abbott, Iowa State Coll. J. Sci. 1: 298. 1927 (Peterson et al. 2011).

94. Penicillium heteromorphum Kong & Qi, Mycosystema 1: 107. 1988.

95. Penicillium katangense Stolk, Ant. van Leeuwenhoek 34: 42. 1968.

96. Penicillium lapidosum Raper & Fennell, Mycologia 40: 524. 1948.

97. Penicillium maclennaniae Yip, Trans. Br. Mycol. Soc. 77: 202. 1981.

98. Penicillium melinii Thom, Penicillia: 273. 1930.

99. Penicillium menonorum Peterson, IMA Fungus 2: 122. 2011.

100. Penicillium meridianum Scott, Mycopathol. Mycol. Appl. 36: 12. 1968.

101. Penicillium namyslowskii Zaleski, Bull. Int. Aead. Polonc. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 479.

1927.

102. Penicillium nepalense Takada & Udagawa, Trans. Mycol. Soc. Japan 24: 146. 1983.

Page 31: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

31

103. Penicillium parvum Raper & Fennell, Mycologia 40: 508. 1948 (this study).

104. Penicillium philippinense Udagawa & Y. Horie, J. Jap. Bot. 47: 341. 1972.

105. Penicillium pimiteouiense Peterson, Mycologia 91: 271. 1999.

106. Penicillium raciborskii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat.,

1927: 454. 1927.

107. Penicillium restrictum Gilman & Abbott, Iowa State Coll. J. Sci. 1: 297. 1927.

108. Penicillium rubefaciens Quintanilla, Mycopathol. 80: 73. 1982.

109. Penicillium rubidurum Udagawa & Horie, Trans. Mycol. Soc. Japan 14: 381. 1973.

110. Penicillium smithii Quintanilla, Avances Nutr. Mejora Anim. Aliment. 23: 340. 1982

111. Penicillium striatisporum Stolk, Ant. van Leeuwenhoek 35: 268. 1969.

112. Penicillium terrenum Scott, Mycopathol. Mycol. Appl. 36: 1. 1968.

113. Penicillium toxicarium Miyake, Rep. Res. Inst. Rice Improvement 1: 1. 1940 (nom. inval., Art.

36) (Serra et al. 2008).

114. Penicillium velutinum van Beyma, Zentralbl. Bakteriol., 2. Abt., 91: 353. 1935.

115. Penicillium vinaceum Gilman & Abbott, Iowa State Coll. J. Sci. 1: 299. 1927.

11: Section Lanata-divaricata Thom, The Penicillia: 328. 1930.

116. Penicillium abidjanum Stolk, Ant. van Leeuwenhoek 34: 49. 1968.

117. Penicillium araracuarense Houbraken, C. López-Q, Frisvad & Samson, Int. J. Syst. Evol.

Microbiol. 61: 1469. 2011.

118. Penicillium brasilianum Batista, Anais Soc. Biol. Pernambuco 15: 162. 1957.

119. Penicillium brefeldianum Dodge, Mycologia 25: 92. 1933 (syn. P. dodgei).

120. Penicillium caperatum Udagawa & Horie, Trans. Mycol. Soc. Japan 14: 371. 1973 (syn. E.

brefeldianum sensu Pitt).

121. Penicillium cluniae Quintanilla, Avances Nutr. Mejora Anim. Aliment. 30: 174. 1990.

122. Penicillium coeruleum Sopp apud Biourge, Cellule 33: 102. 1923.

123. Penicillium cremeogriseum Chalabuda, Bot. Mater. Otd. Sporov. Rast. 6: 168. 1950.

124. Penicillium daleae Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927:

495. 1927.

125. Penicillium ehrlichii Klebahn, Ber. Deutsch. Bot. Ges. 48: 374. 1930.

126. Penicillium elleniae Houbraken, C. López-Q, Frisvad & Samson, Int. J. Syst. Evol. Microbiol.

61: 1470. 2011.

127. Penicillium glaucoroseum Demelius, Verh. Zool.-Bot. Ges. Wien 72: 72. 1923. (unpubl. data)

128. Penicillium griseopurpureum Smith, Trans. Br. Mycol. Soc. 48: 275. 1965 (unpubl. data).

129. Penicillium janthinellum Biourge, Cellule 33: 258. 1923.

130. Penicillium javanicum van Beyma, Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede

Sect., 26: 17. 1929 (syn. P. oligosporum, P. indonesiae).

Page 32: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

32

131. Penicillium levitum Raper & Fennell, Mycologia 40: 511. 1948 (syn. P. rasile).

132. Penicillium limosum Ueda, Mycoscience 36: 451. 1995.

133. Penicillium lineolatum Udagawa & Horie, Mycotaxon 5: 493. 1977.

134. Penicillium ludwigii Udagawa, Trans. Mycol. Soc. Japan 10: 2. 1969.

135. Penicillium mariaecrucis Quintanilla, Avances Nutr. Mejora Anim. Aliment. 23: 334. 1982.

136. Penicillium meloforme Udagawa & Horie, Trans. Mycol. Soc. Japan 14: 376. 1973.

137. Penicillium ochrochloron Biourge, Cellule 33: 269. 1923.

138. Penicillium onobense Ramírez & Martínez, Mycopathol. 74: 44. 1981.

139. Penicillium oxalicum Currie & Thom, J. Biol. Chem. 22: 289. 1915.

140. Penicillium paraherquei Abe ex Smith, Trans. Br. Mycol. Soc. 46: 335. 1963.

141. Penicillium penarojense Houbraken, C. López-Q, Frisvad & Samson, Int. J. Syst. Evol.

Microbiol. 61: 1471. 2011.

142. Penicillium piscarium Westling, Ark. Bot. 11: 86. 1911.

143. Penicillium pulvillorum Turfitt, Trans. Br. Mycol. Soc. 23: 186. 1939 (Syn. P. ciegleri).

144. Penicillium raperi Smith, Trans. Br. Mycol. Soc. 40: 486. 1957.

145. Penicillium reticulisporum Udagawa, Trans. Mycol. Soc. Japan 9: 52. 1968.

146. Penicillium rolfsii Thom, Penicillia: 489. 1930.

147. Penicillium simplicissimum (Oudemans) Thom, Penicillia: 335. 1930.

148. Penicillium skrjabinii Schmotina & Golovleva, Mikol. Fitopatol. 8: 530. 1974.

149. Penicillium svalbardense Frisvad, Sonjak & Gunde-Cimerman, Ant. van Leeuwenhoek 92: 48.

2007.

150. Penicillium vanderhammenii Houbraken, C. López-Q, Frisvad & Samson, Int. J. Syst. Evol.

Microbiol. 61: 1473. 2011.

151. Penicillium vasconiae Ramírez & Martínez, Mycopathol. 72: 189. 1980.

152. Penicillium wotroi Houbraken, C. López-Q, Frisvad & Samson, Int. J. Syst. Evol. Microbiol.

61: 1474. 2011.

153. Penicillium zonatum Hodges & Perry, Mycologia 65: 697. 1973.

12: section Stolkia Houbraken & Samson, sect. nov. MycoBank

154. Penicillium boreae Peterson & Sigler, Mycol. Res. 106: 1112. 2002.

155. Penicillium canariense Peterson & Sigler, Mycol. Res. 106: 1113. 2002.

156. Penicillium donkii Stolk, Persoonia 7: 333. 1973.

157. Penicillium pullum Peterson & Sigler, Mycol. Res. 106: 1115. 2002.

158. Penicillium stolkiae Scott, Mycopathol. Mycol. Appl. 36: 8. 1968.

159. Penicillium subarcticum Peterson & Sigler, Mycol. Res. 106: 1116. 2002.

Page 33: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

33

13: section Gracilenta Houbraken & Samson, sect. nov. MycoBank

160. Penicillium angustiporcatum Takada & Udagawa, Trans. Mycol. Soc. Japan 24: 143. 1983.

161. Penicillium estinogenum Komatsu & Abe ex Smith, Trans. Br. Mycol. Soc. 46: 335. 1963.

162. Penicillium macrosclerotiorum Wang, Zhang & Zhuang, Mycol. Res. 111: 1244. 2007.

163. Penicillium gracilentum Udagawa & Horie, Trans. Mycol. Soc. Japan 14: 373. 1973.

14: section Citrina Houbraken & Samson, sect. nov. MycoBank

164. Penicillium anatolicum Stolk, Ant. van Leeuwenhoek 34: 46. 1968.

165. Penicillium argentinense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 78. 2011.

166. Penicillium atrofulvum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 80. 2011.

167. Penicillium aurantiacobrunneum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 80. 2011.

168. Penicillium cairnsense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 83. 2011.

169. Penicillium christenseniae Houbraken, Frisvad & Samson, Stud. Mycol. 70: 85. 2011.

170. Penicillium chrzaszczii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 464.

1927.

171. Penicillium citrinum Thom, Bull. Bur. Anim. Ind. U.S. Dep. Agric. 118: 61. 1910.

172. Penicillium copticola Houbraken, Frisvad & Samson, Stud. Mycol. 70: 88. 2011.

173. Penicillium cosmopolitanum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 91. 2011.

174. Penicillium decaturense Peterson, Bayer & Wicklow, Mycologia 96: 1290. 2004.

175. Penicillium euglaucum van Beyma, Ant. van Leeuwenhoek 6: 269. 1940.

176. Penicillium galliacum Ramírez, Martínez & Berenguer, Mycopathol. 72: 30. 1980.

177. Penicillium godlewskii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 466.

1927.

178. Penicillium gorlenkoanum Baghdadi, Nov. Sist. Niz. Rast. 5: 97. 1968.

179. Penicillium hetheringtonii Houbraken, Frisvad & Samson, Fung. Div. 44: 125. 2010.

180. Penicillium manginii Duché & Heim, Trav. Cryptog. Louis L. Mangin: 450. 1931 (syn. P.

pedemontanum, Houbraken et al. 2011b).

181. Penicillium miczynskii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 482.

1927.

182. Penicillium neomiczynskii Cole, Houbraken, Frisvad & Samson, Stud. Mycol. 70: 105. 2011.

183. Penicillium nothofagi Houbraken, Frisvad & Samson, Stud. Mycol. 70: 105. 2011.

184. Penicillium pancosmium Houbraken, Frisvad & Samson, Stud. Mycol. 70: 108. 2011.

185. Penicillium pasqualense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 108. 2011.

186. Penicillium paxilli Bainier, Bull. Soc. Mycol. France 23: 95. 1907.

187. Penicillium quebecense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 111. 2011.

188. Penicillium raphiae Houbraken, Frisvad & Samson, Stud. Mycol. 70: 114. 2011.

Page 34: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

34

189. Penicillium roseopurpureum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901.

190. Penicillium sanguifluum (Sopp) Biourge, La Cellule 33: 105. 1923.

191. Penicillium shearii Stolk & Scott, Persoonia 4: 396. 1967.

192. Penicillium sizovae Baghdadi, Novosti Sist. Nizs. Rast. 1968: 103. 1968.

193. Penicillium steckii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927:

469. 1927.

194. Penicillium sumatrense Szilvinyi, Archiv. Hydrobiol. 14, Suppl. 6: 535. 1936.

195. Penicillium terrigenum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 125. 2011.

196. Penicillium tropicoides Houbraken, Frisvad & Samson, Fung. Div. 44: 127. 2010.

197. Penicillium tropicum Houbraken, Frisvad & Samson, Fung. Div. 44: 129. 2010.

198. Penicillium ubiquetum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 127. 2011.

199. Penicillium vancouverense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 131. 2011.

200. Penicillium waksmanii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat.,

1927: 468. 1927.

201. Penicillium wellingtonense Cole, Houbraken, Frisvad & Samson, Stud. Mycol. 70: 133. 2011.

202. Penicillium westlingii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat.,

1927: 473. 1927.

B. Penicillium subgenus Penicillium

15. Section Fasciculata Thom, The Penicillia: 374. 1930.

203. Penicillium albocoremium (Frisvad) Frisvad, Int. Mod. Tax. Meth. Pen. Asp. Clas.: 275. 2000.

204. Penicillium allii Vincent & Pitt, Mycologia 81: 300. 1989.

205. Penicillium aurantiogriseum Dierckx, Ann. Soc. Scient. Brux. 25: 88. 1901.

206. Penicillium camemberti Thom, Bull. Bur. Anim. Ind. USDA 82: 33. 1906.

207. Penicillium caseifulvum Lund, Filt. & Frisvad, J. Food Mycol. 1: 97. 1998.

208. Penicillium cavernicola Frisvad & Samson, Stud. Mycol. 49: 31. 2004.

209. Penicillium commune Thom, Bull. Bur. Anim. Ind. USDA 118: 56. 1910.

210. Penicillium crustosum Thom, Penicillia: 399. 1930.

211. Penicillium cyclopium Westling, Ark. Bot. 11: 90. 1911.

212. Penicillium discolor Frisvad & Samson, Ant. Van Leeuwenhoek, 72: 120. 1997.

213. Penicillium echinulatum Fassatiová, Acta Univ. Carol. Biol. 12: 326. 1977.

214. Penicillium freii Frisvad & Samson, Stud. Mycol. 49: 28. 2004.

215. Penicillium hirsutum Dierckx, Ann. Soc. Scient. Brux. 25: 89. 1901.

216. Penicillium hordei Stolk, Ant. van Leeuwenhoek 35: 270. 1969.

217. Penicillium melanoconidium (Frisvad) Frisvad & Samson, Stud. Mycol. 49: 28. 2004.

Page 35: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

35

218. Penicillium neoechinulatum (Frisvad, Filt. & Wicklow) Frisvad & Samson, Stud. Mycol. 49:

28. 2004.

219. Penicillium nordicum Dragoni & Cantoni ex Ramírez, Adv. Pen. Asp. Syst.: 139. 1985.

220. Penicillium osmophilum Stolk & Veenbaas-Rijks, Ant. van Leeuwenhoek 40: 1. 1974.

221. Penicillium palitans Westling, Ark. Bot. 11: 83. 1911.

222. Penicillium polonicum Zaleski, Bull. Int. Acad. Pol. Sci. Lett., Sér. B 1927: 445. 1927.

223. Penicillium radicicola Overy & Frisvad, Syst. Appl. Microbiol.: 633. 2003.

224. Penicillium solitum Westling, Ark. Bot. 11: 65. 1911.

225. Penicillium thymicola Frisvad & Samson, Stud. Mycol. 49: 29. 2004.

226. Penicillium tricolor Frisvad, Seifert, Samson & Mills, Can. J. Bot. 72: 937. 1994.

227. Penicillium tulipae Overy & Frisvad, Syst. Appl. Microbiol. 634. 2003.

228. Penicillium venetum (Frisvad) Frisvad, Int. Mod. Tax. Meth. Pen. Asp. Clas.: 275. 2000.

229. Penicillium verrucosum Dierckx, Ann. Soc. Scient. Brux. 25: 88. 1901.

230. Penicillium viridicatum Westling, Ark. Bot. 11: 88. 1911.

16. Section Digitata Frisvad & Samson, Stud. Mycol. 49: 26. 2004.

231. Penicillium digitatum (Pers.:Fr.) Sacc., Fung. Ital.: 894. 1881.

17. Section Penicillium

232. Penicillium brevistipitatum Wang & Zhuang, Mycotaxon 93: 234. 2005.

233. Penicillium clavigerum Demelius, Verh. Zool.-Bot. Ges. Wien 72: 74. 1922.

234. Penicillium concentricum Samson, Stolk & Hadlok, Stud. Mycol. 11: 17. 1976.

235. Penicillium coprobium Frisvad, Mycologia 81: 853. 1989.

236. Penicillium coprophilum (Berk. & Curt.) Seifert & Samson, Adv.Pen. Asp. Syst.: 145. 1985.

237. Penicillium dipodomyicola (Frisvad, Filt. & Wicklow) Frisvad, Int. Mod. Meth. Pen. Asp. Clas.: 275. 2000.

238. Penicillium expansum Link, Ges. Naturf. Freunde Berlin Mag. Neuesten Entdeck. Gesammten Naturk. 3:

16. 1809.

239. Penicillium formosanum Hsieh, Su & Tzean, Trans. Mycol. Soc. R.O.C. 2: 159. 1987.

240. Penicillium gladioli McCulloch & Thom, Science, N.Y. 67: 217. 1928.

241. Penicillium glandicola (Oud.) Seifert & Samson, Adv. Pen. Asp. Syst.: 147. 1985.

242. Penicillium griseofulvum Dierckx, Ann. Soc. Scient. Brux. 25: 88. 1901.

243. Penicillium italicum Wehmer, Hedwigia 33: 211. 1894.

244. Penicillium marinum Frisvad & Samson, Stud. Mycol. 49: 20. 2004.

245. Penicillium sclerotigenum Yamamoto, Scient. Rep. Hyogo Univ. Agric., Agric. Biol. Ser. 2, 1: 69. 1955.

246. Penicillium ulaiense Hsieh, Su & Tzean, Trans. Mycol. Soc. R.O.C. 2: 161. 1987.

Page 36: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

36

247. Penicillium vulpinum (Cooke & Massee) Seifert & Samson, Adv. Pen. Asp. Syst.: 144. 1985.

18. Section Roquefortorum (as “Roqueforti”) Frisvad & Samson, Stud.

Mycol. 49: 16. 2004.

248. Penicillium carneum (Frisvad) Frisvad, Microbiology, UK, 142: 546. 1996.

249. Penicillium paneum Frisvad, Microbiology (UK) 142: 546. 1996.

250. Penicillium psychrosexualis Houbraken & Samson, IMA Fungus 1:174. 2010.

251. Penicillium roqueforti Thom, Bull. Bur. Anim. Ind. US Dept. Agric. 82: 35, 1906.

19. Section Chrysogena Frisvad & Samson, Stud. Mycol. 49: 17. 2004.

252. Penicillium aethiopicum Frisvad, Mycologia 81: 848. 1990.

253. Penicillium chrysogenum Thom, Bull. Bur. Anim. Ind. U.S. Dep. Agric. 118: 58. 1910.

254. Penicillium confertum (Frisvad et al.) Frisvad, Mycologia 81: 852. 1990.

255. Penicillium dipodomyis (Frisvad, Filtenborg & Wicklow) Banke, Frisvad & Rosendahl, Int.

Mod. Meth. Pen. Asp. Clas., 270. 2000.

256. Penicillium egyptiacum van Beyma, Zentralbl. Bakteriol., 2. Abt., 88: 137. 1933. (syn. P.

nilense).

257. Penicillium flavigenum Frisvad & Samson, Mycol. Res. 101: 620. 1997.

258. Penicillium kewense Smith, Trans. Br. Mycol. Soc. 44: 42. 1961 (syn. E. crustaceum).

259. Penicillium molle Pitt, The Genus Penicillium: 148, 1980 [“1979”].

260. Penicillium mononematosum (Frisvad et al.) Frisvad, Mycologia 81:857. 1990.

261. Penicillium nalgiovense Laxa, Zentralbl. Bakteriol., 2. Abt., 86: 160. 1932.

262. Penicillium persicinum Wang, Zhou, Frisvad & Samson, Ant. van Leeuwenhoek 86: 177. 2004.

263. Penicillium rubens Biourge, Cellule 33: 265. 1923.

264. Penicillium sinaicum Udagawa & Ueda, Mycotaxon 14: 266. 1982.

20: section Turbata Houbraken & Samson, sect. nov. MycoBank .

265. Penicillium bovifimosum (Tuthill & Frisvad) Houbraken & Samson, Stud. Mycol. 70: 47. 2011

(this study).

266. Penicillium matriti Smith, Trans. Br. Mycol. Soc. 44: 44. 1961.

267. Penicillium turbatum Westling, Ark. Bot. 11: 128. 1911 (syn. E. baarnense, P. baarnense, this

study).

Page 37: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

37

21: section Paradoxa Houbraken & Samson, sect. nov. MycoBank

268. Penicillium atramentosum Thom, Bull. Bur. Anim. Ind. US Dept. Agric. 118: 65. 1910.

269. Aspergillus crystallinus Kwon-Chung & Fennell, The Genus Aspergillus: 471. 1965.

270. Aspergillus malodoratus (Kwon-Chung & Fennell), The Genus Aspergillus: 468. 1965.

271. Aspergillus paradoxus Fennell & Raper, Mycologia 47: 69.

22: section Brevicompacta Thom, The Penicillia: 289. 1930.

272. Penicillium astrolobatum Serra & Peterson, Mycologia 99: 80. 2007.

273. Penicillium bialowiezense Zaleski, Bull. Int. Acad. Pol. Sci. Lett., Sér. B, 1927: 462. 1927 (syn. P.

biourgeianum).

274. Penicillium brevicompactum Dierckx, Ann. Soc. Scient. Brux. 25: 88. 1901.

275. Penicillium fennelliae Stolk, Ant. van Leeuwenhoek 35: 261. 1969.

276. Penicillium neocrassum Serra & Peterson, Mycologia 99: 81. 2007.

277. Penicillium olsonii Bainier & Sartory, Ann. Mycol. 10: 398. 1912.

278. Penicillium tularense Paden, Mycopathol. Mycol. Appl. 43: 264. 1971.

23: section Ramosa (as “Ramosum”) Stolk & Samson, Adv. Pen. Asp. Syst.: 179. 1985.

279. Penicillium jamesonlandense Frisvad & Overy, Int. J. Syst. Evol. Microbiol. 56: 1435. 2006.

280. Penicillium kojigenum Smith, Trans. Br. Mycol. Soc. 44: 43. 1961.

281. Penicillium lanosum Westling, Ark. Bot. 11: 97. 1911.

282. Penicillium raistrickii Smith, Trans. Br. Mycol. Soc.18: 90. 1933.

283. Penicillium ribeum Frisvad & Overy, Int. J. Syst. Evol. Microbiol. 56: 1436. 2006.

284. Penicillium sajarovii Quintanilla, Avances Nutr. Mejora Anim. Aliment. 22: 539. 1981.

285. Penicillium scabrosum Frisvad, Samson & Stolk, Persoonia 14: 177. 1990.

286. Penicillium simile Davolos, Pietrangeli, Persiani & Maggi, J. Syst. Evol. Microbiol., in press.

287. Penicillium soppii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 476. 1927.

288. Penicillium swiecickii Zaleski, Bull. Int. Acad. Pol. Sci. Lett., Sér. B 1927: 474. 1927.

289. Penicillium virgatum Nirenberg & Kwasna, Mycol. Res. 109: 977. 2005.

24: section Canescentia Houbraken & Samson, sect. nov. MycoBank MB563135.

290. Penicillium canescens Sopp, Skr. Vidensk.-Selsk. Christiana, Math.-Naturvidensk. Kl. 11: 181. 1912.

291. Penicillium jensenii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 494. 1927.

292. Penicillium yarmokense Baghdadi, Nov. Sist. Niz. Rast. 5: 99. 1968.

Page 38: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

38

293. Penicillium janczewskii Zaleski, Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Sér. B, Sci. Nat., 1927: 488.

1927.

294. Penicillium antarcticum Hocking & McRae, Polar Biology 21: 103. 1999.

295. Penicillium atrovenetum Smith, Trans. Br. Mycol. Soc. 39: 112. 1956.

296. Penicillium novae-zeelandiae van Beyma, Ant. van Leeuwenhoek 6: 275. 1940.

297. Penicillium coralligerum Nicot & Pionnat, Bull. Soc. Mycol. France 78: 245. 1963 [“1962”].

25: section Eladia (Smith) Stolk & Samson, Adv. Pen. Asp. Syst.: 169. 1985.

298. Penicillium sacculum Dale apud Biourge, Cellule 33: 323. 1923.

299. Penicillium senticosum Scott, Mycopathol. Mycol. Appl. 36: 5. 1968.

Page 39: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

39

3. 4. Updated Classification

This is the sectional classification published by Visagie et al. (2014), arranged in the two

subgenera published by Houbraken & Samson (2011)

1. Penicillium subgenus : Aspergilloides

1. Section Aspergilloides

1. Penicillium ardesiacum Novobr., Novosti Sist. Nizsh. Rast. 11: 228. 1974.

2. Penicillium armarii Houbraken, et al. Stud. Mycol. 78: 410. 2014

3. Penicillium athertonense Houbraken, Stud. Mycol. 78: 412. 2014

4. Penicillium aurantioviolaceum Biourge, Cellule 33: 282. 1923.

5. Penicillium austroafricanum Houbraken & Visagie, Stud. Mycol. 78: 412. 2014.

6. Penicillium brunneoconidiatum Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 415. 2014.

7. Penicillium bussumense Houbraken, Stud. Mycol. 78: 415. 2014

8. Penicillium cartierense Houbraken, Stud. Mycol. 78: 415. 2014.

9. Penicillium clavistipitatum Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 419. 2014.

10. Penicillium contaminatum Houbraken, Stud. Mycol. 78: 419. 2014

11. Penicillium crocicola W. Yamam., Sci. Rep. Hyogo Univ. Agric. 2: 28. 1956.

12. Penicillium flavisclerotiatum Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 419. 2014.

13. Penicillium frequentans Westling, Ark. Bot. 11: 133. 1911.

14. Penicillium fuscum (Sopp) Biourge, Cellule 33: 103. 1923

15. Penicillium fusisporum L. Wang, PloS ONE 9: e101454-P2. 2014.

16. Penicillium glabrum (Wehmer) Westling, Ark. Bot. 11: 131. 1911

17. Penicillium grancanariae C. Ramírez, A.T. Martínez & Ferrer, Mycopathologia 66: 79. 1978.

18. Penicillium grevilleicola Houbraken & Quaedvlieg, Stud. Mycol. 78: 423. 2014.

19. Penicillium hoeksii Houbraken, Stud. Mycol. 78: 423. 2014

20. Penicillium infra-aurantiacum Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 426. 2014.

21. Penicillium kananaskense Seifert, Frisvad & McLean, Can. J. Bot. 72: 20. 1994.

22. Penicillium kiamaense Houbraken & Pitt, Stud. Mycol. 78: 426. 2014

23. Penicillium lividum Westling, Ark. Bot. 11: 134. 1911

24. Penicillium longicatenatum Visagie, et al., Stud. Mycol. 78: 429. 2014

25. Penicillium malmesburiense Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 429. 2014.

26. Penicillium montanense M. Chr. & Backus, Mycologia 54: 574. 1962

27. Penicillium odoratum M. Chr. & Backus, Mycologia 53: 459. 1961

28. Penicillium palmense C. Ramírez & A.T. Martínez, Mycopathologia 66: 80. 1978.

29. Penicillium patens Pitt & A.D. Hocking, Mycotaxon 22: 205. 1985

30. Penicillium pulvis Houbraken, Visagie, Samson & Seifert, Stud. Mycol. 78: 429. 2014.

31. Penicillium purpurescens (Sopp) Raper & Thom, A manual of the Penicillia: 177. 1949 2.

32. Penicillium quercetorum Baghd., Novosti Sist. Nizsh. Rast. 5: 110. 1968

33. Penicillium ranomafanaense Houbraken & Hagen, Stud. Mycol. 78: 433. 2014

34. Penicillium roseomaculatum Biourge, Cellule 33: 301. 1923

35. Penicillium roseoviride Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 51. 1935.

36. Penicillium rudallense Houbraken, Visagie & Pitt, Stud. Mycol. 78: 433. 2014

Page 40: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

40

37. Penicillium saturniforme (L. Wang & W.Y. Zhuang) Houbraken & Samson, Stud. Mycol. 70: 48.

2011 .

38. Penicillium spinulosum Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 76. 1910.

39. Penicillium sterculiniicola Houbraken, Stud. Mycol. 78: 436. 2014

40. Penicillium sublectaticum Houbraken, et al., Stud. Mycol. 78: 436. 2014

41. Penicillium subspinulosum Houbraken, Stud. Mycol. 78: 436. 2014.

42. Penicillium thiersii S.W. Peterson, E.M. Bayer & Wicklow, Mycologia 96: 1283. 2004.

43. Penicillium thomii Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 189.

44. Penicillium trzebinskii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 498. 1927.

45. Penicillium tsitsikammaense Houbraken, Stud. Mycol. 78: 440. 2014

46. Penicillium turcosoconidiatum Visagie, Houbraken & K. Jacobs, Stud. Mycol. 78: 440. 2014.

47. Penicillium vagum Houbraken, et al., Stud. Mycol. 78: 443. 2014

48. Penicillium valentinum C. Ramírez and A.T. Martínez, Mycopathologia 72: 183. 1980.

49. Penicillium verhagenii Houbraken, Stud. Mycol. 78: 443. 2014.

50. Penicillium yezoense Hanzawa ex Houbraken, Stud. Mycol. 78: 443. 2014

51. Penicillium zhuangii L. Wang, PloS ONE 9: e101454-P4. 2014

2. SectionCharlesia

52. Penicillium charlesii G. Sm., Trans. Brit. Mycol. Soc. 18: 90. 1933

53. Penicillium coffeae S.W. Peterson et al., Mycologia 97: 662. 2005.

54. Penicillium fellutanum Biourge, Cellule 33: 262. 1923.

55. Penicillium georgiense S.W. Peterson & B.W. Horn, Mycologia 101: 79. 2009.

56. Penicillium indicum D.K. Sandhu & R.S. Sandhu, Can. J. Bot. 41: 1273. 1963

57. Penicillium multicolor Grig.-Man. & Porad., Arch. des Sciences Biol. Leningrad 19: 120. 1915.

58. Penicillium phoeniceum J.F.H. Beyma, Zentralbl. Bakteriol. Parasitenk., Abt. 2 88: 136. 1933

3..Section Cinnamopurpurea

59. Penicillium chermesinum Biourge, Cellule 33: 284. 1923.

60. Penicillium cinnamopurpureum Udagawa, J. Agric. Food Sci., Tokyo 5: 1. 1959.

61. Penicillium ellipsoideosporum L. Wang & W.Y. Kong, Mycosystema 19: 463. 2000.

62. Penicillium idahoense Paden, Mycopathol. Mycol. Appl. 43: 259. 1971

63. Penicillium incoloratum L.Q. Huang & Z.T. Qi, Acta Mycol. Sin. 13: 264. 1994.

64. Penicillium infrapurpureum Visagie, Seifert & Samson, Stud. Mycol. 78: 116. 2014.

65. Penicillium jiangxiense H.Z. Kong & Z.Q. Liang, Mycosystema 22: 4. 2003

66. Penicillium malacaense C. Ramírez & A.T. Martínez, Mycopathologia 72: 186. 1980.

67. Penicillium nodulum H.Z. Kong & Z.T. Qi, Mycosystema 1: 108. 1988.

68. Penicillium parvulum S.W. Peterson & B.W. Horn, Mycologia 101: 75. 2009

69. Penicillium shennangjianum H.Z. Kong & Z.T. Qi, Mycosystema 1: 110. 1988.

4. Section Citrina

70. Penicillium anatolicum Stolk, Antonie van Leenwenhoek 34: 46. 1968

71. Penicillium argentinense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 78. 2011.

72. Penicillium atrofulvum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 80. 2011.

73. Penicillium aurantiacobrunneum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 80. 2011.

74. Penicillium cairnsense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 83. 2011.

75. Penicillium christenseniae Houbraken, Frisvad & Samson, Stud. Mycol. 70: 85. 2011.

Page 41: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

41

76. Penicillium chrzaszczii K.M. Zalessky, Bull. Int. Acad. Polon. Sci

77. Penicillium citrinum Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 61. 1910.

78. Penicillium copticola Houbraken, Frisvad & Samson, Stud. Mycol. 70: 88. 2011.

79. Penicillium cosmopolitanum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 91. 2011.

80. Penicillium decaturense S.W. Peterson, E.M. Bayer & Wicklow, Mycologia 96: 1290. 2004.

81. Penicillium euglaucum J.F.H. Beyma, Antonie van Leeuewenhoek 6: 269. 1940

82. Penicillium galliacum C. Ramírez, A.T. Martínez & Berer., Mycopathologia 72: 30. 1980.

83. Penicillium godlewskii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 466. 1927.

84. Penicillium gorlenkoanum Baghd., Novosti Sist. Nizsh. Rast. 5: 97. 1968.

85. Penicillium hetheringtonii Houbraken, Frisvad & Samson, Fungal Divers. 44: 125. 2010.

86. Penicillium manginii Duché & R. Heim, Trav. Cryptog.: 450. 1931

87. Penicillium miczynskii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 482. 1927.

88. Penicillium neomiczynskii A.L.J. Cole et al., Stud. Mycol. 70: 105. 2011

89. Penicillium nothofagi Houbraken, Frisvad & Samson, Stud. Mycol. 70: 105. 2011.

90. Penicillium pancosmium Houbraken, Frisvad & Samson, Stud. Mycol. 70: 108. 2011.

91. Penicillium pasqualense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 108. 2011.

92. Penicillium paxilli Bainier, Bull. Soc. Mycol. France 23: 95. 1907

93. Penicillium quebecense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 111. 2011.

94. Penicillium raphiae Houbraken, Frisvad & Samson, Stud. Mycol. 70: 114. 2011.

95. Penicillium roseopurpureum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901.

96. Penicillium sanguifluum (Sopp) Biourge, Cellule 33: 105.

97. Penicillium shearii Stolk & D.B. Scott, Persoonia 4: 396. 1967

98. Penicillium sizovae Baghd., Novosti Sist. Nizsh. Rast. 1968: 103. 1968

99. Penicillium steckii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 469. 1927.

100. Penicillium sucrivorum Visagie & K. Jacobs, Mycologia 106: 546. 2014

101. Penicillium sumatraense Szilvinyi [as ‘sumatrense’], Archiv. Hydrobiol. 14, Suppl. 6: 535.

1936.

102. Penicillium terrigenum Seifert et al., Stud. Mycol. 70: 125. 2011

103. Penicillium tropicoides Houbraken, Frisvad & Samson, Fungal Divers. 44: 127. 2010.

104. Penicillium tropicum Houbraken, Frisvad & Samson, Fungal Divers. 44: 129. 2010

105. Penicillium ubiquetum Houbraken, Frisvad & Samson, Stud. Mycol. 70: 127. 2011.

106. Penicillium vancouverense Houbraken, Frisvad & Samson, Stud. Mycol. 70: 131. 2011.

107. Penicillium waksmanii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat.: 468.

1927.

108. Penicillium wellingtonense A.L.J. Cole et al., Stud. Mycol. 70: 133. 2011.

109. Penicillium westlingii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927:

473. 1927.

5. Section Exilicaulis

110. Penicillium alutaceum D.B. Scott, Mycopathol. Mycol. Appl. 36: 17.

111. Penicillium atrosanguineum B.X. Dong, Ceská Mycol. 27: 174. 1973

112. Penicillium burgense Quintan., Av. Aliment. Majora Anim. 30: 176. 1990

113. Penicillium catenatum D.B. Scott, Mycopathol. Mycol. Appl. 36: 24. 1968

114. Penicillium chalybeum Pitt & A.D. Hocking, Mycotaxon 22: 204. 1985.

115. Penicillium cinerascens Biourge, Cellule 33: 308. 1923.

116. Penicillium cinereoatrum Chalab., Bot. Mater. Otd. Sporov. Rast. 6: 167. 1950.

117. Penicillium citreonigrum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901

118. Penicillium corylophilum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901.

119. Penicillium decumbens Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 71. 1910.

Page 42: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

42

120. Penicillium dimorphosporum H.J. Swart, Trans. Brit. Mycol. Soc. 55: 310. 1970

121. Penicillium dravuni Janso, Mycologia 97: 445. 2005.

122. Penicillium erubescens D.B. Scott, Mycopathol. Mycol. Appl. 36: 14. 1968

123. Penicillium fagi C. Ramírez & A.T. Martínez, Mycopathologia 63: 57. 1978

124. Penicillium flavidostipitatum C. Ramírez & C.C. González, Mycopathologia 88: 3. 1984.

125. Penicillium guttulosum J.C. Gilman & E.V. Abbott, Iowa St. Coll. J. Sci. 1: 298. 1927.

126. Penicillium heteromorphum H.Z. Kong & Z.T. Qi, Mycosystema 1: 107. 1988.

127. Penicillium katangense Stolk, Antonie van Leeuwenhoek 34: 42. 1968

128. Penicillium laeve (K. Ando & Manoch) Houbraken & Samson, Stud. Mycol. 70: 47. 2011

129. Penicillium lapidosum Raper & Fennell, Mycologia 40: 524. 1948

130. Penicillium maclennaniae H.Y. Yip, Trans. Brit. Mycol. Soc. 77: 202. 1981.

131. Penicillium melinii Thom, Penicillia: 273. 1930

132. Penicillium menonorum S.W. Peterson, IMA Fungus 2: 122. 2011

133. Penicillium meridianum D.B. Scott, Mycopathol. Mycol. Appl. 36: 12. 1968

134. Penicillium namyslowskii K.M. Zalessky, Bull. Int. Aead. Polonc. Sci., 1927

135. Penicillium nepalense Takada & Udagawa, Trans. Mycol. Soc. Japan 24: 146. 1983

136. Penicillium ovatum (K. Ando & Nawawi) Houbraken & Samson, Stud. Mycol. 70: 48. 2011

137. Penicillium parvum Raper & Fennell, Mycologia 40: 508. 1948

138. Penicillium philippinense Udagawa & Y. Horie, J. Jap. Bot. 47: 341. 1972

139. Penicillium pimiteouiense S.W. Peterson, Mycologia 91: 271. 1999

140. Penicillium raciborskii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., 1927: 454. 1927.

141. Penicillium restrictum J.C. Gilman & E.V. Abbott, Iowa St. Coll. J. Sci. 1: 297. 1927.

142. Penicillium rubefaciens Quintan., Mycopathologia 80: 73. 1982.

143. Penicillium rubidurum Udagawa & Y. Horie, Trans. Mycol. Soc. Japan 14: 381. 1973

144. Penicillium smithii Quintan., Av. Aliment. Majora Anim. 23: 340. 1982

145. Penicillium striatisporum Stolk, Antonie van Leeuwenhoek 35: 268. 1969

146. Penicillium terrenum D.B. Scott, Mycopathol. Mycol. Appl. 36: 1. 1968

147. Penicillium velutinum J.F.H. Beyma, Zentralbl. Bakteriol. Parasitenk., Abt. 2 91: 353. 1935.

148. Penicillium vinaceum J.C. Gilman & E.V. Abbott, Iowa St. Coll. J. Sci. 1: 299. 1927.

6. Section Fracta

149. Penicillium fractum Udagawa, Trans. Mycol. Soc. Japan 9: 51. 1968 ≡ Eupenicillium

fractumUdagawa, Trans. Mycol. Soc. Japan 9: 51. 1968.

150. Penicillium inusitatum D.B. Scott, Mycopathol. Mycol. Appl. 36: 20. 1968 ≡ Eupenicillium

inusitatumD.B. Scott, Mycopathol. Mycol. Appl. 36: 20. 1968.

7. Section Gracilenta

151. Penicillium angustiporcatum Takada & Udagawa, 1983

152. Penicillium estinogenum A. Komatsu & S. Abe ex G. Sm., Trans. Brit. Mycol. Soc. 46: 335.

1963

153. Penicillium gracilentum Udagawa & Y. Horie, Trans. Mycol. Soc. Japan 14: 373. 1973 .

154. Penicillium macrosclerotiorum L. Wang, X.M. Zhang & W.Y. Zhuang, Mycol. Res. 111:

1244. 2007.\

8. Section Lanata-Divaricata

Page 43: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

43

155. Penicillium abidjanum Stolk, Antonie van Leeuwenhoek 34: 49. 1968

156. Penicillium araracuaraense Houbraken, et al., Int. J. Syst. Evol. Microbiol. 61: 1469. 2011.

157. Penicillium brasilianum Bat., Anais Soc. Biol. Pernambuco 15: 162. 1957

158. Penicillium brefeldianum B.O. Dodge, Mycologia 25: 92. 1933

159. Penicillium caperatum Udagawa & Y. Horie, Trans. Mycol. Soc. Japan 14: 371. 1973

160. Penicillium cluniae Quintan., Av. Aliment. Mejora Anim. 30: 174. 1990

161. Penicillium coeruleum Sopp apud Biourge, Cellule 33: 102. 1923.

162. Penicillium cremeogriseum Chalab., Bot. Mater. Otd. Sporov. Rast. 6: 168. 1950.

163. Penicillium daleae K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 495.

1927.

164. Penicillium ehrlichii Kleb., Ber. Deutsch. Bot. Ges. 48: 374. 1930

165. Penicillium elleniae Houbraken et al., Int. J. Syst. Evol. Microbiol. 61: 1470. 2011.

166. Penicillium glaucoroseum Demelius, Verh. Zool.-Bot. Ges. Wien 72: 72. 1923 (1922).

167. Penicillium griseopurpureum G. Sm., Trans. Brit. Mycol. Soc. 48: 275. 1965.

168. Penicillium janthinellum Biourge, Cellule 33: 258. 1923.

169. Penicillium javanicum J.F.H. Beyma, Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk. 26:

17. 1929

170. Penicillium levitum Raper & Fennell, Mycologia 40: 511.

171. Penicillium limosum S. Ueda, Mycoscience 36: 451. 1995

172. Penicillium lineolatum Udagawa & Y. Horie, Mycotaxon 5: 493. 1977

173. Penicillium ludwigii Udagawa, Trans. Mycol. Soc. Japan 10: 2. 1969

174. Penicillium mariae-crucis Quintan., Av. Aliment. Majora Anim. 23: 334. 1982.

175. Penicillium meloforme Udagawa & Y. Horie, Trans. Mycol. Soc. Japan 14: 376. 1973

176. Penicillium ochrochloron Biourge, Cellule 33: 269. 1923.

177. Penicillium onobense C. Ramírez & A.T. Martínez, Mycopathologia 74: 44. 1981.

178. Penicillium oxalicum Currie & Thom, J. Biol. Chem. 22: 289. 1915

179. Penicillium paraherquei S. Abe ex G. Sm., Trans. Brit. Mycol. Soc. 46: 335. 1963

180. Penicillium penarojense Houbraken et al., Int. J. Syst. Evol. Microbiol. 61: 1471. 2011.

181. Penicillium piscarium Westling, Ark. Bot. 11: 86. 1911

182. Penicillium pulvillorum Turfitt, Trans. Brit. Mycol. Soc. 23: 186. 1939

183. Penicillium raperi G. Sm., Trans. Brit. Mycol. Soc. 40: 486. 1957

184. Penicillium reticulisporum Udagawa, Trans. Mycol. Soc. Japan 9: 52. 1968

185. Penicillium rolfsii Thom, Penicillia: 489. 1930

186. Penicillium simplicissimum (Oudem.) Thom, Penicillia: 335. 1930

187. Penicillium singorense Visagie, Seifert & Samson, Stud. Mycol. 78: 119. 2014.

188. Penicillium skrjabinii Schmotina & Golovleva, Mikol. Fitopatol. 8: 530. 1974.

189. Penicillium subrubescens Houbraken et al., Antonie van Leeuwenhoek 103: 1354. 2013.

190. Penicillium svalbardense Frisvad, Sonjak & Gundae-Cim, Antonie van Leeuwenhoek 92:

48. 2007.

191. Penicillium vanderhammenii Houbraken et al., Int. J. Syst. Evol. Microbiol. 61: 1473. 2011.

192. Penicillium vasconiae C. Ramírez & A.T. Martínez, Mycopathologia 72: 189. 1980

193. Penicillium wotroi Houbraken et al., Int. J. Syst. Evol. Microbiol. 61: 1474. 2011.

194. Penicillium zonatum Hodges & J.J. Perry, Mycologia 65: 697. 1973 ≡ Eupenicillium

zonatum Hodges & J.J. Perry, Mycologia 65: 697. 1973.

9. Section Ochrosalmonea

195. Penicillium isariiforme Stolk & J.A. Mey., Trans. Brit. Mycol. Soc. 40: 187. 1957.

196. Penicillium ochrosalmoneum Udagawa, J. Agric. Sci. Tokyo Nogyo Daig. 5: 10. 1959

Page 44: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

44

10. Section Ramigera

197. Penicillium capsulatum Raper & Fennell, Mycologia 40: 528. 1948

198. Penicillium cyaneum (Bainier & Sartory) Biourge, Cellule 33: 102. 1923

199. Penicillium dierckxii Biourge, Cellule 33: 313. 1923.

200. Penicillium hispanicum C. Ramírez, A.T. Martínez & Ferrer, Mycopathologia 66: 77. 1978.

201. Penicillium ornatum Udagawa, Trans. Mycol. Soc. Japan 9: 49. 1968

202. Penicillium ramusculum Bat. & H. Maia, Anais Soc. Biol. Pernambuco 13: 27. 1955.

203. Penicillium sublateritium Biourge, Cellule 33: 315. 1923.

11. Section Sclerotiora

204. Penicillium adametzii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat., 1927:

205. Penicillium adametzioides S. Abe ex G. Sm., Trans. Brit. Mycol. Soc. 46: 335.

206. Penicillium alexiae Visagie Houbraken & Samson, Persoonia 31: 59. 2013.

207. Penicillium amaliae Visagie, Houbraken & K. Jacobs,

208. Penicillium angulare S.W. Peterson, E.M. Bayer & Wicklow,

209. Penicillium arianeae Visagie, Houbraken & Samson, Persoonia 31: 59. 2013.

210. Penicillium bilaiae Chalab., Bot. Mater. Otd. Sporov. Rast. 6: 165. 1950.

211. Penicillium brocae S.W. Peterson et al., Mycologia 95: 143. 2003.

212. Penicillium cainii K.G. Rivera, Malloch & Seifert, Stud. Mycol. 70: 147. 2011

213. Penicillium daejeonium S.H. Yu & H.K. Sang, J. Microbiol. 51: 537. 2013.

214. Penicillium guanacastense K.G. Rivera, Urb & Seifert, Mycotaxon 119: 324. 2011

215. Penicillium herquei Bainier & Sartory, Bull. Soc. Mycol. France 28: 121. 1912.

216. Penicillium hirayamae Udagawa, J. Agric. Soc. Tokyo 5: 6. 1959

217. Penicillium jacksonii K.G. Rivera, Houbraken & Seifert, Stud. Mycol. 70: 151. 2011.

218. Penicillium johnkrugii K.G. Rivera, Houbraken & Seifert, Stud. Mycol. 70: 151. 2011.

219. Penicillium jugoslavicum C. Ramírez & Munt.-Cvetk., Mycopathologia 88: 65. 1984.

220. Penicillium lilacinoechinulatum S. Abe ex G. Sm., Trans. Brit. Mycol. Soc. 46: 335. 1963

221. Penicillium malachiteum (Yaguchi & Udagawa) Houbraken & Samson, Stud. Mycol. 70:

47. 2011

222. Penicillium mallochii K.G. Rivera, Urb & Seifert, Mycotaxon 119: 322. 2012

223. Penicillium maximae Visagie, Houbraken & Samson, Persoonia 31: 52. 2013

224. Penicillium restingae J.P. Andrade et al., Persoonia 32: 293. 2014

225. Penicillium sclerotiorum J.F.H. Beyma, Zentralbl. Bakteriol. Parasitenk., Abt. 2 96: 418.

1937.

226. Penicillium vanoranjei Visagie, Houbraken & Samson, Persoonia 31: 46. 2013.

227. Penicillium viticola Nonaka & Masuma, Mycoscience 52: 339. 2011

12. Section Stolkia

228. Penicillium boreae S.W. Peterson & Sigler, Mycol. Res. 106: 1112. 2002

229. Penicillium canariense S.W. Peterson & Sigler, Mycol. Res. 106: 1113. 2002.

230. Penicillium donkii Stolk, Persoonia 7: 333. 1973.

231. Penicillium pullum S.W. Peterson & Sigler, Mycol. Res. 106: 1115. 2002.

232. Penicillium stolkiae D.B. Scott, Mycopathol. Mycol. Appl. 36: 8. 1968

233. Penicillium subarcticum S.W. Peterson & Sigler, Mycol. Res. 106: 1116. 2002.

Page 45: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

45

13. Section Thysanophora

234. Penicillium hennebertii Houbraken & Samson, Stud. Mycol. 70: 47. 2011

235. Penicillium longisporum (W.B. Kend.) Houbraken & Samson, Stud. Mycol. 70: 47. 2011

236. Penicillium taxi R. Schneid., Zentralbl. Bakteriol. Parasitenk., Abt. 2 110: 43. 1956

14.Section Torulomyces

237. Penicillium cryptum Goch., Mycotaxon 26: 349. 1986 ≡ Eupenicillium cryptum Goch.,

Mycotaxon 26: 349. 1986

238. Penicillium lagena (Delitsch) Stolk & Samson, Stud. Mycol. 23: 100. 1983

239. Penicillium lassenii Paden, Mycopathol. Mycol. Appl. 43: 266.

240. Penicillium porphyreum Houbraken & Samson, Stud. Mycol. 70: 48. 2011

2. Penicillium subgenus Penicillium

15. Section Brevicompacta

241. Penicillium astrolabium R. Serra & S.W. Peterson, Mycologia 99: 80. 2007

242. Penicillium bialowiezense K.M. Zalessky, Bull. Int. Acad. Polon. Sci.,

243. Penicillium brevicompactum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88. 1901

244. Penicillium buchwaldii Frisvad & Samson, FEMS Microbiol. Lett. 339: 86. 2013.

245. Penicillium fennelliae Stolk, Antonie van Leeuwenhoek 35: 261. 1969.

246. Penicillium kongii L. Wang, Mycologia 105: 1549. 2013

247. Penicillium neocrassum R. Serra & S.W. Peterson, Mycologia 99: 81. 2007.

248. Penicillium olsonii Bainier & Sartory, Ann. Mycol. 10: 398. 1912.

249. Penicillium spathulatum Frisvad & Samson, FEMS Microbiol. Lett. 339: 88. 2013

250. Penicillium tularense Paden, Mycopathol. Mycol. Appl. 43: 264. 1971

16. Section Canescentia

251. Penicillium antarcticum A.D. Hocking & C.F. McRae, Polar Biol. 21: 103. 1999

252. Penicillium atrovenetum G. Sm., Trans. Brit. Mycol. Soc. 39: 112. 1956.

253. Penicillium canescens Sopp, Skr. Vidensk.-Selsk. Christiana Math.- 11: 181. 1912.

254. Penicillium canis S.W. Peterson, J. Clin. Microbiol. (in press)

255. Penicillium coralligerum Nicot & Pionnat, Bull. Soc. Mycol. 78: 245. 1963 [1962].

256. Penicillium dunedinense Visagie, Seifert & Samson, Stud. Mycol. 78: 121. 2014.

257. Penicillium janczewskii K.M. Zalessky, Bull. Int. Acad. Polon. Sci.,

258. Penicillium jensenii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., 1927.

259. Penicillium novae-zeelandiae J.F.H. Beyma, Antonie van Leeuwenhoek 6: 275. 1940.

260. Penicillium yarmokense Baghd., Novosti Sist. Nizsh. Rast. 5: 99. 1968

17. Section Chrysogena

261. Penicillium allii-sativi Frisvad, Houbraken & Samson, Persoonia 29: 89. 2012.

262. Penicillium chrysogenum Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 58. 1910.

263. Penicillium confertum (Frisvad, Filt. & Wicklow) Frisvad, Mycologia 81: 852. 1990

Page 46: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

46

264. Penicillium desertorum Frisvad, Houbraken & Samson, Persoonia 29: 90. 2012.

265. Penicillium dipodomyis (Frisvad, Filt. & Wicklow) Banke, Firsvad & S. Rosend, Int. Mod.

Meth. Pen. Asp. Clas. 270. 2000

266. Penicillium egyptiacum J.F.H. Beyma, Zentralbl. Bakteriol. Parasitenk., Abt. 2 88: 137. 1933

267. Penicillium flavigenum Frisvad & Samson, Mycol. Res. 101: 620. 1997

268. Penicillium glycyrrhizacola A.J. Chen, B.D. Sun & W.W. Gao, PloS ONE 8: e78285-P3.

2013.

269. Penicillium goetzii J. Rogers et al., Persoonia 29: 92. 2012.

270. Penicillium halotolerans Frisvad, Houbraken & Samson, Persoonia 29: 92. 2012.

271. Penicillium kewense G. Sm., Trans. Brit. Mycol. Soc. 44: 42. 1961.

272. Penicillium lanosocoeruleum Thom, Penicillia: 322. 1930

273. Penicillium mononematosum (Frisvad, Filt. & Wicklow) Frisvad, Mycologia 81: 857. 1990

274. Penicillium nalgiovense Laxa, Zentralbl. Bakteriol. Parasitenk., Abt. 2 86: 160. 1932

275. Penicillium persicinum L. Wang et al., Antonie van Leeuwenhoek 86: 177. 2004

276. Penicillium rubens Biourge, Cellule 33: 265. 1923.

277. Penicillium sinaicum Udagawa & S. Ueda, Mycotaxon 14: 266. 1982

278. Penicillium tardochrysogenum Frisvad, Houbraken & Samson, Persoonia 29: 93. 2012.

279. Penicillium vanluykii Frisvad, Houbraken & Samson, Persoonia 29: 97. 2012

18. Section Digitata

280. Penicillium digitatum (Pers.: Fr.) Sacc., Fung. Ital.: tab. 894. 1881

19. Section Eladia

281. Penicillium sacculum E. Dale, Ann. Mycol. 24: 137. 1926

282. Penicillium senticosum D.B. Scott, Mycopathol. Mycol. Appl. 36: 5. 1968

20. Section Fasciculata.

283. Penicillium albocoremium (Frisvad) Frisvad, Int. Mod. Tax. Meth. Pen. Asp. Clas.: 275.

2000

284. Penicillium allii Vincent & Pitt, Mycologia 81: 300. 1989 285. Penicillium aurantiogriseum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88. 1901.

286. Penicillium biforme Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 54. 1910

287. Penicillium camemberti Thom, U.S.D.A. Bur. Animal Industr. Bull. 82: 33. 1906.

288. Penicillium caseifulvum Lund, Filt. & Frisvad, J. Food Mycol. 1: 97. 1998.

289. Penicillium cavernicola Frisvad & Samson, Stud. Mycol. 49: 31. 2004.

290. Penicillium commune Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 56. 1910.

291. Penicillium crustosum Thom, The Penicillia: 399. 1930

292. Penicillium cyclopium Westling, Ark. Bot. 11: 90. 1911

293. Penicillium discolor Frisvad & Samson, Antonie van Leeuwenhoek, 72: 120. 1997.

294. Penicillium echinulatum Raper & Thom ex Fassat., Acta Univ. Carol., Biol. 1974: 326. 1977.

295. Penicillium freii Frisvad & Samson, Stud. Mycol. 49: 28. 2004

296. Penicillium hirsutum Dierckx, Ann. Soc. Sci. Bruxelles 25: 89. 1901.

297. Penicillium hordei Stolk, Antonie van Leeuwenhoek 35: 270. 1969.

298. Penicillium melanoconidium (Frisvad) Frisvad & Samson, Stud. Mycol. 49: 28. 2004

Page 47: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

47

299. Penicillium neoechinulatum (Frisvad, Filt. & Wicklow) Frisvad & Samson, Stud. Mycol.

49: 28. 2004

300. Penicillium nordicum Dragoni & Cantoni ex C. Ramírez, Adv. Penicillium

Aspergillus Syst.: 139. Antonie van Leeuwenhoek 40: 1. 1974.

301. Penicillium osmophilum Stolk & Veenb.-Rijks, Antonie van Leenwenhoek 40: 1. 1974

302. Penicillium palitans Westling, Ark Bot. 11: 83. 1911

303. Penicillium polonicum K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927:

445. 1927

304. Penicillium radicicola Overy & Frisvad, Syst. Appl. Microbiol. 26: 633. 2003.

305. Penicillium solitum Westling, Ark. Bot. 11: 65. 1911.

306. Penicillium thymicola Frisvad & Samson, Stud. Mycol. 49: 29. 2004

307. Penicillium tricolor Frisvad et al., Can. J. Bot. 72: 937. 1994

308. Penicillium tulipae Overy & Frisvad, Syst. Appl. Microbiol. 26: 634. 2003

309. Penicillium venetum (Frisvad) Frisvad, Adv. Penicillium Aspergillus Syst.: 275. 2000

310. Penicillium verrucosum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88. 1901

311. Penicillium viridicatum Westling, Ark. Bot. 11: 88. 1911

21. Section Paradoxa

312. Penicillium atramentosum Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 65. 1910.

313. Penicillium crystallinum (Kwon-Chung & Fennell) Samson et al., (published here)

314. Penicillium magnielliptisporum Visagie, Seifert & Samson, Stud. Mycol. 78: 127. 2014.

315. Penicillium malodoratum (Kwon-Chung & Fennell) Samson et al., (published here)

316. Penicillium mexicanum Visagie, Seifert & Samson, Stud. Mycol. 78: 125. 2014

317. Penicillium paradoxum (Fennell & Raper) Samson et al., (published here)

22. Section Penicillium

318. Penicillium brevistipitatum L. Wang & W.Y. Zhuang, Mycotaxon 93: 234. 2005

319. Penicillium clavigerum Demelius, Verh. Zool.-Bot. Ges. Wien 72: 74. 1923.

320. Penicillium concentricum Samson, Stolk & Hadlock, Stud. Mycol. 11: 17. 1976

321. Penicillium coprobium Frisvad, Mycologia 81: 853. 1990.

322. Penicillium coprophilum (Berk. & M.A. Curtis) Seifert & Samson, Adv. Penicillium

Aspergillus Syst.: 145. 1985

323. Penicillium dipodomyicola (Frisvad, Filt. & Wicklow) Frisvad, Int. Mod. Meth. Pen. Asp.

Clas.: 275. 2000.

324. Penicillium expansum Link, Mag. Ges. Naturf. Freunde Berlin 3: 16. 1809.

325. Penicillium formosanum H.M. Hsieh, H.J. Su & Tzean, Trans. Mycol. Soc. Republ. China

2: 159. 1987.

326. Penicillium gladioli L. McCulloch & Thom, Science 67: 217. 1928

327. Penicillium glandicola (Oudem.) Seifert & Samson, Adv. Penicillium Aspergillus Syst.: 147.

1985 .

328. Penicillium griseofulvum Dierckx, Ann. Soc. Sci. Bruxelles 25: 88. 1901

329. Penicillium italicum Wehmer, Hedwigia 33: 211. 1894

330. Penicillium marinum Frisvad & Samson, Stud. Mycol. 49: 20. 200

331. Penicillium sclerotigenum W. Yamam., Sci. Rep. Hyogo Univ Agric. 1: 69. 1955

332. Penicillium ulaiense H.M. Hsieh, H.J. Su & Tzean, Trans. Mycol. Soc. Rep. China 2: 161.

1987.

Page 48: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

48

333. Penicillium vulpinum (Cooke & Massee) Seifert & Samson, Adv. Penicillium

Aspergillus Syst.: 144. 1985

23. Section Ramosa

334. Penicillium jamesonlandense Frisvad & Overy, Int. J. Syst. Evol. Microbiol. 56: 1435. 2006.

335. Penicillium kojigenum G. Sm., Trans. Brit. Mycol. Soc. 44: 43. 1961.

336. Penicillium lanosum Westling, Ark. Bot. 11: 97. 1911.

337. Penicillium lenticrescens Visagie, Seifert & Samson, Stud. Mycol. 78: 123. 2014.

338. Penicillium raistrickii G. Sm., Trans. Brit. Mycol. Soc. 18: 90. 1933

339. Penicillium ribium Frisvad & Overy, Int. J. Syst. Evol. Microbiol. 56: 1436. 2006

340. Penicillium sajarovii Quintan., Av. Aliment. Majora Anim. 22: 539. 1981.

341. Penicillium scabrosum Frisvad, Samson & Stolk, Persoonia 14: 177. 1990.

342. Penicillium simile Davolos et al., Int. J. Syst. Evol. Microbiol. 62: 457. 2012.

343. Penicillium soppii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 476.

1927.

344. Penicillium swiecickii K.M. Zalessky, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927:

474. 1927.

345. Penicillium virgatum Nirenberg & Kwasna, Mycol. Res. 109: 977. 2005

24. Section Roquefortorum

346. Penicillium carneum (Frisvad) Frisvad, Microbiology, UK, 142: 546. 1996

347. Penicillium paneum Frisvad, Microbiology 142: 546. 1996

348. Penicillium psychrosexualis Houbraken & Samson, IMA Fungus 1: 174. 2010

349. Penicillium roqueforti Thom, U.S.D.A. Bur. Animal Industr. Bull. 82: 35. 1906

25. Section Turbata

350. Penicillium bovifimosum (Tuthill & Frisvad) Houbraken & Samson, Stud. Mycol. 70: 47.

2011

351. Penicillium madriti G. Sm., Trans. Brit. Mycol. Soc. 44: 44. 1961.

352. Penicillium turbatum Westling, Ark. Bot. 11: 128. 1911

Section unclassified 353. Penicillium alfredii Visagie, Seifert & Samson, Stud. Mycol. 78: 116. 2014.

354. Penicillium griseolum G. Sm., Trans. Br. Mycol. Soc. 40: 485. 1957

Page 49: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

49

4. Morphology of Penicillium species

Media and stock solutions used for morphological characterization (C.M. Visagie et al.

(2014)

Czapek's agar (CZ,Raper & Thom 1949)

Czapek concentrate 10 ml

Sucrose 30 g

Trace elements stock solution 1 ml

Agar 20 g

dH2O 1000 ml

*Mix well and autoclave at 121 °C for 15 min.

Czapek Yeast Autolysate agar (CYA,

Pitt 1979)

Czapek concentrate 10 ml

Sucrose 30 g

Yeast extract (Difco) 5 g

K2HPO4 1 g

Trace elements stock solution 1 ml

Agar 20 g

dH2O 1000 ml

*Mix well and autoclave at 121 °C for 15 min.

pH 6.2 ± 0.2.

Czapek Yeast Autolysate agar with

5 % NaCl (CYAS)

Czapek concentrate 10 ml

Sucrose 30 g

Yeast extract (Difco) 5 g

K2HPO4K2HPO4 1 g

Trace elements stock solution 1 ml

NaCl 50 g

Agar 20 g

dH2OdH2O 1000 ml

*Mix well and autoclave at 121 °C for 15 min. pH 6.2 ± 0.2.

Page 50: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

50

Malt Extract agar (MEA,Samson et al. 2010)

Malt extract (Oxoid CM0059) 50 g

Trace elements stock solution 1 ml

dH2O 1000 ml

*Mix well and autoclave at 115 °C for 10 min. pH 5.4 ± 0.2.

Oatmeal agar (OA,Samson et al. 2010)

Oatmeal / flakes 30 g

Trace elements stock solution 1 ml

Agar 20 g

dH2O 1000 ml

*First autoclave flakes (121 °C for 15 min) in 1000 ml dH2O. Squeeze mixture through

cheese cloth and use flow through, topping up to 1000 ml with dH2O with 20 g agar.

Autoclave at 121 °C for 15 min. pH 6.5 ± 0.2.

Yeast extract sucrose agar (YES,Frisvad 1981)

Yeast extract (Difco) 20 g

Sucrose 150 g

MgSO4·7H2O 0.5 g

Trace elements stock solution 1 ml

Agar 20 g

dH2O 885 ml

*Mix well and autoclave at 121 °C for 15 min. pH 6.5 ± 0.2.

YES is the recommended medium for extrolite

profiling of species.

Creatine sucrose agar (CREA,Frisvad 1981)

Sucrose 30 g

Creatine·1H2O 3 g

K3PO4·7H2O 1.6 g

MgSO4·7H2O 0.5 g

KCl 0.5 g

FeSO4·7H2O 0.01 g

Trace elements stock solution 1 ml

Bromocresol purple 0.05 g

Agar 20 g

dH2O 1000 ml

*Mix well and autoclave at 121 °C for 15 min. pH

Page 51: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

51

8.0 ± 0.2.

Acid production is observed by the colour reaction in CREA (from purple to yellow).

For consistent conidial colours, the addition of zinc-sulphate and copper-sulphate as

trace elements (1 g ZnSO4.7H2O and 0.5 g CuSO4.5H2O in 100 ml distilled water) is of

utmost importance

4.1. Macromorphology of Penicillium species

1. Growth rate

Some species, e.g. P. wellingtonense, grow very restricted on CYA (5–15 mm), while

others grow rapidly (P. sumatrense, P. decaturense, P. quebecense, 30–45 mm).

P. wellingtonense P. sumatrense

The growth rate and size of the colonies may vary also in the same species, when grown

on different media at the same temperature and for the same period, e,g, in case of P.

brasilianum FKI-3368. colonies grown at 25 °C for 7 days.on CYA(a) on malt extract

agar (b) on 25% glycerol nitrate agar (c).

www.nature.com Junji Inokoshi et al., Journal of Antibiotics 66, 37-41 (January 2013) |

Page 52: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

52

Incubation temperature affects growth rate and size of the colonies of the the same

species on the same medium, e.g. P. wellingtonense has maximum growth temperatures

at or below 30 °C and an optimum between 21 and 24 °C. on CYA

21°C 24°C 27°C 30°C 33°C 36°C 37°C

P. wellingtonense Houbraken et al.,Stud Mycol. 2011 Nov 15; 70(1): 53–138.

Other species, e.g. P. decaturense. grows well at 30 °C (5–15 mm) optimum and

maximum growth temperatures between 21 and 24 °C and even at 30°C

21°C 24°C 27°C 30°C 33°C 36°C 37°C

P. decaturense Houbraken et al.,Stud Mycol. 2011 Nov 15; 70(1): 53–138.

Other species, e.g. P. citrinum, on the other hand, can grow at 37°C

21°C 24°C 27°C 30°C 33°C 36°C 37°C

P. citrinum Houbraken et al.,Stud Mycol. 2011 Nov 15; 70(1): 53–138.

The size of the colony depends on the space available for the growth, when the fungus

is cultured as one inoculum in the centre the colony spreads and covers the whole

surface, when several inocula are inoculated the colonies are smaller and are equal in

sizes and none of the colonies overgrows the neighbouring colonies as in the following

figures:

Page 53: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

53

www.austincc.edu www.pinterest.com en.wikipedia.org

2. Appearance and texture of colonies

Velvety colonies are regarded as velvety or velutinous if all, or nearly all, of the

vegetative hyphae are submerged in the nutrient sub- stratum, and if the conidiophores

rise above the surface in a fairly dense and even stand. Such colonies give the

appearance of a surface of velvet, or of a field of grain in miniature. Velvety colonies

are, as a rule, comparatively thin but may, upon occa- sion, range up to 0.5 to 1.0 mm.

or more in depth, Colonies of this type are characteristically produced in such species as

Penicillium frequentans, P. oxalicum, P. roqueforti and P. chrysogenum

P. frequentans, P. oxalicum, P. roqueforti P. chrysogenum

Floccose or lanose colonies produce a cottony mass of branching and interlacing

hyphae evenly or unevenly over the surface of the nutrient medium. At a characteristic

period in their development., Example: Penicillium camemherti. It may be floccose to

funiculose as in case of Penicillium citreonigrum, fasciculate as in P. gladioli

Page 54: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

54

P.

camemherti P. citreonigrum P. gladioli

Fasciculate or Coremiform colonies: the marginal areas of rapidly growing colonies to

be rough or granular. Microscopic examination in such cases shows that the rough or

mealy appearance is due to the aggregation or fasciculation of conidiophores. In some

species, fascicles may be at first clearly noticeable in marginal colony areas, only to

become largely obscured later by the crowded development of simple conidiophores in

the intervening spaces. In a few cases, , the coremiform structures characteristically

appear late in colony development. In other species, the vast majority of the

conidiophores are from the first aggregated into well- defined fascicles. Occasionally,

conidiophores develop almost exclusively in compact columns, or "stalks", which

produce single integrated conidium-bearing heads, e.g. Penicillium expansum and

Penicillium vulpinum (P. claviforme

Penicillium expansum Penicillium vulpinum

Colonies may be flat, crateriform, subcenter raised with conspicuous zonation or

wrinkled, or may show radial sulcation as in P. simile

Page 55: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

55

P. corylophilum MBL Labs Penicillium glabrum Tzean, SS et al.

P. Chrysogenum fineartamerica.com Penicillium simile, Davolos et al. 2011

3. Colour of colonies

Colours within the genus Penicillium is quite wide:

Colonies may be white, e.g. P. simplicissimum , grey as in P. glabrum, grey or

bluisc grey as in P. menonorum,.

Page 56: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

56

P. simplicissimum P. glabrum P. menonorum, Peterson

The colour may be orange as in as in P. vanoranjei ,orange to pink , e.g. Penicillium

maximae or yellowish brown, e.g. P. thiersi to various grades of brown

P. vanoranjei. Cobus et al. . P. maximae (CBS) P. thiersii Peterson et al., 2004

P. tropicum Houbraken et al P. tropicoides. Houbraken et al

The great majority develop colors in green, e.g. Penicillium expansum , yellow-greens,

e.g. P. chrysogenum, and greyish-greens, e.g Penicillium anatolicum , dark-green or

dull green , e.g. Penicillium atrofulvum , bluish green, e.g. Penicillium spinolosum or

bluish grey

Page 57: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

57

P. crustosum Tzean, SS et al. 1994 P. glaucum P. anatolicum

Many of these Penicillia lose all of their green color in age and assume various shades

of yellowish brown, reddish brown, olive gray as in Penicillium cainii ,to almost fuscous.

Penicillium atrofulvum Penicillium spinolosum Penicillium cainii

The colour of the colonies of the same species differ on the different media

P. glabrum on CYA Tzean, SS et al. 199 P/ glabrum on MEA

P. pinophilum, Satoshi Ohte, 2011

Page 58: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

58

The submerged mycelium of various species shows a series of yellow, orange, red,

brown, lilac colours with occasional green and even black areas appearing. Such colours

are best seen from below and are routinely designated as color of reverse,

or simply "reverse."

4.2. Micromorphology of Penicillium

1. The Conidiophores

Essential data regarding conidiophores include their length, septation, the diameter of

their cells, and especially their origin in relation to the substratum and to each other.

The walls of the conidiophores may be smooth and thin or may be variously roughened,

with aerial portions appearing delicately echinulate, granular, or asperulate. In some

cases, such as Penicillium roqueforti, these may be marked by conspicuous concretions

or warts.

The conidiophore may be simple and unbranched, or variously branched. It may arise

from vegetative hyphae within the substratum or from aerial vegetative hyphae

variously arranged. It may stand alone, or be more or less closely aggregated into

clusters, fascicles, or definite coremia.

Page 59: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

59

fr.wikipedia.org quizlet.com www.studyblue.com www.flickr.com knowledgeclass.blogspot.com

P. spinolosum, MycobankConidiophore stipes 100-300 µm long, smooth- to rough-walled; penicilli monoverticillate

P. roqueforti Mycobank the stipes typically ornamented with conspicuous warts,

P. chrysogenum Mycobank Conidiophores arising from the substrate, mononematous, usually ter- to

quaterverticillate, in some strains more-stage branched;

P. griseofulvum, Mycobank: smooth-walled, hyaline, irregular ter- to quaterverticillate, with branches strongly divergent.

Stipes undulate,

Page 60: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

60

2. The penicillus (German: "pinsel") is understood to cover the whole branching system

and is measured from the lowest branch upon the main axis to the tips of the sterigmata,

or conidium bearing cells.

Morphological structures and types of conidiophore branching in Penicillium. a. simple; b. one-stage

branched; c. two-stage branched; d. three-stage branched (Samson et al., 1984).

Typical monoverticillate penicillus consists of a terminal verticil of sterigmata only.

Typical asymmetric penicillus as seen in P. expansum, shows metulae and branches

below the sterigmata.

3. The Sterigmata (Phialides)

The differentiated conidium-producing cell, characteristic of Penicillium and related

genera, is variously named the sterigma (plural, sterig- mata). The sterigma as it

applies to the Penicillia, may be defined as a transformed and highly differentiated cell

with a tubular body of fairly typical length and diameter that is characteristically

narrowed to a conidium producing tube, or tip, from which unicellular conidia are cut

off successively to form a chain of varying length, depending upon the species and the

conditions of culture. The resulting chain is characterized by fully ripe cells at its distal

end and developing cells at its base, and may contain up to several hundred conidia.

Page 61: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

61

pinterest.com aem.asm.orgwww. pixgood.com Scanning electron microscope (SEM) image of a spore-forming conidiophore of the fungus Penicillium

...

The number of sterigmata in the verticil may be few and readily deter-

minable, or suflficiently large to render determination entirely impractic-

The first sterigma in a verticil is a terminal cell which becomes transformed into a spore

producing organ, the second pushes out from the cell below at the base of the first, and

successive sterigmata bud out to form a whorl, verticil or cluster, on the apex of the

main axis or some secondary branch thereof. The apex may be unchanged in size or

variously enlarged toward the appearance and proportions of the vesicle of a small

Aspergillus as in the following species.

Penicillium paradoxum. Penicillium crystallinum Penicillium malodoratum.

Visagie et al.,Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 2014,

Page 62: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

62

4. The metulae

The cells bearing the sterigmata in biverticillate forms are known as metulae . These are

characteristically borne in a terminal verticil on the main axis of the conidiophore, or on

the main axis and one or more branches from it. If we accept the sterigma as the primary

conidium-producing organ, the term metula may properly be restricted to apply to the

characteristically differentiated members of the second series of branches, each

supporting a group or verticil of sterigmata. They have

been variously termed branches, basidia, secondary sterigmata and finally metulae by

Westling (1911).

The metulae usually follow closely the diameter of the conidiophore and whatever

branches it may produce; less commonly they may become- spicuously smaller in

diameter. They are often somewhat enlarged at the tip. In length they may vary quite

appreciably or be more or less constant depending upon the species and strain. They

generally average a little longer than the sterigmata and their arrangement is fairly

characteristic of the species. Variations in shape are usually such as may be attributed

to the effect of crowding several elongated cells into a compact verticil upon the apex of

the fertile branch. Whenever the walls of the conidiophore are smooth, those of the

metulae are also consistently smooth. When the walls of the conidiphore are pitted or

rough, the walls of the metulae may or may not be similarly roughened.

Metulae, zean, SS et al. 1994

Page 63: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

63

5. The branches (rami)

In the larger penicilli produced by some of the Asymmetrica, where more than one

verticil of metulae is developed, the cells, other than the main axis which bear such

metulae, are referred to as branches. In certain species the penicillus is usually typified

by a single branch; in others one or more branches may be produced. Biourge referred

to branches as rami.

Branches in P. brevicompactum, P. griseofulvum.Mycobank and Penicillium hirsutum, Tzean, SS et al.

6. The conidia

According to surface ornamentation, conidia have been classified by Martinez et al.

(1982) into six groups:

A, smooth-walled (7% of the species);

B, delicately roughened (13%);

C, warty (28%);

D, echinate 910%);

E, striate with low irregular ridges (36%); and

F, striate with scarce high ridges or bars (6%).

Whereas the first two groups are closely related in both shape and average size, a

gradual reduction was observed in size and in the length/width (l/w) ratio in the

remaining groups. Echinate conidia were globose, having the largest average size. Only

four species produced conidia not surpassing 2 micrometers in diameter. Maximum

length observed was 8 micrometers, and most elongated conidia had a l/w ratio of 3.5.

Forty per cent of the species studied had globose conidia. Conidia of the

monoverticillate species were generally smaller, more globose and frequently with

ridges. In the Asymmetrica, the conidia were generally larger, and showed ridges in

comparatively few species. Conidia of the Symmetrica, which were frequently striate

with ridges, presented the most elongated forms. The largest average size was found in

Page 64: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

64

the conidia of the Polyverticillata which were generally warty. Finally, we have

considered the variations in surface ornamentation of conidia during the evolution of the

genus Penicillium and drawn attention to their possible relationship with certain habitats

and ways of conidial dispersion.

P. citrinum Penicillium anatolicum Conidia globose to subglobose, smooth Conidia globose, finely roughened

Penicillium cosmopolitanum. Penicillium steckii Conidia globose, rough, Conidia broadly ellipsoidal, slightly fusiform, smooth

Penicillium calidicanium J.L. Chen et al . 2002. P spinulosum

conidia ellipsoidal to fusiform, rarely subglobose, conidia spherical, sub-spheroidal, spinose, spinulose

Page 65: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

65

roughened or spiral-striated,

P. echinulatum Conidia echinate Conidia of P. glaucum P. chrysogenum conidia

Mycobank www.gatan.com pixshark.com

pixgood.com www.phylomedb.org www.sciencephoto.com www.wallpaperdownloader.com

long chain conidia of Penicillium species

Page 66: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

66

5. Extrolites produced by various Penicillium species

5.1. Antibiotics:

1.1. Penicillin:

P. chrysogenum, P. flavigenum, P. nalgiovense, P. dipodomyis , P. griseofulvum

1.2. Griseofulvin : P. aethiopicum, P. coprophilum , P. dipodomyicola , P. griseofulvum , P. persicinum , P. sclerotigenum

5.2. Anti-cancer:

2.1. Andrastin A : Penicillium species including Penicillium albocoremium[, . P. crustosum , P. allii , P. peneum,

P.radicola, P. roqueforti,., P. tulpae,

2.2. Asperphenamate: Penicillium buchwaldii and Penicillium spathulatum

2.3. Asteric acid: P glabrum, P. vulpinum

2.4. Barceloneic acid B : Penicillium albocoremium

2.5. Bredinin:

P. brefeldianum. , P. decumbens, P.cyaneum, P. simplicissimum,

P. ehrlichii, P. piscarium

2.6. Chrysophanic acid, also known as chrysophanol:

Penicillium islandicum, Penicillium citrinum, P. wortmanii

2.7. Chaetoglobosin A: Penicillium aurantiogriseum, Penicillium expansum:, P. marinum, P. discolor

2.8. Chrysophanol: P. islandicum, P. wortmannii

2.9. Citromycin : Penicillium glabrum, P. biliae, Penicillium bilaii . Penicillium striatisporum 2.10. Communesins : Penicillium expansum , Penicillium marinum,

Penicillium buchwaldii,Penicillium waksmanii , Penicillium simplicissimum .Penicillium

rivulum.. 2.11. Compactin: Penicillium brevicompactum., Penicillium aurantiogriseum , P. cyclopium, P. hirsutum,

P. solitum, P. lanosum, P. janczewskii, Penicillium citrinum

2.12. Cyclopiazonic acid: P. camemberti, P. commune, P. dipodomyicola, P. griseofulvum and P. palitans

Page 67: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

67

2.13. Duclauxin: Penicillium duclauxii, Penicillium herquei

2.14. Dehydroaltenusin:

Penicillium verruculosum , Penicillium simplicissimum

2.15. Emodin: Penicillium islandicum, P. brunneum, P. janthinellum, Penicillium herquei 2.16. Fumagillin: Penicillium janczewski, P. soppii, Penicillium ribium, Penicillium jensenii.

2.17. Gladiolic acid: Penicillium gladioli 2.18. Gliotoxin : P. glabrum, P. corylophilum 2.19. Mycophenolic acid :

Penicillium stoloniferum., Penicillium roqueforti, Penicillium brevicompactum,

Penicillium pinophilum , P. bialowiezense, P. carneum, P. rugulosum

2.20. Neooxalin : Penicillium oxalicum 2.21. Oxaline: Penicillium paraherquei

2.22. Paclitaxel: Penicillium raistrickii , Penicillium aurantiogriseum 2.23. Paxilline: Penicillium paxilli

2.24. Pentostatin : Penicillium sclerotigenum, P. marinum 2.25. Secalonic acid D: Penicillium oxalicum,Penicillium isariiforme, P. chrysogenum

2.26. Sesquiterpene Quinone, named penicilliumin A,

Penicillium sp. F00120

2.27. Verruculogen: Penicillium verruculosum. Penicillium estinogenum

Penicillium simplicissimum, Penicillium raistrickii, Penicillium paxilli

2.28. Wortmannin: Penicillium funiculosum, Penicillium wortmannii

Page 68: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

68

5. 3. Penicillium pigments 3.1. Blue pigments: P. herquei, P. chrysogenum, Penicillium expansum, Penicillium oxalicum

3.2. Blue-green: Penicillium roqueforti, P. aurantiogriseum

3.3. Yellow pigments: P. citrinum, P. chrysogenum, P.oxalicum, P. herquei, P. echinulatum. P. brevicompactum, P.

atrovenetum, P. atrosanguineum, Penicillum sclerotiorum

3.4. Orange pigments: P. viridicatum, P. freii, P. cyclopium

3.5. Reddish-brown pigments: P. viridicatum, P. freii, P. cyclopium

3.6. Brown pigments: Penicillium chrysogenum

3.7. Dark brown:

P. atramentosum

3.8. Red pigments:

P. paneum, P.oxalicum, P. herquei, P. atrovenetum, P. atrosanguineum, Penicillium phoeniceum

3.9. Cherry red pigments: P. persicinum

3.10.Peach-red pigment: Penicillium persicinum

5.4. Enzymes 4.1. Cellulases: P. brasilianum , P. chrysogenum , P. decumbens, Penicillium janthinellum, P. occitanis ,

4.2. β-glucanase enzyme: Penicillium oxalicum, Penicillium oxalicum and Penicillium citrinum, Penicillium miczynskii, Penicillium simplicissimum, Penicillium crustosum,

4.3. Pectinase enzyme: Penicillium chrysogenum, Penicillium oxalicum

4.4. Protease enzyme: Penicillium janthinellum, Penicillium roqueforti

4.5. Lipase enzyme: Penicillium expansum , Penicillium camembertii

4.6. a-Amylase enzyme: P. chrysogenum, Penicillium expansum, Penicillium fellutanum

4.7. Xylanase enzyme:

Page 69: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

69

Penicillium sclerotiorum

4.8. Endoglucanase enzyme: Penicillium atrovenetum

4.9. Xylanase enzyme: Penicillium janczewskii , P. janthinellum

4.10. β-Xylosidase enzyme: Penicillium janczewskii

4.11. Penicillopepsin-JT2: Penicillium janthinellum

4.12. Nuclease P enzyme : Penicillium citrinum

5.5. Mycotoxins 5.1. Aflatoxin : P. polonicum 5.2. Anacine:

P. aurantiogriseum, P. nordicum

5.3. Asteltoxin: P. cavernicola, P. concentricum, P. confertum, P. formosanum and P. tricolor.

5.4. Auranthine: P. aurantiogriseum

5.5. Aurantiamine:

P. aurantiogriseum, P. freii

5.6. Botryodiploidin: P. brevicompactum and P. paneum

5.7. Brevianamide A: P. brevicompactum, P. viridicatum

5.8. Chaetoglobosin A, B: P. discolor, P. expansum

5.9. Chrysogine: P. chrysogenum, P. nalgiovense 5.10. Citrinin: P. citrinum , P. expansum, P. radicicola and P. verrucosum. 5.11. Citromycetin: P. glabrum

5.12. Communesins: P. expansum

5.13. Compactins: P. solitum

5.14. Cyclochlorotine:

Page 70: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

70

P. islandicum

5.15. Cyclopaldic acid: P. commune

5.16. Cyclopenin: P. aurantiocandidum, P. crustosum, P. discolor, P. echinulatum, P. freii, P. polonicum, P. solitum

5.17. Cyclopenol: P. aurantiocandidum, P. crustosum, P. discolor, P. echinulatum, P. freii, P. polonicum, P. solitum

5.18. Cyclopiazonic acid: P. camemberti, P. commune, P. dipodomyicola, P. griseofulvum and P. palitans 5.19. Emodin: P. islandicum

5.20. Erythroskyrin: P. islandicum

5.21. Fumitremorgin A* & B: P. brasilianum, P. palitans

5.22. Islanditoxin: P. islandicum

5.23. Isofumigaclavine A & B: P. roqueforti

5.24. Italicic acid: P. italicum

5.25. Luteoskyrin: P. islandicum

5.26. Marcfortines: P. paneum

5.27. Meleagrin: P. chrysogenum

5.28. Mycophenolic acid: Penicillium stoloniferum, Penicillium roqueforti, Penicillium brevicompactum, Penicillium pinophilum , P. bialowiezense, P. carneum, P. rugulosum

5.29. Ochratoxin A: P. nordicum, P. verrucosum

5.30. Oxaline: P. atramentoseum, P. oxalicum

5.31. Patulin: P. carneum, clavigerum, P. concentricum, P. coprobium , P. dipodomyicola , P. expansum, P. glandicola, P. gladioli, P. griseofulvum, P. marinum, P. paneum,, P. sclerotigenum and P. vulpinum.

5.32. Penitrem A: P. carneum, P. clavigerum, P. crustosum, P. flavigenum, P. glandicola, P. melanoconidium and P. tulipae.

5.33. Penicillic acid:

Page 71: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

71

P. aurantiogriseum, P. aurantiocandidum, P. brasilianum, P. carneum, P. cyclopium, P. freii, P. melanoconidium, P. neoechinulatum, P. polonicum, P. radicicola, P. tulipae and P.viridicatum

5.34. Penitrem A: P. crustosum, P. melanoconidium

5.35. PR-toxin : P. chrysogenum and P. roqueforti.

5.36. Puberulic acid: P. aurantiocandidum

5.37. Raistrick phenols: P. brevicompactum

5.38. Roquefortine C: P. carneum, P. chrysogenum, P. crustosum, P. expansum, P. griseofulvum, P. hirsutum, P. hordei, P. melanoconidium, P. paneum, P. roqueforti

5.39. Rubratoxin: P. crateriforme

5.40. Rugulosin: P. islandicum, P. rugulosum, P. variabile

5.41. Rugulovasine A & B: P. crateriforme, P. atramentoseum, P. commune

5.42. Secalonic acid A: P. chrysogenum and P. confertum

5.43. Secalonic acid D & F: P. oxalicum 5.44. Spiculisporic acid: P. crateriforme

5.46. Tanzawaic acid A: P. citrinum

5.47. Terrestric acid: P. crustosum, P. hirsutum, P. hordei

5.48. Territrems: P. cavernicola and P. echinulatum. 5.49. Tryptoquivalins: P. digitatum

5.50. Verrucins: P. verrucosum

5.51. Verrucologen: P. brasilianum

5.52. Verrucolone: P. italicum, P. nordicum, P. olsonii, P. verrucosum

5.53. Verrucosidin: P. aurantiogriseum, P. melanoconidium, P. polonicum

5.54. Viomellein:

Page 72: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

72

P. clavigerum, P. cyclopium, P. freii, P. melanoconidium, P. tricolor and P. viridicatum

5.55. Vioxanthin: P. clavigerum, P. cyclopium, P. freii, P. melanoconidium, P. tricolor and P. viridicatum Viridic acid: P. nordicum and P. viridicatum

5.56. Viridicatumtoxin: P. brasilianum, P. aethiopicum.

5.57. Xanthomegnin: P. clavigerum, P. cyclopium, P. freii, P. melanoconidium, P. tricolor and P. viridicatum.

6. Molecular genetics of Penicillium

6.1. Genome sequencing

6.1.1. P. chrysogenum

van den Berg et al. (2008) sequenced the 32.19 Mb genome of P. chrysogenum

Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin

production. DNA microarrays were used to compare the transcriptomes of the

sequenced strain and a penicillinG high-producing strain, grown in the presence and

absence of the side-chain precursor phenylacetic acid. Transcription of genes involved

in biosynthesis of valine, cysteine and alpha-aminoadipic acid-precursors for penicillin

biosynthesis-as well as of genes encoding microbody proteins, was increased in the

high-producing strain. Some gene products were shown to be directly controlling beta-

lactam output. Many key cellular transport processes involving penicillins and

intermediates remain to be characterized at the molecular level. Genes predicted to

encode transporters were strongly overrepresented among the genes transcriptionally

upregulated under conditions that stimulate penicillinG production, illustrating potential

for future genomics-driven metabolic engineering.

Jónás et al. (2014) investigated the catabolism of lactose by

Penicillium chrysogenum. In silico analysis of the genome sequences revealed that P.

chrysogenum features at least five putative β-galactosidase (bGal)-encoding genes at the

annotated loci Pc22g14540, Pc12g11750, Pc16g12750, Pc14g01510 and Pc06g00600.

The first two proteins appear to be orthologs of two Aspergillus nidulans family 2

intracellular glycosyl hydrolases expressed on lactose. The latter three P. chrysogenum

proteins appear to be distinct paralogs of the extracellular bGal from A. niger, LacA, a

family 35 glycosyl hydrolase. The P. chrysogenum genome also specifies two putative

lactose transporter genes at the annotated loci Pc16g06850 and Pc13g08630. These are

orthologs of paralogs of the gene encoding the high-affinity lactose permease (lacpA) in

Page 73: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

73

A. nidulans for which P. chrysogenum appears to lack the ortholog. Transcript analysis

of Pc22g14540 showed that it was expressed exclusively on lactose, whereas

Pc12g11750 was weakly expressed on all carbon sources tested, including D-glucose.

Pc16g12750 was co-expressed with the two putative intracellular bGal genes on lactose

and also responded on L-arabinose. The Pc13g08630 transcript was formed exclusively

on lactose. The data strongly suggest that P. chrysogenum exhibits a dual assimilation

strategy for lactose, simultaneously employing extracellular and intracellular hydrolysis,

without any correlation to the penicillin-producing potential of the studied strains.

6.1.2. Penicillium cyclopium

The complete gene (PG37 lipI) encoding an alkaline lipase (PG37 LipI) was cloned

from the genomic DNA of Penicillium cyclopium PG37 (Zhang et al., 2011). The

cloned PG37 lipI is 2020 bp in length, consisting of 632 bp of the 5' flanking promoter

region and 1388 bp of the downstream fragment that contains 6 exons and 5 short

introns. The promoter region harbours putative TATA box, CAAT box and several

transcription factor binding sites. The open reading frame (ORF) encodes a PG37 LipI

of 285 amino acid residues, which was predicted to contain a 20-aa signal peptide, a 7-

aa propeptide and a 258-aa mature peptide with a conserved motif Gly-X-Ser-X-Gly.

The PG37 LipI showed only 32%, 30%, 28% and 26% identity with lipases of

Aspergillus parasiticus, Penicillium camembertii, Thermomyces lanuginosus and

Rhizomucor miehei, respectively. It was predicted that the main secondary structures of

PG37 LipI are alpha-helix and random coil. Three amino acid residues, Ser132-Asp188-

His241, compose the enzymatic active center in the tertiary structure.

6.1.3. Penicillium digitatum

The complete mitochondrial genome of Penicillium digitatum (Pers.:Fr) Sacc is

reported by Sun et al. (2011). Comparative analysis revealed its close relationship to

mitochondrial genomes of other Penicillium and Aspergillus species, both in gene

content and in arrangement. The intron content of protein coding genes revealed several

differences. The different exon-intron organization of Cytochrome Oxidase Subunit 1

genes indicated their common origin before the divergence of Penicillium and

Aspergillus, and that, largely, their introns were transmitted vertically.

Marcet-Houben (2012) sequenced two strains of P. chrysogenum , which were

isolated in Spain, and another isolated in China. Comparison with the closely-related but

non-phytopathogenic P. chrysogenum revealed a much smaller gene content in P.

digitatum, consistent with a more specialized lifestyle. They showed that large regions

of the P. chrysogenum genome, including entire supercontigs, are absent from P.

digitatum, and that this is the result of large gene family expansions rather than

acquisition through horizontal gene transfer. The analysis of the P. digitatum genome is

Page 74: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

74

indicative of heterothallic sexual reproduction and revealed the molecular basis for the

inability of this species to assimilate nitrate or produce the metabolites patulin and

penicillin.

Sun et al. (2013) sequenced the whole genome of the Penicillium digitatum R1

genotype strain Pd01-ZJU and investigated the genes and DNA elements highly

associated with drug resistance. Variation in DNA elements related to drug resistance

between P. digitatum strains was revealed in both copy number and chromosomal

location, indicating that their recent and frequent translocation might have contributed

to environmental adaptation. In addition, ABC transporter proteins in Pd01-ZJU were

characterized, and the roles of typical subfamilies (ABCG, ABCC, and ABCB) in

imazalil resistance were explored using real-time PCR. Seven ABC proteins, including

the previously characterized PMR1 and PMR5, were induced by imazalil, which

suggests a role in drug resistance.

6.1.4. Penicillium solitum

Eldarov et al. (2012) determined the complete mitochondrial genome sequence of the

compactin-producing fungus Penicillium solitum strain 20-01. The 28 601-base pair

circular-mapping DNA molecule encodes a characteristic set of mitochondrial proteins

and RNA genes and is intron-free. All 46 protein- and RNA-encoding genes are located

on one strand and apparently transcribed in one direction. Comparative analysis of this

mtDNA and previously sequenced but unannotated mitochondrial genomes of several

medically and industrially important species of the Aspergillus/Penicillium group

revealed their extensive similarity in terms of size, gene content and sequence, which is

also reflected in the almost perfect conservation of mitochondrial gene order

in Penicillium and Aspergillus. Phylogenetic analysis based on concatenated

mitochondrial protein sequences confirmed the monophyletic origin of Eurotiomycetes.

6.1.5. Penicillium decumbens

The genomic and secretomic analyses of Penicillium decumbens, that has been used in

industrial production of lignocellulolytic enzymes in China for more than fifteen years,

was ) presented by Liu et al. (2013). Comparative genomics analysis with the

phylogenetically most similar species Penicillium chrysogenum revealed that P.

decumbens has evolved with more genes involved in plant cell wall degradation, but

fewer genes in cellular metabolism and regulation. Compared with the widely used

cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme

system with more diverse components, particularly for cellulose binding domain-

containing proteins and hemicellulases. Further, proteomic analysis of secretomes

revealed that P. decumbens produced significantly more lignocellulolytic enzymes in

the medium with cellulose-wheat bran as the carbon source than with glucose. Gene

Page 75: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

75

curation from four gene predictors yielded 10,021 protein-coding gene models of which

35.2% were well supported by 454 transcriptome sequencing data (100% identity in

full-length Totally, 6,186 proteins were assigned to Gene Ontology (GO) categories.

6.1.6. Penicillium aurantiogriseum

The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene

candidates that may be involved in paclitaxel biosynthesis were identified by

comparison with the 13 known paclitaxel biosynthetic genes in Taxus (Yang et al.,

2014).

6.1.7. P. roqueforti

Hidalgo et al. (2014) have cloned and sequenced a four gene cluster that includes the

ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to

prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the

four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four

silenced mutants overproduce large amounts of mycophenolic acid, an antitumor

compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and

mycophenolic acid production. An eleven gene cluster that includes the above

mentioned four prx genes and a 14-TMS drug/H(+) antiporter was found in

the genome of Penicillium chrysogenum. This eleven gene cluster has been reported to

be very poorly expressed in a transcriptomic study of P. chrysogenum genes under

conditions of penicillin production (strongly aerated cultures). They found that this

apparently silent gene cluster is able to produce PR-toxin in P. chrysogenum under

static culture conditions on hydrated rice medium. Noteworthily, the production of PR-

toxin was 2.6-fold higher in P. chrysogenum npe10, a strain deleted in the 56.8kb

amplifiable region containing the pen gene cluster, than in the parental strain Wisconsin

54-1255 providing another example of cross-talk between secondary metabolite

pathways in this fungus.

Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti

and P. camemberti, and comparison with the penicillin producer P. rubens reveals a

575 kb long genomic island in P. roqueforti--called Wallaby--present as identical

fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is

detected in Penicillium collections exclusively in strains from food environments.

Wallaby encompasses about 250 predicted genes, some of which are probably involved

in competition with microorganisms. The occurrence of multiple recent

eukaryotic transfers in the food environment provides strong evidence for the

importance of this understudied and probably underestimated phenomenon in

eukaryotes (Cheeseman et al., 2014).

Page 76: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

76

6.1.8. P. expansum

Yu et al.(2014) reported the draft genome sequence of P. expansum R19 isolated in

2011 from a decomposing red delicious apple in Carlisle, PA, were inoculated in potato

dextrose broth (PDB) at 25°C for 7 days. Genomic DNA was prepared with a DNeasy

Plant Maxi Kit (Qiagen) according to the manufacturer’s instructions.

Preliminary annotation results demonstrated that the P. expansum R19 genome harbors

10,554 predicted genes, with an average gene length of 1,599 bp. The total length of the

coding sequence (genes) is 16,873,185 bp, which makes up 53.70% of the genome.

There are 120 tRNA genes and 48 5S rRNA genes, respectively, as predicted by

tRNAscan-SE 1.21 (5) and RNAmmer (6). The gene ontology (GO) analysis indicated

that a total of 6,831 proteins fall in 985 major GO terms. It is estimated that there are 59

gene clusters putatively involved in the biosynthesis of secondary metabolites, as

predicted by SMURF (7). This is similar to the result predicted by the AntiSMASH

program (8), which resulted in 57 clusters. It is expected to identify groups of genes that

are putatively involved in spore germination and fungal mycelial growth, as well as

genes involved in mycotoxin biosynthesis

Li et al. (2015) reported the whole genome sequence of P. expansum (33.52 Mb) and

P. italicum (28.99 Mb), and identified differences in genome structure, important

pathogenic characters, and secondary metabolite (SM) gene clusters

in Penicillium species. They identified a total of 55 gene clusters potentially related to

secondary metabolism, including a cluster of 15 genes (named PePatA ~ O), that may

be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that

PePatL and PePatK play crucial roles in the biosynthesis of patulin, and that patulin

production is not related to virulence of P. expansum. Collectively, P. expansum

contains more pathogenic genes and SM gene clusters, in particular an intact patulin

cluster, than P. italicum or P. digitatum. These findings provide important information

relevant to understanding the molecular network of patulin biosynthesis and

mechanisms of host-specificity in Penicillium species.

The genomes of three Penicillium expansum strains, the main postharvest pathogen of

pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit,

were sequenced and compared with 24 other fungal species (Ballester et al., 2015). A

genomic analysis of gene clusters responsible for the production of secondary

metabolites was performed. Putative virulence factors in P. expansum were identified

by means of a transcriptomic analysis of apple fruits during the course of infection.

Despite a major genome contraction, P. expansum is the Penicillium species with the

largest potential for the production of secondary metabolites. Results using knockout

Page 77: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

77

mutants clearly demonstrated that neither patulin nor citrinin are required by P.

expansum to successfully infect apples.

6.2. Genetic transformation

6.2.1. Penicillium nordicum

A gfp reporter gene strain of Penicillium nordicum was constructed by Schmidt-Heydt

et al. (2009) in order to be able to study the influence of environmental parameters on

ochratoxin A biosynthesis. To introduce the gfp gene an Agrobacterium tumefaciens

mediated transformation system (ATMT) for P. nordicum was established resulting in a

transformation efficiency of about 60 transformants per microg of DNA. The selection

principle was based on the hygromycin B resistance gene located on the TI-DNA

fragment of the binary vector system. PCR and Southern blot hybridization revealed

that the TI-DNA was integrated into the chromosome of P. nordicum. To show that the

GFP protein can be used as a reporter gene in P. nordicum, this species was

subsequently transformed with a vector, carrying a gfp gene under the control of the

strong constitutive gpd promoter of A. nidulans. Moreover in this vector construction

the gfp gene contained a stuA nuclear localization domain. Successful transformed

strains showed a strong GFP activity located in the nuclei after light stimulation in

contrast to the wild type which showed only very weak unspecific auto fluorescence

under these conditions. Based on this proof of principle a vector was constructed in

which the promoter of the otapksPN gene, the gene of the ochratoxin A polyketide

synthase of P. nordicum was placed in front of the gfp gene. This construct was

transformed into P. nordicum by ATMT and the resulting transformants were analysed

by fluorescence microscopy. In these transformants the whole mycelial cells showed

GFP activity after light stimulation, whereas the wild type strain did not. When the

transformed strains were grown on medium which suppressed ochratoxin A

biosynthesis, a very low level of fluorescence could be detected, whereas a high level of

fluorescence was seen after growth on medium supportive for ochratoxin A

biosynthesis.

6.2.2. Penicillium decumbens

In a study carried out by Ma et al. (2011), a beta-glucosidase I coding sequence from

Penicillium decumbens was ligated with the cellobiohydrolase I (cbh1) promoter of T.

reesei, a well-known cellulase producer and widely applied in enzyme industry, to

increase its ability to efficiently decompose cellulose and introduced into

the genome of T. reesei strain Rut-C30 by Agrobacterium-mediated transformation. In

comparison to that from the parent strain, the beta-glucosidase activity of the enzyme

complexes from two selected transformants increased 6- to 8-fold and their filter paper

Page 78: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

78

activity (FPAs) was enhanced by 30% on average. The transformant's saccharifying

ability towards pretreated cornstalk was also significantly enhanced. To further confirm

the effect of heterologous beta-glucosidase on the cellulase activity of T. reesei, the

heterologously expressed pBGL1 was purified and added to the enzyme complex

produced by T. reesei Rut-C30. Supplementation of the Rut-C30 enzyme complex with

pBGL1 brought about 80% increase of glucose yield during the saccharification of

pretreated cornstalk.

6.2.3. Penicillium brevicompactum

Ren et al. (2013) developed protoplast transformation methods mediated by

polyethylene glycol in Penicillium brevicompactum, using phleomycin resistance

gene (Sh ble) as a dominant selection marker. The frequency of transformation was up

to 2 - 3 transformants per microg DNA; analysis of the transformants by PCR showed

that the foreign DNA had been integrated into the host genome. The transformants

retained stable after generation. They concluded that the establishment of the genetic

transformation system of Penicillium brevicompactum could serve as the basis for the

research of molecular biology and the breeding of gene engineering of the fungus.

6.2.4. P. griseoroseum

Teixeira et al. (2014) indicated that analysis of plg1 and pgg2 pectinolytic genes

expression and copy number in recombinant multi-copy strains of P. griseoroseum

demonstrated that an increase in the number of gene copies could increase enzyme

production, but the transcription could be affected by the gene integration position.

Placing a copy of the plg1 gene under the control of the gpd promoter of Aspergillus

nidulans yielded a 200-fold increase in transcription levels compared to the endogenous

gene, and two copies of the pgg2 gene produced an 1100-fold increase compared with

the endogenous gene. These results demonstrated that transcription, translation, and

protein secretion in the fungus P. griseoroseum respond to an increased number of gene

copies in the genome.

The work of Goarin et al. (2014) provides the first example of gene replacement by

homologous recombination in P. roqueforti, demonstrating that knockout experiments

can be performed in this fungus. To do so, the authors improved the existing

transformation method to integrate transgenes into P. roqueforti genome. In the

meantime, they cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate

reductase that reduces nitrate to nitrite. Then, they performed a deletion of the PrNiaD

gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to

chlorate-containing medium than the wild-type strain, but did not grow on nitrate-

containing medium. Because genomic data are now available, they believe d that

generating selective deletions of candidate genes will be a key step to open the way for

a comprehensive exploration of gene function in P. roqueforti.

Page 79: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

79

6.2.5. Penicillium chrysogenum

The phy gene, which encodes a phytase in Penicillium chrysogenum CCT 1273, was

cloned into the vector pAN-52-1-phy and the resulting plasmid was used for the

cotransformation of Penicillium griseoroseum PG63 protoplasts (Ribeiro Corrêa et

al., 2015). Among the 91 transformants obtained, 23 were cotransformants. From there,

the phytase activity of these 23 transformants was evaluated and P. griseoroseum T73

showed the highest. The recombinant strain P. griseoroseum T73 contained the phy

gene integrated in at least three sites of the genome and showed a 5.1-fold increase in

phytase activity in comparison to the host strain (from 0.56 ± 0.2 to 2.86 ± 0.4 U μg

protein(-1)). The deduced PHY protein has 483 amino acids; an isoelectric point (pI)

higher than that reported for phytases from filamentous fungi (7.6); higher activity at pH

2.0 (73%), pH 5.0 (100%) and 50 °C; and is stable at pH values 3.0-8.0 and

temperatures 70-80 °C. PHY produced by the recombinant strain P. griseoroseum T73

was stable after four weeks of storage at -20, 8 and 25 °C and was effective in releasing

Pi, especially from soybeans. The data presented here show that P. griseoroseum is a

successful host for expression of heterologous protein and suggest the potential use of

PHY in the animal nutrition industry.

6.3. The biosynthetic pathway

Major abundant metabolites of the roquefortine/meleagrin pathway were identified as

histidyltryptophanyldiketopiperazine (HTD), dehydrohistidyltryptophanyldi-

ketopiperazine (DHTD), roquefortine D, roquefortine C, glandicoline A, glandicoline B

and meleagrin (Ali et al. (2013). Specific genes could be assigned to each enzymatic

reaction step.

The non-ribosomal peptide synthetase RoqA accepts L-histidine and L-tryptophan as

substrates leading to the production of the diketopiperazine HTD. DHTD, previously

suggested to be a degradation product of roquefortine C, was found to be derived from

HTD involving the cytochrome P450 oxidoreductase RoqR.

The dimethyl-allyltryptophan synthetase RoqD prenylates both HTD and DHTD

yielding directly the products roquefortine D and roquefortine C without the synthesis

of a previously suggested intermediate and the involvement of RoqM. This leads to a

branch in the otherwise linear pathway.

Roquefortine C is subsequently converted into glandicoline B with glandicoline A as

intermediates, involving two monooxygenases (RoqM and RoqO) which were mixed up

in an earlier attempt to elucidate the biosynthetic pathway.

Page 80: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

80

Eventually, meleagrin is produced from glandicoline B involving a methyltransferase

(RoqN). .

The biosynthetic pathway of patulin is chemically well-characterized, but its genetic

bases remain largely unknown with only few characterized genes in less economic

relevant species. The identification and positional organization of the patulin gene

cluster in P. expansum strain NRRL 35695 was done by Tannous et al. (2014).

Several amplification reactions were performed with degenerative primers that were

designed based on sequences from the orthologous genes available in other species. An

improved genome Walking approach was used in order to sequence the remaining

adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to

determine the start and stop codons of the coding sequences. The patulin gene cluster in

P. expansum was proved to consist of 15 genes in the following order: patH, patG,

patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. The

kinetics of patulin cluster genes expression was studied under patulin-permissive

conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's

minimal essential medium), and demonstrated a significant association between gene

expression and patulin production.

The independently synthesize paclitaxel Penicillium aurantiogriseum was

established by Yang et al. (2014). The genome of Penicillium aurantiogriseum NRRL

62431 was sequenced and gene candidates that may be involved in paclitaxel

biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic

genes in Taxus. It was found that paclitaxel biosynthetic gene candidates in P.

aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene

transfer between this endophytic fungus and its plant host is unlikely.

Reprogramming the antibiotics-producing fungus Penicillium chrysogenum, with

discovery and engineering of a cytochrome P450 enzyme involved in the hydroxylation

of the precursor compactin, enabled high level fermentation of the correct form of

pravastatin to facilitate efficient industrial-scale statin drug production. Key steps

leading to the successful outcome included the identification and deletion of a fungal

gene responsible for degradation of compactin, in addition to evolution of the P450 to

enable it to catalyse the desired stereoselective hydroxylation step required for high

level pravastatin production. Statins are successful, widely used drugs that decrease the

risk of coronary heart disease and strokes by lowering cholesterol levels. The

development of this group of drugs has been one of the major breakthroughs in human

healthcare over the last two decades (Kirsty et al., 2015).

6.4. Virulence genes of Penicillium digitatum

Page 81: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

81

The phenotypes and genotypes of 403 isolates of P. digitatum, collected from packing

houses and supermarkets in Zhejiang, China, during 2000 to 2010, were characterized in

terms of their imazalil sensitivity (Sun et al., 2011). The frequency of detected imazalil-

resistant (IMZ-R) isolates increased from 2.1% in 2000 to 60-84% during 2005-2010.

Only 6.5% and 4.5% of the collected IMZ-R isolates belong to the previously described

IMZ-R1 and IMZ-R2 genotypes, respectively. To determine the resistance mechanism

of the predominant and novel IMZ-R isolates of P. digitatum (termed IMZ-R3), genes

PdCYP51B and PdCYP51C, homologous to the sterol 14α-demethylase encoded gene

PdCYP51, were cloned from six IMZ-R3 and eight imazalil-sensitive (IMZ-S) isolates

of P. digitatum. A unique 199-bp insertion was observed in the promoter region of

PdCYP51B in all IMZ-R3 isolates examined but in none of the tested IMZ-S isolates.

Further analysis by PCR confirmed that this insertion was present in all IMZ-R3 isolates

but absent in IMZ-S, IMZ-R1, and IMZ-R2 isolates. Transcription levels of PdCYP51B

in three IMZ-R3 isolates were found to be 7.5- to 13.6-fold higher than that in two IMZ-

S isolates of P. digitatum. Introduction of another copy of PdCYP51B ( s ) (from IMZ-

S) into an IMZ-S isolate decreased the sensitivity of P. digitatum to 14α-demethylation

inhibitors (DMIs) only to a small extent, but introduction of a copy of PdCYP51B ( R )

(from IMZ-R3) dramatically increased the resistance level of P. digitatum to DMIs.

Regarding PdCYP51C, no consistent changes in either nucleotide sequence or

expression level were correlated with imazalil resistance among IMZ-R and IMZ-S

isolates. Based on these results, it is concluded that (1) the CYP51 family of P.

digitatum contains the PdCYP51B and PdCYP51C genes, in addition to the known gene

PdCYP51A (previously PdCYP51); (2) PdCYP51B is involved in DMI fungicide

resistance; and (3) overexpression of PdCYP51B resulting from a 199-bp insertion

mutation in the promoter region of PdCYP51B is responsible for the IMZ-R3 type of

DMI resistance in P. digitatum.

Zhu et al. (2014) reported the identification and functional characterization of

PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of

GlcCers, in Penicillium digitatum genome. They demonstrated that the deletion of

PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer

(d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and

sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion

mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of

water soaking lesion and the formation of smaller size of lesion. These results suggest

that PdGcs1 plays an important role in regulating cell growth, differentiation, and

virulence of P. digitatum by controlling the biosynthesis of GlcCers.

In order to identify P. digitatum genes up-regulated during the infection of oranges that

may constitute putative virulence factors, López-Pérez et al. (2014) followed a

polymerase chain reaction (PCR)-based suppression subtractive hybridization and

Page 82: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

82

cDNA macroarray hybridization approach. The origin of expressed sequence tags

(ESTs) was determined by comparison against the available genome sequences of both

organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes

represent the largest categories in the subtracted cDNA library. Northern blot analysis

of a selection of P. digitatum genes, including those coding for proteases, cell wall-

related enzymes, redox homoeostasis and detoxification processes, confirmed their up-

regulation at varying time points during the infection process. Agrobacterium

tumefaciens-mediated transformation was used to generate knockout mutants for two

genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two

independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However,

the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic

transformant.

An orthologus gene encoding a putative sterol regulatory element-binding protein

(SREBP) was identified in the genome of P. digitatum and named sreA (Liu et al.,

2015). It was proved that sreA is a critical transcription factor gene required for

prochloraz resistance and full virulence in P. digitatum and is involved in the regulation

of cyp51 expression

6.5. Sexual life cycle of P. roqueforti

Ropars et al. (2014) reported, for the first time, the induction of the sexual structures of

P. roqueforti - ascogonia, cleistothecia and ascospores. The progeny of the sexual cycle

displayed clear evidence of recombination. They used the recently

published genome sequence for this species to develop microsatellite markers for

investigating the footprints of recombination and population structure in a large

collection of isolates from around the world and from different environments. They

found tremendous genetic diversity within P. roqueforti, even within cheese strains and

identified six highly differentiated clusters that probably predate the use of this species

for cheese production. Screening for phenotypic and metabolic differences between

these populations could guide future development strategies.

Böhm et al. (2015) recently discovered mating-type loci and a sexual life cycle in the

penicillin-producing fungus, Penicillium chrysogenum, MAT1-2. All industrial

penicillin production strains worldwide are derived from a MAT1-1 isolate. Similar

to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike

MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores

and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with

a MAT1-1 high penicillin producer generated sexual spores. The genomic sequences of

parental and progeny strains using next-generation sequencing provided an evidence

Page 83: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

83

for genome-wide recombination. SNP calling showed that derived industrial strains had

an uneven distribution of point mutations compared with the wild type.

6.6. Genome shuffling

Wang et al. (2013) reported a high producer of nuclease P1, Penicillium citrinum G-

16, that was bred by the classical physics-mutagenesis and genome shuffling process.

The starting populations were generated by (60)Co γ-irradiation mutagenesis. The

derived two protoplast fractions were inactivated by heat-treatment and ultraviolet

radiation respectively, then mixed together and subjected to recursive protoplast fusion.

Three recombinants, E-16, F-71, and G-16, were roughly obtained from six cycles

of genome shuffling. The activity of nuclease P1 by recombinant G-16 was improved up

to 1,980.22 U4/ml in a 5-l fermentor, which was 4.7-fold higher than that of the starting

strain. The sporulation of recombinant G-16 was distinguished from the starting strain.

Random amplified polymorphic DNA assay revealed genotypic differences between the

shuffled strains and the wild type strain. The close similarity among the high producers

suggested that the genetic basis of high-yield strains was achieved by genome shuffling.

6.7. Mechanism of conidiation in P. decumbens

Qin et al. (2013) investigated the mechanism of conidiation in P. decumbens

generated mutants defective in two central regulators of conidiation, FluG and BrlA.

Deletion of fluG resulted in neither "fluffy" phenotype nor alteration in conidiation,

indicating possible different upstream mechanisms activating brlA between P.

decumbens and Aspergillus nidulans. Deletion of brlA completely blocked conidiation.

Further investigation of brlA expression in different media (nutrient-rich or nutrient-

poor) and different culture states (liquid or solid) showed that brlA expression is

required but not sufficient for conidiation. The brlA deletion strain exhibited altered

hyphal morphology with more branches. Genome-wide expression profiling identified

BrlA-dependent genes in P. decumbens, including genes previously reported to be

involved in conidiation as well as previously reported chitin synthase genes and acid

protease gene (pepB). The expression levels of seven secondary metabolism gene

clusters (from a total of 28 clusters) were drastically regulated in the brlA deletion

strain, including a downregulated cluster putatively involved in the biosynthesis of the

mycotoxins roquefortine C and meleagrin. In addition, the expression levels of most

cellulase genes were upregulated in the brlA deletion strain detected by real-time

quantitative PCR. The brlA deletion strain also exhibited an 89.1 % increase in cellulase

activity compared with the wild-type strain. The results showed that BrlA in P.

decumbens not only has a key role in regulating conidiation, but it also regulates

secondary metabolism extensively as well as the expression of cellulase genes.

Page 84: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

84

6.8. Expression and characterization of enzymes

Cardoso et al. (2010) evaluated an extracellular pectin lyase (PL) production by

recombinant P. griseoroseum strain 105 in submerged fermentation system bioreactors

BioFloIII and BioFloIV using 2 or 10 L working volumes under different growth

conditions and to analyze the production of cellulase, polygalacturonase, pectin

methylesterase, and protease. PL overproduction by recombinant P. griseoroseum strain

105 was 112 times higher than that of P. griseoroseum PG63 grown in sugarcane juice.

Cellulases and proteases were not detected in the culture filtrate, and evaluation for

extracellular proteins in the culture medium by SDS-PAGE showed the presence of a 36

kDa predominant band, similar to the molecular mass estimated from the nucleotide

sequence of plg1 gene for PL of P. griseoroseum strain 105. This recombinant strain

provides the advantage of PL production, which predominates over other extracellular

proteins usually present in most commercial pectinase preparations, using sugarcane

juice as a substrate of low cost.

Regueira et al. (2011) reported the discovery of a polyketide synthase (PKS), MpaC,

which they successfully characterized and identified as responsible for MPA production

in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene

cluster in the genome of Penicillium brevicompactum. The gene cluster was

successfully localized by targeting putative resistance genes, in this case an additional

copy of the gene encoding IMP dehydrogenase (IMPDH). They reported the cloning,

sequencing, and the functional characterization of the MPA biosynthesis gene cluster by

deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic

analyses. As expected, the gene deletion completely abolished MPA production as well

as production of several other metabolites derived from the MPA biosynthesis pathway

of P. brevicompactum. Our work sets the stage for engineering the production of MPA

and analogues through metabolic engineering.

Maĭsuradze et al. (2011) have cloned 4r novel genes of the enzymes of the

endoxylanase families found in the mycelial fungus Penicillium canescens . The xylB,

xylC, and xylD genes encode endoxylanases of glycosyl hydrolase family 11; the

xylEgene, those of family 10. In the promoter region of the xylB, xylC, and xylD genes,

the binding sequences for the protein activator of xylanolytic gene transcription have

been found; the promoter region of the xylB gene contains the binding sequences for the

catabolite repression protein. Since the TATAA sequence, which is an element of the

minimal eukaryotic promoter, has not been found in the promoter region of the xylC

gene, in contrast to those of the xylB and xylD genes, it may be assumed that this gene

is silent. Comparative phylogenetic analysis has shown that the cloned genes are highly

homologous to some endoxylanase genes of mycelial fungi of the

genera Penicillium and Aspergillus. However, within the species P. canescens, they

exhibit a low homology both within and between families, and they diverge into

Page 85: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

85

different branches of the phylogenetic tree, which suggest divergence of the genes of

this group at an early stage of evolution.

Teixeira et al. (2011) reported on a strain with high production of pectin lyase (PL)

was transformed with the plasmid pAN52pgg2, containing the gene encoding PG of P.

griseoroseum, under control of the gpd promoter gene from Aspergillus nidulans.

Southern blot analysis demonstrated that all strain had at least one copy of pAN52pgg2

integrated into the genome. The recombinant strain P. griseoroseum T20 produced

levels of PL and PG that were 266- and 27-fold greater, respectively, than the wild-type

strain. Furthermore, the extracellular protein profile of recombinant T20 showed two

protein bands of c. 36 and 38 kDa, associated with PL and PG, respectively.

Gandía et al. (2012) carried out the isolation and characterization of chitin synthase

genes (CHS) of Penicillium digitatum. Using distinct sets of degenerate primers

designed from conserved regions of CHS genes of yeast and filamentous fungi, PCR

methods, and a DNA genomic library, five putative CHS genes (PdigCHSI, PdigCHSII,

PdigCHSIII, PdigCHSV, and PdigCHSVII) were identified, isolated, sequenced, and

characterized. Phylogenetic analyses, sequence identity, and domain conservation

support the annotation as CHS. A very high sequence identity and strong synteny were

found with corresponding regions from the genome of Penicillium chrysogenum. Gene

expression of P. digitatum CHS genes during mycelium axenic growth, under oxidative

and osmotic stress conditions, and during infection of citrus fruits was confirmed and

quantified using quantitative RT-PCR (qRT-PCR). PdigCHSIII had the highest

expression among the five genes by one order of magnitude, while PdigCHSII had the

lowest. However, PdigCHSII was strongly induced coincident with conidial production,

suggesting a role in conidiogenesis. The expression of PdigCHSI, PdigCHSIII,

PdigCHSV, and PdigCHSVII was upregulated during infection of citrus fruit.

PdigCHSV and PdigCHSVII coexpressed in most of the experiments carried out, and

they are separated by a 1.77 kb intergenic region and arranged in opposite directions.

The PDE01641 deletion mutant showed enhanced cellobiohydrolase activity and β-

glucosidase activity compared to the parental strain 114-2 (Zhang et al,. 2012).

Increased transcription of the main cellulase and hemicellulase genes in ΔPDE01641

gave evidence that PDE01641 might affect the process associated with the regulation of

cellulolytic enzymes expression. Furthermore, the deletion of PDE01641 from

the genome of hypercellulolytic industrial strain JU-A10-T resulted in 36% and 80%

increase in cellulase activity and hemicellulase activity respectively. These results

revealed that PDE01641 plays an important role in the regulation of cellulolytic enzyme

production in P. decumbens, and the engineering strain constructed in this work could

be potentially used in bioenergy production.

Page 86: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

86

The ochratoxin A (OTA) polyketide synthase otapks gene has been cloned

from Penicillium verrucosum by Abbas et al. (2013). A P. verrucosum mutant in

which the otapksPV gene has been interrupted cannot synthesize ochratoxin A. The

protein is most similar to the citrinin polyketide synthase CtnpksMa from Monascus

anka (83% identity at the amino acid level). Different nutritional conditions influence

OTA production in P. verrucosum, with the addition of glycerol and galactose to MCB

resulting in approximately 19 and 32 fold increases in OTA production respectively.

These effects are mirrored in increased levels of otapksPV gene transcription. In

contrast, the addition of glucose to MCB containing galactose results in an approximate

10 fold repression in OTA production, with this repression again being mirrored in

decreased levels of otapksPV gene transcription. Thus the effects of different carbon

sources on OTA production in P. verucosum appear to be regulated at the level of gene

transcription. Two additional open reading frames, otaE and otaT, were identified in the

5' and 3' flanking regions of otapksPV, respectively. The otaT and otaE genes are co-

expressed with P. verrucosum otapksPv, indicating a possible role for these genes in

OTA biosynthesis. Furthermore, otaT and otaE were identified as putative homologues

of the M. anka citrinin transporter ctnC (72% amino acid identity) and M. anka citrinin

oxidoreductase ctnB (83% amino acid identity); suggesting that the genes involved in

OTA production in P. verrucosum may be very similar to those involved in citrinin

production in M. anka.

A gene that encodes a carboxylesterase (carb) in Penicillium expansum GF was

cloned, sequenced and overexpressed byPenicillium griseoroseum PG63, and the

enzyme was characterized (Corrêa et al., 2013). The recombinant strain, P.

griseoroseum T55, obtained upon transformation using the plasmid pAN-52-1-carb,

showed integration of the carb gene into at least two heterologous sites of

the genome by Southern blotting. Furthermore, the recombinant strain T55 exhibited

almost a fourfold increase in carboxylesterase activity compared with PG63 strain when

both were cultured without inducers. Based on the secondary structure and multiple

sequence alignments with carboxylesterases, cholinesterase and lipase, a three-

dimensional model was obtained. The α/β barrel topology, that is typical of esterases

and lipases, was indicated for the CARB protein with Ser(213)-Glu(341)-His(456) as

the putative catalytic triad. CARB preferentially hydrolysed acyl chains with eight

carbon atoms, and its activity was optimal at a pH of 7·0 and a temperature of 25°C.

CARB exhibited stability in alkaline pH, high activity under mesophilic conditions and

stability in organic solvents.

Teixeira et al. (2013) reported the inactivation of the pgg2 gene, a polygalacturonase-

encoding gene from Penicillium griseoroseum, reduced the total activity of

polygalacturonase (PG) by 90 % in wild-type P. griseoroseum, which indicates that the

pgg2 gene is the major gene responsible for PG production in this species. To increase

Page 87: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

87

PG production, the coding region of the pgg2 gene was cloned under the control of the

glyceraldehyde 3-phosphate dehydrogenase (gpd) promoter and the terminator region of

the tryptophan synthase (trpC) gene from Aspergillus nidulans (pAN52pgg2 vector).

This vector was then used to transform P. griseoroseum. The transformed strains were

characterized according to PG production using glucose, sucrose, or sugar cane juice as

the carbon sources. The recombinant P. griseoroseum T146 strain contained an

additional copy of the pgg2 gene, which resulted in a 12-fold increase in PG activity

when compared with that detected in the supernatant of the control PG63 strain. The

proteins secreted by the recombinant strain T146 showed a strong band at 38 kDa,

which corresponds to the molecular weight of PG of the P. griseoroseum. The results

demonstrate the significant biotechnological potential of recombinant P. griseoroseum

T146 for use in PG production.

Eighteen cellulases, including three cellobiohydrolases (CBHs), eleven endo-β-1,4-

glucanases (EGs) and four cellulose monooxygenases (CMOs [32], previously known

as glycosyl hydrolase (GH) family 61 EGs) were predicted to be encoded in the P.

decumbens genome.(Liu et al., 2013)

Liu et al. (2013) characterized an endo-acting cellulase PdCel5C from industrial

cellulase-producing fungus Penicillium decumbens with distinctive domain

composition. In addition to a cellulose-binding domain and a catalytic domain, PdCel5C

contains two immunoglobulin (Ig)-like domains near the C-terminal end. Truncated

mutation experiment reveals that the two Ig-like domains are important for the

hydrolytic activity of PdCel5C. Moreover, PdCel5C releases cello-oligosaccharides

from cellulosic substrates, which is different from that of most characterized cellulases

in the same glycoside hydrolase family 5. To the best of our knowledge, this is the first

report on the characterization of an Ig-like domain-containing cellulase in fungi.

Wang et al. (2013) cloned an endoxylanase gene (PoxynA) that belongs to the

glycoside hydrolase (GH) family 11 from a xylanolytic strain, Penicillium oxalicum

B3-11(2). PoxynA was overexpressed in Trichoderma reesei QM9414 by using a

constitutive strong promoter of the encoding pyruvate decarboxylase (pdc). The high

extracellular xylanase activities in the fermentation liquid of the transformants were

maintained 29~35-fold higher compared with the wild strain. The recombinant

POXYNA was purified to homogeneity, and its characters were analyzed. Its optimal

temperature and pH value were 50 degrees C and 5.0, respectively. The enzyme was

stable at a pH range of 2.0 to 7.0. Using beechwood as the substrate, POXYNA had a

high specific activity of 1,856 +/- 53.5 IU/mg. In the presence of metal ions, such as

Cu2+, and Mg2+, the activity of the enzyme increased. However, strong inhibition of

the enzyme activity was observed in the presence of Mn2+ and Fe2+. The recombinant

POXYNA hydrolyzed birchwood xylan, beechwood xylan, and oat spelt xylan to

produce short-chain xylooligosaccharides, xylopentaose, xylotriose, and xylobiose as

Page 88: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

88

the main products. This is the first report on the expression properties of a recombinant

endoxylanase gene from Penicillium oxalicum. The properties of this endoxylanase

make it promising for applications in the food and feed industries.

Zhang et al. (2013) isolated the glyceraldehyde-3-phosphate dehydrogenase gene

(PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid

amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an

ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree

based on GPD proteins showed that P. expansum is close to Aspergillus species, but

comparatively distant from P. marneffei. Southern blot results revealed a single copy of

PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes

have potential for genetic engineering of P. expansum for industrial lipase production.

6.9. Molecular identification

Phylogenetic analysis of the most important penicillin producing P. chrysogenum

isolates carried out by Houbraken et al. (2011) revealed the presence of two highly

supported clades, representing two species, P. chrysogenum and P. rubens. These

species are phenotypically similar, but extrolite analysis showed that P. chrysogenum

produces secalonic acid D and F and/or a metabolite related to lumpidin, while P.

rubens does not produce these metabolites. Fleming's original penicillin producing

strain and the full genome sequenced strain of P. chrysogenum were re-identified as P.

rubens.

Sang et al. (2013) used multigene phylogenetic analyses with the nuclear ribosomal

internal transcribed spacer (ITS) region and genes encoding β-tubulin (benA) and

calmodulin (cmd), as well as morphological analyses to identify two isolates as

members of the P. sclerotiorum complex in Penicillium subgenus Aspergilloides, but

different from species of the P. sclerotiorum complex. The isolates were found to be

closely related to P. cainii, P. jacksonii, and P. viticola in terms of their multigene

phylogeny, but their colony and conidiophore morphologies differ from those of closely

related species. The name P. daejeonium was proposed for this unclassified new species

belonging to the P. sclerotiorum complex in subgenus Aspergilloides.

Page 89: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

89

7. Industral applications of Penicillium species

7.1. Penicillin

History of discovery of penicillin

1928, Scottish biologist Sir Alexander Fleming noticed a halo of inhibition of

bacterial growth around a contaminant blue-green mould on a Staphylococcus plate

culture. He concluded that the mould was releasing a substance that capable of killing a

wide range of harmful bacteria, such as Streptococcus, Meningococcus and the

diphtheria bacillus. He grew a pure culture of the mould and discovered that it

was Penicillium notatum. With help from a chemist, he concentrated what he later

named "penicillin".

sir_alexanderfleming.jpeg www.thestar.com ouponcw.com

1929, Fleming published his findings in the British Journal of Experimental Pathology,

with only a passing reference to penicillin's potential therapeutic benefits.

1938, Florey came across Fleming’s paper on the penicillium mould in The British

Journal of Experimental Pathology. Soon after, Florey and his colleagues decided to

unravel the science beneath what Fleming called penicillium’s ”antibacterial action.”

1939, Howard Florey, Ernst Chain and their colleagues at Oxford University began

growing the Penicillium in a strange array of culture vessels such as baths, bedpans,

milk churns and food tins. Later, a customized fermentation vessel was designed for

ease of removing and, to save space, renewing the broth beneath the surface of the

Page 90: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

90

mould. A team of "penicillin girls" was employed, at £2 a week, to inoculate and

generally look after the fermentation. In effect, the Oxford laboratory was being turned

into a penicillin factory.

Howard Florey, Ernst Chain en.wikipedia.org Early penicillin culture facility , Museum of the History of

Science, Oxford

Norman Heatley, a biochemist, extracted penicillin from huge volumes of filtrate

coming off the production line by extracting it into amyl acetate and then back into

water, using a countercurrent system.

Edward Abraham, another biochemist who was employed to help step up production,

then used the newly discovered technique of alumina column chromatography to

remove impurities from the penicillin prior to clinical trials.

Norman Heatley Edward Abraham Andrew Moyer

1940, Florey and his colleagues infected a group of 50 mice with deadly streptococcus.

Half the mice died miserable deaths from overwhelming sepsis. The others, which

received penicillin injections, survived.

Page 91: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

91

1940, Albert Alexander, became the first recipient of the Oxford penicillin. He had a

life-threatening infection with huge abscesses affecting his eyes, face, and lungs.

Penicillin was injected and within days he made a remarkable recovery. But supplies of

the drug ran out and he died a few days later. Better results followed with other patients

though and soon there were plans to make penicillin available for British troops on the

battlefield.

1941, Florey and Heatley traveled to the United States. They were referred to Robert

Thom, the famous mycologist and authority on the Penicillium mould, and Orville

May, Director of the NRRL, who agreed to have the Laboratory undertake a vigorous

program to increase penicillin yields under the direction of Robert Coghill, Chief of the

Fermentation Division.

Andrew Moyer found that he could significantly increase the yield of penicillin by

substituting lactose for the sucrose used by the Oxford team in their culture medium.

Shortly thereafter, Moyer made the even more important discovery that the addition of

corn-steep liquor to the fermentation medium produced a ten-fold increase in yield.

Kenneth Raper, staff at the NRRL screened various Penicillium strains and found a

strain that came from a moldy cantaloupe from a Peoria fruit market that produced

acceptable yields of penicillin in submerged culture. When this strain was exposed to

ultraviolet radiation at the University of Wisconsin, its productivity was increased still

further.

1942 enough penicillin had been produced under the Office of Scientific Research and

Development (OSRD) auspices to treat the first patient (Mrs. Ann Miller, in New

Haven, Connecticut); a further ten cases were

1943, the War Production Board (WPB) took responsibility for increased production

of the drug. The WPB investigated more than 175 companies before selecting 21 to

participate in a penicillin program under the direction of Albert Elder; in addition to

Lederle, Merck, Pfizer and Squibb, Abbott Laboratories

1944, The United States Army established the value of penicillin in the treatment of

surgical and wound infections. Clinical studies also demonstrated its effectiveness

against syphilis, it was the primary treatment for this disease in the armed forces of

Britain and the United States.

1944, penicillin production began to increase dramatically in the United States it

jumped from 21 billion units in 1943, to 1,663 billion units in 1944, to more than 6.8

Page 92: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

92

trillion units in 1945, and manufacturing techniques had changed in scale and

sophistication from one-liter flasks with less than 1% yield to 10,000-gallon tanks at 80-

90% yield. The American government was eventually able to remove all restrictions on

its availability

Photograph courtesy of Merck

Archives, ©Merck & Co. Inc.

Fermentation unit used in purifying

penicillin in 1945.

1945, penicillin was distributed through the usual channels and was available to the

consumer in his or her corner pharmacy.

1945, the unique feature of the structure was finally established, namely the four-

membered highly labile beta-lactam ring, fused to a thiazolidine ring.

1945, Alexander Fleming, Howard Florey, and Ernst Chain were awarded the Nobel

Prize for their penicillin research.

1949, the annual production of penicillin in the United States was 133,229 billion

units, and the price had dropped from twenty dollars per 100,000 units in 1943 to less

than ten cents.

Page 93: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

93

Alexander Fleming receiving his Nobel Prize in 1945

British Library Add. MS 56115, f.81

Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens.

Houbraken J, Frisvad JC, Samson RA. IMA Fungus. 2011 Jun;2(1):87-95.

As reported by Houbraken et al. (2011), Penicillium chrysogenum was described

by Thom (1910), but the name P. chrysogenum is predated by P.

griseoroseum, P. citreoroseum, and P. brunneorubrum, which were described

by Dierckx (1901).

Since P. chrysogenum is a widely used name, Frisvad et al.

(1990) and Kozakiewicz et al. (1992) suggested to preserve the name P.

chrysogenum and to reject the older name P. griseoroseum with its synonyms P.

citreoroseum, and P. brunneorubrum.

This proposal was accepted by the Committee for Fungi and Lichens and the

name P. chrysogenum is currently listed as nomen conservandum

Phylogenetic analysis of P. chrysogenum isolates revealed the presence of two

highly supported clades, which represent two species, P. chrysogenum and P.

rubens. These species are phenotypically similar, but extrolite analysis shows that

P. chrysogenum produces secalonic acid D and F and/or a metabolite related to

lumpidin, while P. rubens does not produce these metabolites. Fleming's original

Page 94: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

94

penicillin producing strain and the full genome sequenced strain of P.

chrysogenum are re-identified as P. rubens.

openi.nlm.nih.gov Penicillium rubens (Fleming's original penicillin-producer). Houbraken J, Frisvad JC, Samson RA -

(2011)

Penicillium chrysogenum, Mycobank

7. 2. Griseofulvin

Synonyms: Amudane, Biogrisin-fp, Delmofulvina, Fulcin, Fulcine, Fulvina, Fulvinil, Fulvistatin, Fungivin, Greosin Gresfeed, Gricin, Grifulin, Grifulvin, Grisactin, Griscofulvin, Grisefuline, Griseo, Griseofulvin, Griseomix, Grisetin, Grisofulvin, Grisovin, Grizeofulvin, Grysio, Guservin, Lamoryl, Likuden, Likunden, Murfulvin, Neocid, Nufvlin, Poncyl, Spirofulvin, Sporostatin, Xuanjin

Griseofulvin is an antifungal antibiotyic produced by several Penicillium species,

namely P. aethiopicum, P. coprophilum , P. dipodomyicola , P. griseofulvum, P.

persicinum and P. sclerotigenum. It is fungistatic and acts only against dermatophytes.

Page 95: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

95

P. griseofulvum.www.dehs.umn.edu www.fermentek.co.il. P. scerotiorum synapse.koreamed.org

P. aethiopicum Mycobank P. coprophilum

History of griseofulvin discovery

1939, Oxfordd, Raistrick and Simonart isolated a metabolic product of Penicillium

griseofulvum.

1946, Brian Curtis and Hemming isolated an antibiotic from Penicillium janczewskii,

which they called “curling factor”

1947, Grove and McGowan showed the curling factor was identical with

griseofulvin

1949, Brian showed griseofulvin to be fungistatic to most mycelial fungi

1951, Brian, Wright, Stubbs and Way demonstrated systemic antifungal activity in

plants

1957-1958, Williams and Peterkin reported that griseofulvin failed when applied

topically to ringworm lesions

1958, Tomich proved that griseofulvin shoed a remarkable absence of acute toxicity,

when administered orally to animals, even in very high dosage

Page 96: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

96

1958, James C. Gentles showed in a prelilinary report that oral griseofulvin rapidly

cleared artificially induced ringworm in guinea-pigs

1959, Gustav Riehl in Vienna treated the first human case of ringworm by griseofulvin

orally

Page 97: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

97

Page 98: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

98

7. 3. Roquefort cheese

Roquefort is a sheep milk blue cheese from the south of France, and together with Bleu

d'Auvergne, Stilton, and Gorgonzola is one of the world's best known blue cheeses.

Though similar cheeses are produced elsewhere, EU law dictates that only those cheeses

aged in the natural Combalou caves of Roquefort-sur-Soulzon may bear the name

Roquefort, as it is a recognised geographical indication, or has a protected designation

of origin.

The cheese is white, tangy, crumbly and slightly moist, with distinctive veins of

green mold. It has characteristic odor and flavor with a notable taste of butyric acid; the

green veins provide a sharp tang. The overall flavor sensation begins slightly mild, then

waxes sweet, then smoky, and fades to a salty finish. It has no rind; the exterior is edible

and slightly salty.

A typical wheel of Roquefort weighs between 2.5 and 3 kilograms (5.5 and 6.6 pounds),

and is about 10 cm (4 inches) thick. Each kilogram of finished cheese requires about 4.5

litres (1.2 US gal) of milk to produce.

Roquefort is still being made exclusively from sheep's milk in caves that tunnel four

miles into Mount Combalou in the Massif Central of south-central France. The village

of Roquefort (it means ''strong rock''), perched on the mountain, has given its name to

the cheese that must be aged in these caves, sections of which often figured importantly

in the doweries of young women of the region. By law, only this cheese can be called

Roquefort. The name is so protected that if a product such as a dip or a salad dressing

uses the word Roquefort in its name, it must contain genuine Roquefort cheese.

Page 99: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

99

A Lacaune flock in France imgarcade.com. Roquefort Village A Lacaune flock in France

Roquefort Caves- Cantobre. www.cantobre-france.eu Close to Milau are the Roquefort Caves; an extraordinary

geological feature, formed by nature after the landslide of the Combalou mountain.

History of Roquefort cheese

According to legend (Fabricant, Florence, 1982), Roquefort first occurred when a

lovestruck gaulois shepherd left his lunch and bread at the mouth of a cave while

he went chasing a shepherdess. When he returned to the spot three months later

he found the bread covered with mold, some of which had infected the cheese.

the mold (Penicillium roqueforti) had transformed his plain cheese into

Roquefort. He must have like what he tasted.

It is claimed that Roquefort, or a similar cheese, is mentioned in literature as far

back as AD 79, when Pliny the Elder remarked upon its rich flavor.

In

1411, Charles VI granted a monopoly for the ripening of the cheese to the people

of Roquefort-sur-Soulzon as they had been doing for centuries.

Page 100: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

100

Cheesemaking colanders have been discovered amongst the

region's prehistoric relics.[

In 1925, the cheese was the recipient of France's first Appellation d'Origine

Contrôlée (AOC) when regulations controlling its production and naming were

first defined.

AOC means that any product labelled AOC is guaranteed to come from a specific

geographic region, often very strictly determined. For example, AOC Roquefort

cheese can only come from the town Roquefort-sur-Soulzon. More precisely, it can

only be produced on a 1.5 mile x 900 foot plot of land in Roquefort-sur-Soulzon.

In 1961, in a landmark ruling that removed imitation, the Tribunal de Grande

Instance at Millau decreed that, although the method for the manufacture of the

cheese could be followed across the south of France, only those whose ripening

occurred in the natural caves of Mont Combalou in Roquefort-sur-Soulzon were

permitted to bear the name Roquefort.

Roquefort is made entirely from the milk of the Lacaune, Manech and Basco-

Béarnaise breeds of sheep. Prior to theAOC regulations of 1925, a small amount

of cow’s or goat’s milk was sometimes added. A total of around 4.5 litres of milk

is required to make one kilogram of Roquefort.

The mould that gives Roquefort its distinctive character (Penicillium roqueforti) is

found in the soil of the local caves. Traditionally, the cheesemakers extracted it by

leaving bread in the caves for six to eight weeks until it was consumed by the mould.

The interior of the bread was then dried to produce a powder.

Page 101: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

101

In modern times, the mould can be grown in a laboratory, which allows for greater

consistency. The mould may either be added to the curd or introduced as an aerosol

through holes poked in the rind.

P. roqueforti grown on bread to seed milk, makeitwithme-kell.blogspot.com P. roqueforti colonies on agar

Penicillium roqueforti. esmisab.univ-brest.fr atlas.microumftgm

Page 102: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

102

Penicillium roqueforti toxins

Vallone et al. (2014) concluded that In order to reduce the presence of secondary

metabolites in blue cheeses, one of the methods suggested by several authors is the use

of strain with low productive ability (Engel and Teuber, 1989; Moss, 1992; Lafont et al.,

1990; Pose et al., 2007). Buzilova et al. (2000) have studied the effect of mutation on

synthesis of alkaloid by Penicillium roquefortii VKM F-141. The study has shown that

the Penicilli mutants were unable to synthesise alkaloids or they changed the alkaloid

composition. Puel et al. (2007) have shown that the ability to produce patulin from

Byssochlamys fulva is related to presence/absence of two genes.

Hidalgo et al. (2014) have cloned and sequenced a four gene cluster that includes the

ari1 gene from P. roqueforti. Gene silencing of each of the four genes (named prx1 to

prx4) resulted in a reduction of 65-75% in the production of PR-toxin indicating that the

four genes encode enzymes involved in PR-toxin biosynthesis. Interestingly the four

silenced mutants overproduce large amounts of mycophenolic acid, an antitumor

compound formed by an unrelated pathway suggesting a cross-talk of PR-toxin and

mycophenolic acid production.

Page 103: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

103

7. 4. Camembert cheese

History of Camembert cheese

1791, Marie Harel, a farmer from Normandy, was the first to make Camembert,

following advice from a priest who came from Brie.

Marie Harel, the inventor of the Camembert, has in fact made her first ladled cheese in 1791 - See more at:

http://fromageriegillot.fr/en/accueil/secrets-daop/#sthash.ejr8hHqx.dpuf fromageriegillot.fr

www.travelandlifestylediaries.com Normandy cow/ Normandy village parisbymouth.com

Page 104: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

104

1890, an engineer, M. Ridel, devised the wooden box which was used to carry the

cheese and helped to send it for longer distances, in particular to America, where it

became very popular. These boxes are still used today.

depositphotos.com French cheese of Camembert in t wood box, NikaNovak

Before fungi were understood, the colour of camembert rind was a matter of chance,

most commonly blue-grey, with brown spots.

P. cememberti www.dgfm-ev.de www.schimmelpilze.de

From the early 20th century onwards, the rind has been more commonly pure white,

but it was not until the mid-1970s that pure white became standard.

1983, the AOC variety "Camembert de Normandie" is required by law to be made

only from raw, unpasteurized milk from "Vaches Normandes" cows.

1992 ,The variety named "Camembert de Normandie" was granted a protected

designation of origin

1909, M. Vignoboule created the "Syndicat des Fabricants du Véritable Camembert

de Normandie" (Genuine Camembert of Normandy Makers Syndicate). M. Vignoboule

defined precisely that was a Norman camembert and how it should be made....

Page 105: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

105

After World War II, new changes occured. The production of camembert, that was

still realized by more than 1400 dairies spread in the whole Auge country, had to evolve

to adapt itself to the increase of the consumption as well as the struggle to survive to the

new competition. The first giant production factories were built and the first robot to

make camembert was successfully tested.

1968, the producers of Camembert cheese have obtained a "Label rouge", a french

quality label

1983 the camembert received the "Appellation d'Origine Controlée" (AOC), a

special brand given by the french government, to the producers who respect a high

number of recommendations. This label was created to protect the original flavour of

the camembert.

Later it also received an AOP "Appellation d'Origine Protégée" a special brand given

by the european community.

Finaly a ''Syndicat interprofessionnel de défense de l'Appelation d'Origine Controlée"

was created to promote that AOC.

The future of the camembert cheese in Normandy is still rather uncertain.Some of

producers have decided to modify the standard way of producing to increase their

productivity. For example, they have installed moulding robots, they treat the crude

milk and even want to redefine the notion of crude milk. The others go on using crude

Page 106: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

106

milk (That imply to use costfull tests to ensure the quality and the safety of the milk),

they keep on moulding manually the cheeses, and they want to preserve the quality and

the diversity of the milk by using the traditionnal norman cows

The stele dedicated to Marie Harel: It was built in 1926. It is a monument to the glory of Camembert.

Camembert Museum!

Founded in 1986, the Museum of the Camembert was born of an exhibition bringing

together objects and documents related to the history and manufacture of

Camembertcheese.The Museum of Vimoutiers Camembert is the one and only in

France. It’s name is registered and is managed by an association of volunteers.

musee-du-camembert.jpg www.tripadvisor.com

Page 107: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

107

Through an amazing collection of boxes of Camembert labels, we can reconstruct the

history, places of manufacture and the consumption pattern of this prestigious cheese.

Page 108: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

108

7. 5. Gorgonzola cheese

Gorgonzola cheese is an uncooked cheese made from unskimmed cow's and/or goat's

milk. The milk is added to Lactobacillus bulgaricus and Streptococcus thermophilus

bacteria along with spores of the mold Penicillium glaucum or Penicillium roqueforti.

Gorgonzola originated in the town of the same name near Milan, Italy in the 8th

century. Prior to being called Gorgonzola, the cheese was generically called

"green stracchino".

Page 109: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

109

By 1970, a Consortium for the protection of Gorgonzola cheese was created in

order to protect and oversee the production of Gorgonzola.

In 1996, Gorgonzola was granted PDO (Designation of Protected Origin) status,

which governs how and where Gorgonzola is produced in either the Piedmont or

Lombardy regions of Italy.

Today, it is mainly produced in the northern Italian regions of Piedmont and Lombardy.

Whole cow's milk is used, to which starter bacteria is added, along with spores of the

mold Penicillium glaucum. Penicillium roqueforti, used in Roquefort cheese, may also

be used. The whey is then removed during curdling, and the result aged at low

temperatures.

During the aging process metal rods are quickly inserted and removed, creating air

channels that allow the mold spores to grow into hyphae and cause the cheese's

characteristic veining.

Gorgonzola is typically aged for three to four months. The length of the aging process

determines the consistency of the cheese, which gets firmer as it ripens. There are two

varieties of Gorgonzola, which differ mainly in their age: Gorgonzola Dolce (also called

Sweet Gorgonzola) and Gorgonzola Piccante (also called Gorgonzola Naturale,

Gorgonzola Montagna, or Mountain Gorgonzola).

Under Italian law, Gorgonzola enjoys Protected Geographical Status. Termed DOP in

Italy, this means that it can only be produced in the provinces

of Novara, Bergamo, Brescia, Como, Cremona, Cuneo, Lecco, Lodi, Milan, Pavia, Vare

se,Verbano-Cusio-Ossola and Vercelli, as well as a number of comuni in the area

of Casale Monferrato (province of Alessandria).

Page 110: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

110

7. 6. Cambozola cheese

Cambozola is a cow's milk cheese that is a combination of a French soft-ripened triple

cream cheese and ItalianGorgonzola.. It was patented and industrially produced for the

world market by the large German company Champignon in the 1970s. The cheese was

invented in around 1900 and is still produced by Champignon. In English-speaking

countries, Cambozola is often marketed as blue brie.

It is made from a combination of Penicillium camemberti and the same

blue Penicillium roqueforti mold used to makeGorgonzola, Roquefort, and Stilton.

Extra cream is added to the milk, giving Cambozola a rich consistency characteristic

of triple crèmes, while the edible bloomy rind is similar to that of Camembert.

Cambozola is considerably milder than Gorgonzola and features a smooth, creamy

texture with a subdued blue flavour.

7. 7. Penicillium-cured salami

Penicillium nalgiovense is a close relative of Penicillium chrysogenum. Similar to other

fungi such as Penicillium roqueforti or Penicillium camemberti, the mould Penicillium

nalgiovense is used for refining of foods. In particular, for the maturation of certain

varieties of salami, Penicillium nalgiovense is important and is applied as a so-called

starter culture on the outer skin of the sausages.

Originally this Penicillium was isolated as nalgiovense food destroyer of cheese. Only

later, its beneficial properties for flavor formation in salami was realized. In addition, A

Page 111: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

111

major metabolic product of Penicillium nalgiovense is penicillin. However, only those

strains are used for foods which do not produce penicillin, because the intake of

penicillin in some individuals resulting in allergic reactions.

The surface coverage of certain dry fermented sausages such as Italian salami by some

species of Penicillium provides their characteristic flavour and other beneficial

properties. One of them is the protective effect by means of a uniform film of white

mould against undesirable microorganisms.

www.shutterstock.com www.pinterest.com

www.grillsportverein.de\. The surface growth of P. nalgiovense suppresses the growth of other undesirable

organisms such as indigenous molds, yeasts and bacteria.. lpoli.50webs.com

Page 112: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

112

www.wedlinydomowe.pl www.wpthm.com Cured Italian Salami

In a recent paper published in the International Journal of Food Microbiology, a group

of scientists from Italy, the Netherlands, Denmark, and Slovenia described a new

species of the fungus Penicillium from an Italian salami. The fungus that most

commonly colonizes salami is Penicillium nalgiovense, a mould that makes the white

fluffiness associated with salami. Spores of mould are applied to the surface of the

salami right after the meat has been fermented. The fungus rapidly colonizes the surface

and prevents contaminating molds from growing and spoiling the salami.

Fungi have an important role in the production of dry-cured meat products, especially

during the seasoning period. In general, both industrially and handmade salami are

quickly colonized by a composite mycobiota during seasoning, often with a strong

predominance of Penicillium species. These species are involved in the improvement of

the characteristics and taste, and in the prevention of the growth of pathogenic,

toxigenic or spoilage fungi.

As mentioned by Perrone et al. (2015), two Penicillium species were predominantly

present on the salami surface and in the air of the seasoning and storage areas of a

salami plant (Calabria, Italy). One species was identified as Penicillium nalgiovense,

and the other was related to, but distinct from, Penicillium olsonii. Further molecular

and biochemical analyses showed that this strain has high homology with the not yet

described species named “Penicillium milanense” isolated in Denmark and Slovenia on

cured meats. The taxonomic position of these strains in Penicillium was investigated

using calmodulin, β tubulin and ITS sequences, phenotypic characters and extrolite

patterns, and resulted in the discovery of a new Penicillium species, described here as P.

salamii. A literature search showed that this species occurs on (cured) meat products

worldwide. In our study, P. salamii predominated the salami and capocollo surface in

levels similar to the commonly known starter culture P. nalgiovense, irrespective of the

room or age of seasoning. Preliminary inoculation trials with P. salamii showed that it

Page 113: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

113

was able to colonize salami during seasoning, indicating that this species could be used

as a fungal starter for dry-cured meat.

Penicillium nalgiovense Mycobank

Penicillium olsonii Mycobank

7. 8. Penicillium pigments

Natural colorants are considered to be safer than synthetic ones, and their applications in

foods, cosmetics and pharmaceuticals are growing rapidly (Lauro, 1991). There are a

number of natural pigments, but only a few are available in sufficient quantities for

industrial production. Production of pigments from microorganisms is advantageous

over other sources because microorganisms can grow rapidly which may lead to a high

productivity of the product (Kim et al., 1999). Monascus red pigments are of polyketide

origin and are used commercially in the orient as non-toxic colorants for colouring rice

wine, "Koji", soybean, cheese and red meat (Hajjai et al., 1999). The red pigments have

Page 114: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

114

attracted worldwide commercial interest , but little information is available on the

production of this pigment by other microbial sources. It has been reported that

Penicillium may be the potential candidate to produce polyketide structure compounds

(Jûzlová et al., 1996). Pigments are also used for dyeing of cotton yarn and. wood

spalting

Red pigments

It has been already reported by Curtin et al. (1940) that Penicillium phoeniceum,

produced a red pigment, phoenicine, which, being watersoluble, diffused almost entirely

into the medium. Wang et al. (2004) reported on a unique Penicillium isolate from

Chinese soil with terverticillate penicilli and ellipsoidal to cylindrical smooth-walled

conidia, produced, in addition to the common metabolite ergosterol, copious amounts of

an unknown peach-red pigment . This isolate, CBS 111235, was described as

Penicillium persicinum sp. nov., which belongs to subgenus Penicillium section

Chrysogena but is morphologically similar to P. italicum. On the basis of the production

of secondary metabolites it resembles P. griseofulvum and P. coprophilum.

Jiang et al. (2005) identified a new isolate from medicinal plant endophytes as

Penicillium sp. (HKUCC 8070). A water-soluble red pigment was produced by this

strain in potato-dextrose broth, maltextract broth and a chemically defined medium

containing glutamate as a nitrogen source. The red pigment produced was identified as

heat-stable, polyketide Monascus red pigment. The highest yield of the red pigment was

1107 mg l-1 obtained from the culture of Penicillium sp. (HKUCC 8070) grown on the

malt-extract medium.

Alejandro Méndez et al., 2011, showed the feasibility of producing and obtaining

natural water-soluble pigments by P. purpurogenum GH2 for potential use in food

industries. A strong combined effect (p<0.05) of pH and temperature was associated

with maximal red pigment production (2.46 g/L). Under optimized conditions, a 78%

increase in red colourants production was achieved. The best pH and temperature

conditions were obtained at pH 8.0 and 70°C, respectively. In the presence of salts NaCl

and Na2 SO4 , both at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 8.0), the

red colorants showed good stability. In the presence of both polymers polyethylene

glycol and sodium polyacrylate, the red colorants kept their color intensity.

A specific self-immobilization biomembrane-surface liquid culture (SIBSLC) was

developed to overproduce a potential penicillium red pigment. Statistic analysis showed

Page 115: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

115

that both glucose concentration and membrane diameter are important factors

influencing the yield of red pigment. After the optimization using central composite

experimental design, the maximum yield of red pigment in shake flask reached 4.25 g/l.

The growth of strain HSD07B consists of three phases, and the pigment secreted in the

decelerated phase, is originated from the interior of biomembrane where glucose

exhaustion occurs. In addition, the batch and continuous SIBSLC were conducted for

production of the pigment, and the latter was more competitive in consideration of the

fact that it not only increased 61.5 % of pigment productivity, but also simplified the

production process. (,Hailei et al., 2012 and Méndez et al., 2013)

Penicillium strain (DLR-7) producing red extracellular pigment was isolated from the

mangrove soils of Andhra Pradesh, India (Lathadevi Karuna. 2014). A multifactorial

and step-wise experiment was designed to study the physical and nutritional conditions

that favor red pigment and biomass production. Potato extract prepared in the laboratory

produced more pigment than the commercial potato dextrose broth and was therefore

used as the basal medium. Culture conditions such as xylose 2% (w/v), glycine 1%

(w/v), pH and temperature of 3.0 and 25 ˚C, were observed to be the optimal conditions

producing 1050 mg/L of red pigment and 3.1 g/L of mycelia biomass. At pH 2.0, yellow

fluorescent pigment was observed instead of red and spores were completely absent.

Pigment was not produced when basic amino acids like arginine or lysine were

supplemented to the medium, but acidic amino acids such as aspartic acid and glutamic

acid enhanced pigment production. Also simple amino acids such as glucose maximized

the growth of fungus whereas, amino acids such as xylose, mannose and glycine

stimulated pigment yield.

Blue pigments

Stodola et al. (1951) observed a curious change in pigmentation induced by variation

of the substrate, a phenomenon which had been reported by Bainier and Sartory when

the fungus was described in 1912. These workers observed that a yellow pigment was

formed on potato, banana, carrot and Raulin's medium; on a medium rich in peptone the

pigment was a beautiful blue. Apparently no attempt was made at chemical

characterization. Several minor pigments from cultures of Penicillium herquei were

described by Narasimhachari et al. (1963). One of these has been identified as the

naphthalic anhydride which is formed when atrovenetin is oxidized with alkaline

peroxide. Evidence was presented which suggested that the characteristic green pigment

found in this fungus was formed by a reaction analogous to that between ninhydrin and

amino derivatives. In P. herquei , the 1,2,3-trione is probably generated by mild

oxidation of perinaphthenone pigments known to be produced by this organism. These

Page 116: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

116

blue pigments were isolated and demonstrated by Robinson et al. (1992) to be a

phenalenone derivative. As isolated, the major blue pigment is a zinc complex of

elemental formula C76H64O20N2Zn in which two anions of the dimeric phenalenone 2

act as the tridentate ligands. Compounds 2 and the zinc complex have been identified

previously as secondary metabolites of two other Ascomycetes. In addition, strong

evidence was obtained for the presence in the CH2Cl2 extract of P. herquei of minor

amounts of a novel compound, having a structure identical with that of the major blue

pigment, but with nickel as the coordinating metal.

Brown pigments

Vasanthakumar et al. (2015) isolated a strain of Penicillium chrysogenum from a tomb

in Upper Egypt, which was capable of producing brown pigment in vitro when grown in

a minimal salts medium containing tyrosine. They present ed evidence that this pigment

is a pyomelanin, a compound that is known to assist in the survival of some

microorganisms in adverse environments. They tested type strains of Penicillium

chrysogenum, which were also able to produce this pigment under similar conditions.

Inhibitors of the DHN and DOPA melanin pathways were unable to inhibit the

formation of the pigment. FTIR analysis indicated that this brown pigment is similar to

pyomelanin. Pyrolysis-GC/MS revealed the presence of phenolic compounds. Using

LC/MS, homogentisic acid, the monomeric precursor of pyomelanin, was detected in

supernatants of P. chrysogenum cultures growing in tyrosine medium but not in cultures

lacking tyrosine. Partial regions of the genes encoding two enzymes in the homogentisic

acid pathway of tyrosine degradation were amplified. Data from reverse-transcription

PCR demonstrated that hmgA transcription was increased in cultures grown in tyrosine

medium, suggesting that tyrosine induced the transcription.

Yellow pigments

Penicillum sclerotiorum can produce yellow pigments, which structurally are classified

as azaphilones. The major constituent in those pigments is sclerotiorin. The main

characteristic of azaphilones is its affinity to ammonia. The oxygen atom in azaphilone

ring is likely to be substituted by NH group. Azaphilones are therefore called “nitrogen

loving”

Rugulosin is an intense yellow pigment produced by some species of Penicillium.

Rugulosin shows antibacterial and insecticidal activity and has found application as a

bioinsecticide, notably as the active secondary metabolite in endophytic fungi of

seedlings. Rugulosin (+ form) is an inhibitor of RNA Polymerase and RNase.

Page 117: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

117

Luteoskyrin, a hepatotoxic pigment, produced by Penicillium islandicum Sopp.

Various factors affecting the yields of luteoskyrin and related pigments in the liquid

medium were studied. Maximal yields of luteoskyrin (0.13% by isolation) and of other

pigments were attained in the late phase of the cultivation. The yield of the pigment was

increased by supplying malt extract, malonic acid, glutamic acid, or asparagine. A

useful material for preparation of 'IC-labeled luteoskyrin was 2-'4C-malonate.

Penicillium chrysogenum IFL1 and IFL2, , and Penicillium vasconiae IFL4 were

reported by Lopez et al. (2013) to large producers of water-soluble yellow pigments on

agroindustrial residues.

The pigment production by P. chrysogenum was earlier reported. Until today there are

few reports on pigments produced by these species, because the pigments were usually

used as a chemotaxonomic tool. P. chrysogenum produces the yellow pigments

sorbicillin and xanthocillins and chrysogenin was also reported as a yellow pigment

produced by this fungus.

The pigment emodin is isolated from the strains of Penicillium citrinum and P.

islandicum. As a first commercial product within this chemical family, the natural food

colorant Arpink redTM (now Natural RedTM) is manufactured by the Czech company

(Ascolor Biotech followed by Natural Red) and has been claimed to be produced by

fermentation and bioprocess engineering using the fungal strain Penicillium oxalicum

var. Armeniaca CCM 8242, a soil isolate (Fungal pigments for the food industry

Dufosse´ et al. Current Opinion in Biotechnology 2014, 26:56–61)

Pigments producing Penicillium

P. atramentosum: Uncharacterized dark brown

P. atrosanguineum: Phoenicin (red)nnUncharacterized yellow and red

P. atrovenetum: Atrovenetin (yellow), Norherqueinone (red)

P. aurantiogriseum:Uncharacterized

P. chrysogenum: Sorbicillins (yellow), Xanthocillins (yellow)

P. brevicompactum :Xanthoepocin (yellow)

P. citrinum Anthraquinones :(yellow), Citrinin (yellow)

P. cyclopium : Viomellein (reddish-brown) ,Xanthomegnin(orange)

P. discolor : Uncharacterized

Page 118: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

118

P. echinulatum: Uncharacterized (yellow)

P. flavigenum: Xanthocillins

P. freii: Viomellein (reddish-brown), Vioxanthin, Xanthomegnin(orange)

P. herquei :Atrovenetin (yellow), Herqueinones (red and yellow)

P.oxalicum: Arpink red™- anthraquinone derivative (red), Secalonic acid D(yellow)

P. paneum: Uncharacterized (red)

P. persicinum: Uncharacterized (Cherry red)

P. viridicatum: Viomellein (reddish-brown), Vioxanthin, Xanthomegnin (orange)

Page 119: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

119

7. 9. Penicillium enzymes

Several Penicillium species produce enzymes that are used in industry

1. Cellulases and xylanases produced by Penicillium species have broad

applications in food and feed, the textile industry, and the pulp and paper

industries.

2. Cellulases and xylanases produced by Penicillium species are used for hydrolysis

of cellulose and xylan, available in large quantities in lignocellulosic residues

from agricultural, urban, and industrial solid waste. Syrups of glucose and xylose

obtained from the hydrolysis of lignocellulosic biomass could be used for various

biotechnological purposes, especially the production of ethanol

3. Plant growth-promoting fungi (PGPF) isolate, Penicillium spp. GP15-1

(Penicillium neoechinulatum or Penicillium viridicatum) stimulates growth and

neoechinulatum or Penicillium viridicatum.

4. Peroxidase enzyme of Penicillium crysosporium has potential biodegradable

activities that degrade Amaranth dye, Orange G, heterocyclic dyes like, Azure B

and Lip dye.

5. Penicillium ochrochloron is used for biodegradation of triphenylmethane dye

cotton blue, which is used extensively in the textile industries for dying cotton,

wool, silk, nylon, etc. and is generally considered as the xenobiotic compound ,

which is very recalcitrant to biodegradation.

6. The ability of Penicillium sp. to tolerate oil pollutants and grow on them, suggest

that it can be employed as bioremediation agent and can be used in restoring the

ecosystem when contaminated by oil.

7. Penicillium species have a role in the removal & recovery of heavy metals from

wastewater and industrial effluents. Hg, Cu, Ni, Pb, Cd are extracted at pH 2-5.

7. 10. Production of metal nanoparticles

1. The eco-friendly biosynthesis of gold nanoparticles by

P. aurantiogriseum, P. citrinum, and P. waksmanii from a solution of AuCl.

Gold nanoparticles are formed fairly uniform with spherical shape with the Z-

average diameter of 153.3 nm, 172 nm and 160.1 nm for the 3 species,

respectively.

2. Development of ecofriendly and reliable processes for the synthesis of silver

nanoparticles by Penicillium species

Page 120: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

120

8. Health risks and economic losses caused by Penicillium

species

Penicillium is among the most prevalent airborne fungi. Its spores have been

identified as potential respiratory allergens. It is a major cause of indoor mould

allergy.

Penicillium spp. are commonly considered as contaminants but may cause

infections, including pneumonia, particularly in immunocompromised hosts.

Some Penicillium spp. are known to produce mycotoxins. For example, P.

verrucosum produces the mycotoxin, ochratoxin A, which is nephrotoxic and

carcinogenic. The production of the toxin usually occurs in cereal grains at cold

climates. Other mycotoxin-like compounds include patulin, citrinin, citroviridin,

emodin, gliotoxin, verraculogen and secalonic acid D.

Infections are usually caused by inhalation of the spores. It starts as a pulmonary

disease but may spread into the adjacent blood vessels. It disseminates to the rest

of the body. Total invasion occurs in debilitated patients and can occur in

immunocompetent (those with healthy immune systems) individuals as well.

Penicillium species causes keratitis (inflammation of the cornea), keratomycosis,

penicilliosis, ostomycosis, onychomycosis (infection of the nail) and deep

infections.

It has been known to cause external ear, respiratory, and urinary tract infections,

and endocarditis after insertion of valve prostheses.

Penicillium are major causative agents of food spoilage (dairy products, fruits,

vegetables and meat) and postharvest decay.

The genus causes significant economic losses to the fruit .

Penicillium is also a huge problem in the wine industry. Its presence in wine and

grape juice during the various stages of fermentation is highly detrimental to the

quality of the wine due to the production of compounds such as Geosmin (trans-

1,10-dimethyl-trans-9-decalol), an earthy-musty compound which produces off

odours and flavours.

Penicillium spp. prefer damp and dark places, but can occur elsewhere.

Penicillium grows in dusty green colonies and dominates in temperate soils where

spores are easily released into the atmosphere.

Penicillium spp. are widespread and are found in soil, decaying vegetation and

compost, and the air, in particularly in temperate zones (forests, grassland and

arable soils). It may be found in vineyards and wine cellars, the soil of citrus

Page 121: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

121

plantations, among all types of stored seeds, barns, damp hay, dried fruit and fruit

juice.

Indoors it is the familiar blue-green mould found on stale bread, citrus fruits,

apples and as a contaminant in rye flour in industrial bakeries.

The Penicillium species may also be found in foam rubber mattresses, house dust,

stuffed furniture, wallpaper, books, refrigerator doors and rubber tubing.

Penicillium may cause the black spots on window-sills.

The Penicillium species can grow on different substrates, such as plants, cloth,

leather, paper, wood, tree bark, cork, animal dung, carcasses, ink, syrup, seeds,

and virtually any other item that is organic.

P. allii, P. hirsutum or P. viridicatum, are the pathogenic species responsible for

garlic crop losses due to blue mould rot.

Penicillium expansum causes blue mould rot, a post-harvest disease of apples and

pears. Other Penicillium species associated with Penicillium ear rot: P.

chrysogenum, P. glaucum, P.cyclopium, P. italicum P.

funiculosu., and P. digitatum are common causes of rot of citrus fruits.

A large number of Penicillium species are mainly associated with food

spoilage. Those covered here include , Penicillium chrysogenum, Penicillium

aurantiogriseum, Penicillium digitatum, Penicillium griseofulvum, Penicillium

italicum,Penicillium oxalicum and Penicillium viridicatum etc.

Penicillium citrinum is the dominant contaminant in cacao and coffee beans, and

cassava in Indonesia.

Penicillium digitatum on lemon...www.insectimages.org Penicillium ulaiense on lemon...www.insectimages.org

Page 123: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

123

Blue mold of citrus caused by a species of Penicillium oranges attacked by Penicillium italicum.

Three-pears-fresh-mouldywww.theguardian.com gillianscommsblog

www.snapthepix mouldy apples cherisephotography.blogspot.com

Page 124: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

124

Stock Photo of mouldy rotten old banana csp9766214 -...www.agric.wa.gov.au

Penicillium is a secondary disease and characterised by berries covered in a mass of coloured spores

red grapes www.dreamstime.com www.21food.com SUN DRIED APRICOT Dried Figs cutcaster.com

Mouldy nuts. sst-web.tees.ac.uk www. Ars.usda.gov

Page 125: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

125

www.daff.qld.gov.au ...

. food-hacks.wonderhowto.com www.flickr.com

Mouldy Tomatowww.dreamstime.com flickrhivemind.net www.studyblue.com

Blue mould rots – Penicillium gladioli and other Penicillium spp ...www.oakleafgardening.com

CW 09-10-23 Corn Ear Rots due to Penicillium -.cropwatch.unl.edu www.angelfire.com

Page 127: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

127

Cakes contaminated with Penicillium, www.shroomery.org Mouldy bread www.wisegeek.com Mouldy sliced

wholemeal bread with sunflower seedsyaymicro.com, news.vanderbilt.edu

www.mycolog.com spoki.tvnet.lv parasites.czu.cz

cheddar cheese with various species of Penicillium, which can grow even in the refrigerator.

Penicillium funiculosum sur textile (coton) www.moldtesting-moldinspection-nj-newjersey.com

Penicillin Mold Under A Cabinett in New Jersey. Penicillium colonizes leather ...

Page 130: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

130

9. Penicillium species identification

1. Morphological characteristics

2. Isoenzyme profiling

3. Identification of extrolites

4. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

fingerprinting (MALDI-TOF MS)

5. Genotypic characterization

Amplification of the internal transcribed spacers (ITS1 and ITS2)

Restriction fragment length polymorphism (RFLP)

Random amplified polymorphic DNA (RAPD)

Amplified fragment length polymorphism (AFLP).

DNA barcoding for identification and multilocus sequence typing for phylogenetic

species recognition ( Visagie et al. 2014).

Only recently however, was the internal transcribed spacer rDNA area (ITS)

accepted as the official barcode for fungi (Schoch et al. 2012).

ITS is the most widely sequenced marker for fungi, and universal primers are

available (Schoch et al. 2012).

In Penicillium, it works well for placing strains into a species complex or one of

the 25 sections, and sometimes provides a species identification

( Visagie et al. 2014).

Primers used for amplification and sequencing ( Visagie et al. 2014).

1. Internal Transcribed Spacer (ITS)

5′-3′) ITS1 Forward TCC GTA GGT GAA CCT GCG G White et al. 1990

ITS4 Reverse TCC TCC GCT TAT TGA TAT GC

V9G Forward TTA CGT CCC TGC CCT TTG TA de Hoog et al., 1998

Page 131: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

131

LS266 Reverse GCA TTC CCA AAC AAC TCG ACT C Masclaux et al. 1995

2. β-tubulin (BenA)

Bt2a Forward GGT AAC CAA ATC GGT GCT GCT TTC Glass & Donaldson

1995 Bt2b Reverse ACC CTC AGT GTA GTG ACC CTT GGC

3. Calmodulin (CaM) CMD5 Forward CCG AGT ACA AGG ARG CCT TC Hong et al. 2006

CMD6 Reverse CCG ATR GAG GTC ATR ACG TGG

CF1 Forward GCC GAC TCT TTG ACY GAR GAR Peterson et al. 2005

CF4 Reverse TTT YTG CAT CAT RAG YTG GAC

4. RNA polymerase II second largest subunit (RPB2) 5F Forward GAY GAY MGW GAT CAY TTY GG Liu et al. 1999

7CR Reverse CCC ATR GCT TGY TTR CCC AT

5Feur Forward GAY GAY CGK GAY CAY TTC GG Houbraken et al. 2012

7CReur Reverse CCC ATR GCY TGY TTR CCC AT

Thermal cycle programs used for amplification.

Gene

Profile

type

Initial

denaturing Cycles Denaturing Annealing Elongation

Final

elongation Rest period

General ITS,BenA, CaM standard 94 °C, 5 min 35 94 °C, 45 s 55 °C, 45 s 72 °C, 60 s 72 °C,

7 min

10 °C, ∞

General alternative standard 94 °C, 5 min 35 94 °C, 45 s 52 °C, 45 s 72 °C, 60 s 72 °C,

7 min

10 °C, ∞

RPB2 touch-up 94 °C, 5 min 5 94 °C, 45 s 50 °C, 45 s 72 °C, 60 s

5 94 °C, 45 s 52 °C, 45 s 72 °C, 60 s

30 94 °C, 45 s 55 °C, 45 s 72 °C, 60 s 72 °C,

7 min

10 °C, ∞

RPB2 alt. touch-up 94 °C, 5 min 5 94 °C, 45 s 48 °C, 45 s 72 °C, 60 s

5 94 °C, 45 s 50 °C, 45 s 72 °C, 60 s

30 94 °C, 45 s 52 °C, 45 s 72 °C, 60 s 72 °C,

7 min

10 °C, ∞

Examples of recently successful application of the above methods

Page 132: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

132

1. As reported by Boysen et al. (2000) P. roqueforti was recently split into the three

species, P. roqueforti, Penicillium carneum, and Penicillium paneum, (collectively

referred to as the P. roqueforti group) based on ribosomal DNA sequence comparison,

random amplified polymorphic DNA (RAPD) profiles, and secondary metabolite

profiles. These three species synthesize different mycotoxins. All three produce

roquefortine C, only P. roqueforti produces PR toxin, and both P. carneum and P.

paneum produce patulin, which is mutagenic, immunotoxic, and neurotoxic (5, 8). PR

toxin is the most acutely toxic metabolite produced, with 50% lethal dose values in mice

ranging from 1 to 5.8 mg kg of body weight−1

(intraperitoneally [IP]) . The equivalent

50% lethal dose values for roquefortine C and patulin are 20 and 5 mg kg of body

weight−1

(IP), respectively (5, 25). All three Penicillium species can grow on 0.5%

acetic acid (2) and have similar microaerophilic capacity with regard to their ability to

grow at low oxygen and high carbon dioxide pressures.

RAPD fingerprinting using either NS2 (a) or NS7 (b) as a primer. Lanes: 1, P. roqueforti SVA 3631/1996,

having a T in position 180 of the ITS1 region; 2, P. roqueforti SVA 8176/1995, isolate 5 (A in position

180); 3, P. roquefortiSVA 2986/1992 (T in position 180); 4, P. roqueforti type strain (IBT 6754); 5, P.

paneum SVA 494/1990; 6, P. paneum SVA 7023/1994, isolate 2; 7, P. paneumtype strain (IBT 12407); 8, P.

expansum SVA 2294/1994, isolate 5; 9, P. expansumSVA 6180/1994 isolate 1; 10, P. carneum type strain

(IBT 6884); M, molecular weight marker (1-kb DNA ladder; GIBCO BRL, Gaithersburg, Md.), Boysen et

al. (2000)

2. As reported by Oliveri et al. (2007), 41 isolates of Penicillium spp. were recovered

from rotten fruits (including oranges, grapefruits, pears, lemons, strawberries, apples,

loquats, prickly pears) and from air and surfaces of markets and packing-houses.

Penicillium isolates were identified as P expansum, R italicum, R digitatum, R olsonii,

R chrysogenum or R citrinum. Genetic characterization was performed with ITS4 and

ITS5 primers that specifically identified Penicillium isolates by amplification of a 600-

bp fragment, with PEF and PER primers used to identify R expansum isolates

by amplification of a 404-bp fragment, and with fluorescent amplified fragment length

polymorphism analysis (fAFLP). Cluster analysis of fAFLP data divided the isolates

Page 133: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

133

into five well-separated R italicum, R digitatum, R citrinum, R chrysogenum and R

olsonii clusters, whereas R expansum isolates were divided in three distinct clusters.

Within all the eight clusters, isolates were well differentiated. Results obtained with

fAFLP analysis confirmed the reliability of the method to characterize

and identify strains at intraspecific level.

3. As reported by Demirel et al. (2013), nine terverticillate Penicillium isolates (P.

griseofulfum, P. puberulum, P. crustosum, P. aurantiogriseum, P. chrysogenum, P.

primulinum, P. expansum, P. viridicatum, Eupenicillium egyptiacum) from 56 soil

samples were characterized genetically by a PCR method. The DNAs of the strains were

isolated using the glass beads and vortexing extraction method and then used for PCR

amplification with the internal transcribed spacer 1 (ITS1) and ITS4 universal fungal

specific primers. The ITS regions of fungal ribosomal DNA (rDNA) were sequenced

through the CEQ 8000 Genetic Analysis System. ITS-5.8S sequences obtained were

compared with those deposited in the GenBank Database. The results indicated that the

identification of Penicillium species with PCR based methods provided significant

information about the solution to taxonomy

Newly generated ITS sequences with their closest GenBank sequences according to Blast, Demirel et al. (2013),

Page 134: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

134

PCR products (570 bp) of different terverticillate Penicillium species using the universal fungal primers (ITS1/ITS4), PCR products (570 bp), Demirel et al. (2013),

4. As reported by You et al. (2014), during an investigation of the fungal diversity of

Korean soils, four Penicillium strains could not be assigned to any described species.

The strains formed monoverticillate conidiophores with occasionally a divaricate

branch. The conidia were smooth or finely rough-walled, globose to broadly ellipsoidal

and 2.5-3.5 × 2.0-3.0 µm in size.

Their taxonomic novelty was determined using partial β-tubulin gene sequences and the

ribosomal internal transcribed spacer region. The phylogenetic analysis showed that the

isolates belonged to section Lanata-Divaricata and were most closely related to

Penicillium raperi. Phenotypically, the strains differed from P. raperi in having longer

and thicker stipes and thicker phialides. Strain KACC 47721T from bamboo field soil

was designated as the type strain of the new species, and the species was named

Penicillium koreense sp. nov., as it was isolated from various regions in Korea.

5. As reported by Park et al. (2015), three strains of an unidentified Penicillium

species were isolated during a fungal diversity survey of marine environments in Korea.

These strains were described as a new species following a multigene phylogenetic

analyses of nuc rDNA internal transcribed spacer barcodes (ITS1-5.8S-ITS2), genes for

β-tubulin, calmodulin and RNA polymerase II second largest subunit, and observation

of macro-and micromorphological characters. Phylogenetic analyses revealed that the

three strains formed a strongly supported monophyletic group distinct from previously

reported species of section Aspergilloides. Morphologically this species can be

Page 135: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

135

distinguished from its sister species, P. crocicola, by the reverse color on Czapek yeast

autolysate agar, abundant production of sclerotia on malt extract agar and colony

characters on yeast extract sucrose agar. They named this new species P. jejuense, after

the locality where it was discovered.

Examples of Misidentifications in Penicillium

1. Phylogenetic analysis of P. chrysogenum isolates described by Thom in 1010,

revealed the presence of two highly supported clades, which represent two

species, P. chrysogenum and P. rubens. These species are phenotypically similar,

but extrolite analysis shows that P. chrysogenum produces secalonic acid D and F

and/or a metabolite related to lumpidin, while P. rubens does not produce these

metabolites. Fleming's original penicillin producing strain and the full genome

sequenced strain of P. chrysogenum are re-identified as P. rubens (Houbraken et

al., 2011).

2. A fungus producing penicillones A and B and chloctanspirones A, B and

terrestrols was identified as P. terrestre ( Liu et al. 2005). The

name P. terrestre was used by Raper & Thom (1949), but has since been

considered a synonym of P. crustosum. However, additional secondary

metabolites produced by the isolate, such as sorbicillin and trichodimerol, are

never seen in P. crustosum ( Frisvad et al. 2004), suggesting the strain

was P. chrysogenum or P. rubens. Liu et al. (2005) did not describe how their

isolate was identified.

3. A strain of P. chrysogenum or P. rubens was misidentified as a

P. commune ( Shang et al., 2012 and Zhao et al., 2012), based on “100 %

sequence identity” with P. commune.The production of chrysogine, sorbicillins

and meleagrin indicated that the strain, SD-118, was in fact P. chrysogenum.

Page 136: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

136

10. Gallery of Penicillia

Penicillium frequentans Mycota Penicillium glabrum

Penicillium lividum Tzean, SS et al. 1994. Penicillium spinulosum Tzean, SS et al. 1994..

Penicillium corylophilum Tzean, SS et al. 1994. Penicillium decumbens Gerald Holmes, California

Page 137: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

137

Penicillium alexiae Visagie et al.,. 2013. Penicillium adametzioides , Jian Xin Denget al.,

Penicillium arianeae Visagie,et al.,. 2013. Penicillium amaliae Visagie, et al.,. 2013. ,

Penicillium herquei Tzean, SS et al. 1994 Penicillium cainii K.G. Rivera, et al., 2011

Page 138: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

138

Penicillium johnkrugii K.G. Rivera, et al.,. 2011. P. jacksonii K.G. Rivera, et al.,. 2011.

P. sclerotiorum K.G. Rivera and K.A. Seifert, 2011 Penicillium maximae Visagie, et al.,. 2013

P. vanoranjei Visagie, et al.,2013 P. viticola . Rivera and . Seifert Stud Mycol. Nov 15, 2011.

P. bialowiezense Won Ki Kim et al. Mycobiol. 2007 P. brevicompactum Tzean, SS et al. 1994.

. Penicillium janczewskii Tzean, SS et al. 1994. P. canescens Tzean, SS et al. 1994.

Page 139: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

139

Penicillium chrysogenum . Penicillium confertum

Penicillium dipodomyis Penicillium flavigenum

P. glycyrrhizacola Chen, Sun & Gao, 2013. Penicillium mononematosum

Penicillium nalgiovense Penicillium chermesinum Tzean, SS et al. 1994.

Page 140: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

140

Penicillium anatolicum Houbraken et al. (2011) Penicillium argentinense Houbraken et al. (2011)

Penicillium atrofulvum Houbraken et al. (2011) P. aurantiacobrunneum Houbraken et al. (2011)

Penicillium cairnsense Houbraken et al. (2011) Penicillium christenseniae Houbraken et al. (2011)

P. chrzaszczii Houbraken et al. (2011 Penicillium citrinum Tzean, SS et al. 1994

Page 141: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

141

..

P/ cosmopolitanum. Houbraken et al. (2011) Penicillium copticola Houbraken et al. (2011)

Penicillium decaturense Houbraken et al. (2011) Penicillium euglaucum. Houbraken et al. (2011)

Penicillium gallaicum Houbraken et al. (2011) Penicillium godlewskii. Houbraken et al. (2011)

P. gorlenkoanum Houbraken et al. (2011) Penicillium hetheringtonii. Houbraken et al. (2011)

Page 142: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

142

Penicillium manginii. Houbraken et al. (2011) Penicillium miczynskii Tzean, SS. et al. 1994

Penicillium neomiczynskii Houbraken et al. (2011) Penicillium nothofagi. Houbraken et al. (2011)

Penicillium pancosmium Houbraken et al. (2011) Penicillium pasqualense Houbraken et al. (2011)

Penicillium paxilli Tzean, SS et al. 1994. Penicillium quebecense Houbraken et al. (2011)

Page 143: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

143

Penicillium raphiae Houbraken et al. (2011) Penicillium roseopurpureum. Houbraken et al. (2011)

Penicillium sanguifluum. Houbraken et al. (2011) Penicillium shearii Houbraken et al. (2011)

Penicillium sizovae. Houbraken et al. (2011) Penicillium steckii. Houbraken et al. (2011)

Penicillium westlingii. Houbraken et al. (2011) Penicillium sumatrense. Houbraken et al. (2011)

Page 144: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

144

Penicillium terrigenum. Houbraken et al. (2011) Penicillium tropicoides. Houbraken et al. (2011)

Penicillium tropicum. Houbraken et al. (2011) Penicillium ubiquetum Houbraken et al. (2011)

Penicillium vancouverense. Houbraken et al. (2011) Penicillium waksmanii. Houbraken et al. (2011)

Penicillium wellingtonense Houbraken et al. (2011) Penicillium digitatum Tzean, SS et al. 1994.

Page 145: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

145

Penicillium dravuni Janso, . 2005. Penicillium melinii Tzean, SS et al. 1994.

P. albocoremium Won Ki Kim et al., 2006 Penicillium aurantiogriseum Tzean, SS et al. 1994

P. crustosum Tzean, SS et al. 1994 Penicillium echinulatum

P. solitum , Won Ki Kim et al. Mycobiology. 2007 P. tulipae Won Ki Kim Microbiol. 2006

Page 146: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

146

Penicillium daleae SS et al. 1994 Penicillium javanicum SS et al. 1994

P. rolfsii Tzean, SS et al. 1994. P. simplicissimum Tzean, SS et al. 1994.

Penicillium atramentosum Mycobank Penicillium clavigerum Mycobank

Penicillium concentricum Mycobank Penicillium coprobium Mycobank

Page 147: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

147

Penicillium coprophilum Mycobank Penicillium dipodomyicola (Mycobank

Penicillium expansum , 1994Tzean P. formosanum H.M. Hsieh, H.J. Su & Tzean, 1987.

Penicillium gladioli L. Mycobank P. glandicola (Oudem.) Seifert & Samson,1985 Mycobank

P. griseofulvum Tzean, SS et al. 1994. Penicillium italicum Tzean, SS et al. 1994.

Page 148: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

148

P. marinum Frisvad & Samson, Mycobank P. sclerotigenum Mycobiology. Won Ki Kim et al.,2008

P. ulaiense . Hsieh, Su & Tzean,1987. P. vulpinum (Cooke & Massee) Seifert & Samson, 1985 Mycobank

Penicillium roqueforti

Page 149: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

149

11. References

1. Abbas A, Coghlan A, O'Callaghan J, García-Estrada C, Martín JF, Dobson AD. Functional

characterization of the polyketide synthase gene required for ochratoxin A biosynthesis

in Penicilliumverrucosum. Int J Food Microbiol. 2013 Feb 15;161(3):172-81.

2. Abirami , V. , S. A. Meenakshi1 , K. Kanthymathy1 , R. Bharathidasan2 , R. Mahalingam2 and A.

Panneerselvam. Partial Purification and Characterization of an Extracellular Protease from

Penicillium janthinellum and Neurospora crassa .

3. Adebare Johnson Adeleke Endoglucanase Production by Penicillium atrovenetum Using Plantain

Peels as Substrate. AU J.T. 16(3): 140-146 (Jan. 2013)

4. Alejandro Méndez, Catalina Pérez, Julio Cesar Montañéz, Gabriela Martínez, and Cristóbal Noé

Aguilar. Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and

temperature J Zhejiang Univ Sci B. 2011 Dec; 12(12): 961–968.

5. Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ.

A branched biosynthetic pathway is involved in production of roquefortine and related compounds

in Penicillium chrysogenum. PLoS One. 2013 Jun 12;8(6):e65328.

6. Anastassiadis S, Morgunov IG, Kamzolova SV, Finogenova TV. Citric acid production patent

review. Recent Pat Biotechnol. 2008;2(2):107-23.

7. Andersen B, Smedsgaard J, Frisvad JC. Penicillium expansum: consistent production of patulin,

chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit

products. J Agric Food Chem. 2004 Apr 21;52(8):2421-8

8. Bainier, G. , and Sartory, A. , Soc. Mycol. de France, Bul. Trimest., 28, 121 (1912).

9. BALKAN, B. and F. ERTAN: Production of a-Amylase from P. chrysogenum, Food Technol.

Biotechnol. 45 (4) 439–442 (2007)

10. Ballester AR, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski

M, Droby S, González-Candelas L, Gabaldón T. Genome, Transcriptome, and Functional Analyses

of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Mol

Plant Microbe Interact. 2015;28(3):232-48.

11. Banu , A. Rasheedha, M. Kalpana Devi, G. R. Gnanaprabhal, B. V. Pradeep and M. Palaniswamy

Production and characterization of pectinase enzyme from Penicillium chrysogenum. Indian Journal

of Science and Technology Vol. 3 No. 4 2010

12. Bars, J Le. Cyclopiazonic acid production by Penicillium camemberti Thom and natural occurrence

of this mycotoxin in cheese. Appl Environ Microbiol. 1979 Dec; 38(6): 1052–1055.

13. Brian, P. W., Hemming, H. G., and McGowan, J. C., Nature, 155, 637 (1945).

14. Brian, P. W., Curtis, P. J., and Hemming, H. G., Trans. Brit. Mycol. Soc., 29, 173 (1946).McGowan,

J. C., Trans. Brit. Mycol. Soc., 29, 188 (1946).

15. Beitel, Susan M. and Adriana Knob. Penicillium miczynskii β-glucosidase: A Glucose-Tolerant

Enzyme Produced Using Pineapple Peel as Substraten Industrial Biotechnology. 2013, 9(5): 293-

300.

16. Böhm J , Dahlmann TA, Gümüşer H, Kück U. A MAT1-2 wild-type strain

from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing

and mating with an industrial penicillin-producing strain. Mol Microbiol. 2015 Mar;95(5):859-74

17. Boysen , Marianne E. , Karl-Gustav Jacobsson, and Johan Schnürer Molecular Identification of

Species from the Penicillium roqueforti Group Associated with Spoiled Animal Feed. Appl Environ

Microbiol. 2000 Apr; 66(4): 1523–1526

18. Cardoso PG, Teixeira JA, de Queiroz MV, de Araújo EF. Pectin lyase production by

recombinant Penicillium griseoroseum strain 105. Can J Microbiol. 2010 Oct;56(10):831-7.

Page 150: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

150

19. César R. F. Terrasan, Beatriz Temer, Camila Sarto, Francides G. Silva Júnior, Eleonora Cano

Carmona. Xylanase and β-Xylosidase from Penicillium janczewskii: Production, Physico-chemical

Properties, and Application of the Crude Extract to Pulp Biobleaching.Bioresources 8, 1292-1305

20. Cheeseman K, Ropars J, Renault P Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller

E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y.

Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat

Commun. 2014;5:2876.

21. Ciegler, J.I. Pitt. Survey of the genus Penicillium for tremorgenic toxin production. Mycopathologia

et Mycologia applicata, 42 (1970), pp. 119–124

22. Corrêa TL, Zubieta MP, Teixeira JA, de Queiroz MV, de Araújo EF. Carboxyl ester hydrolase

from Penicillium expansum: cloning, characterization and overproduction by

Penicillium griseoroseum. J Appl Microbiol. 2013 Jul;115(1):114-24.

23. Currie, James N. and Charles Thom. AN OXALIC ACID PRODUCING PENICILLIUMJ. Biol.

Chem. 1915 22: 287-293.

24. Davolos D, Pietrangeli B, Persiani AM, Maggi O. Penicillium simile sp. nov. revealed by

morphological and phylogenetic analysis. Int J Syst Evol Microbiol. 2012 Feb;62(Pt 2):451-8. doi:

10.1099/ijs.0.031682-0. Epub 2011 Apr 1.

25. DEMIREL, Rasime; SARIOZLU, Nalan Yilmaz and İLHAN, Semra. Polymerase chain reaction

(PCR) identification of terverticillate Penicillium species isolated from agricultural soils in eskişehir

province. Braz. arch. biol. technol. [online]. 2013, vol.56, n.6 [cited 2015-03-02], pp. 980-984

26. Doughari, James Hamuel. Production of β-glucanase enzyme from Penicillium oxalicum and Penicillium

citrinum . African Journal of Biotechnology Vol. 10(47), pp. 9657-9660, 24 August, 2011

27. El-Banna, A.A. , J.I. Pitt, L. Leistner. Production of mycotoxins by Penicillium species.Systematic

and Applied Microbiology, 10 (1987), pp. 42–46

28. Eldarov MA1, Mardanov AV, Beletsky AV, Dzhavakhiya VV, Ravin NV, Skryabin KG. Complete

mitochondrial genome of compactin-producing fungus Penicillium solitum and comparative analysis

of Trichocomaceae mitochondrial genomes. FEMS Microbiol Lett. 2012 Apr;329(1):9-17.

29. Erika A. Wolskm,Viviana Barrera, Claudia Castellari3, Jorge F. González. Biodegradation of phenol

in static cultures by Penicillium chrysogenum ERK1: catalytic abilities and residual phototoxicity.

Rev. argent. microbiol. vol.44 no.2 2012

30. Fabricant, Florence (June 23, 1982). "Blue-veined Cheeses : The expanding choices". New York

Times. Retrieved May 22, 2010.

31. Fleming, F. On the antibacterial action of cultures of a Penicillium, with special reference to their use

in the isolation of B. influenza. British Journal of Experimental Pathology, 10 (1929), pp. 226–236

32. Frank H. Stodola, Kenneth B. Raper & Dorothy I. Fennell. Pigments of Penicillium herquei.

Nature 167, 773 - 774, 1951

33. Frisvad, Jens C. and Robert A. Samson. Polyphasic taxonomy of Penicillium subgenus Penicillium.

A guide to identification of food and air-borne terverticillate Penicillia and their. Mycotoxins.

STUDIES IN MYCOLOGY 49: 1-174

34. Frisvad , Jens C. , Jos Houbraken , Suuske Popma , Robert A. Samson. Two

new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the

anticancer compound asperphenamate. DOI: http://dx.doi.org/10.1111/1574-6968.12054 77-92 First

published online: 1 February 2013

35. Frisvad, JC, Smedsgaard, J, Larsen, TO & Samson, RA 2004, 'Mycotoxins, drugs and other extrolites

produced by species in Penicillium subgenus Penicillium. Studies in Mycology, vol 49, pp. 201-241.

36. Gandía M, Harries E, Marcos JF. Identification and characterization of chitin synthase genes in the

postharvest citrus fruit pathogen Penicillium digitatum. Fungal Biol. 2012 Jun;116(6):654-64.

37. Goarin A, Silar P, Malagnac F. Gene replacement in Penicillium roqueforti.. Curr Genet. 2014 Oct

15. [Epub ahead of print]

Page 151: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

151

38. GROVE , J. F. & J. C. MCGOWAN. Identity of Griseofulvin and ‘Curling-Factor’ Nature 160, 574-

574 (25 October 1947) | doi:10.1038/160574a0

39. Hailei W, Ping L, Yufeng L, Zhifang R, Gang W. Overproduction of a potential red pigment by a

specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae.

Bioprocess Biosyst Eng. 2012 Oct;35(8):1407-16.

40. Hashem, Amal M. . Purification and properties of a milk-clotting enzyme produced byPenicillium

oxalicum. Bioresource Technology.75, 3, 2000, 219–222

41. Hidalgo PI , Ullán RV

, Albillos SM

, Montero O

, Fernández-Bodega MÁ

, García-Estrada

C, Fernández-Aguado M , Martín JF

. Molecular characterization of the PR-toxin gene cluster

in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways.

Fungal Genet Biol. 2014 Jan;62:11-24.

42. Hiroshi Iizuka, Toshichika Ohtomo, Kosaku Yoshida. Production of arachidonic acid by a

hydrocarbon-utilizing strain ofPenicillium cyaneum. European journal of applied microbiology and

biotechnology. 1979, Volume 7, Issue 2, pp 173-180

43. Hiroyuki Yamazaki, Kakeru Kobayashi, Daisuke Matsuda, Kenichi Nonaka Rokuro Masuma Satoshi Ōmura

and Hiroshi Tomoda Pentacecilides, new inhibitors of lipid droplet formation in

mouse macrophages, produced by Penicillium cecidicola FKI-3765-1: I. Taxonomy, fermentation,

isolation and biological properties. The Journal of Antibiotics (2009) 62, 195–200;

44. Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F. Fungus-mediated synthesis of gold

nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol. 2013

Feb;13(2):1427-30.

45. Hossain MM, Sultana F, Miyazawa M, Hyakumachi M. Plant growth-promoting

fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and

anthracnose in the cucumber. J Oleo Sci. 2014;63(4):391-400.

46. Houbraken, J. J.C. Frisvad,

and R.A. Samson

Taxonomy of Penicillium section Citrina. Stud Mycol.

Nov 15, 2011; 70(1): 53–138.

47. J. Houbraken, J.C. Frisvad,

K.A. Seifert,

D.P. Overy,

D.M. Tuthill,

J.G. Valdez,

and R.A.

Samson. New penicillin-producing Penicillium species and an overview of section Chrysogena.

Persoonia. 2012 Dec; 29: 78–100.

48. Houbraken, J. Jens C. Frisvad,

and Robert A. Samson

. Fleming’s penicillin producing strain is

not Penicillium chrysogenum but P. rubens IMA Fungus. 2011 Jun; 2(1): 87–95.

49. Houbraken J, de Vries RP, Samson RA. Modern taxonomy of biotechnologically important

Aspergillus and Penicillium species. Adv Appl Microbiol. 2014;86:199-249. doi: 10.1016/B978-0-

12-800262-9.00004-4. Review.

50. Houbraken,J., Jens C. Frisvad,

and Robert A. Samson.

Sex in Penicillium series Roqueforti. IMA

Fungus. 2010 Dec; 1(2): 171–180.

51. Houbraken, J. C.M. Visagie, M. Meijer, J.C. Frisvad,P.E. Busby J.I. Pitt, K.A. Seifert, G. Louis-

Seize,R. Demirel,N. Yilmaz,K. Jacobs, M. Christensen, and R.A. Samson. A taxonomic and

phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol. Jun 2014; 78: 373–451.

52. Jiang , Y. , H.B. Li , F. Chen and K.D. Hyde. Production potential of water-soluble Monascus red

pigment by a newly isolated Penicillium sp. Journal of Agricultural Technology

53. J. Houbraken, J.C. Frisvad, K.A. Seifert, et al.New penicillin-producing Penicillium species and an

overview of section Chrysogena. Persoonia, 29 (2012), pp. 78–100

54. Jian Xin Deng, Narayan Chandra Paul,Hyun Kyu Sang, Ji Hye Lee,Yong Soo Hwang,andSeung Hun

Yu .

First Report on Isolation of Penicillium adametzioides andPurpureocillium lilacinum from

Decayed Fruit of Cheongsoo Grapes in Korea. Mycobiology. Mar 2012; 40(1): 66–70.

55. Jónás Á , Fekete E

, Flipphi M

, Sándor E

, Jäger S

, Molnár ÁP

, Szentirmai A

, Karaffa L

. Extra- and

intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of

the putative permease and hydrolase genes. J Antibiot (Tokyo). 2014 Jul;67(7):489-97.

56. Kirsty J. McLean, Marcus Hans, Ben Meijrink, Wibo B. van Scheppingen, Aad Vollebregt, Kang Lan

Tee, Jan-Metske van der Laan, David Leys, Andrew W. Munro, Marco A. van den Berg. Single-step

Page 152: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

152

fermentative production of the cholesterol-lowering drug pravastatin via reprogramming

ofPenicillium chrysogenum. Proceedings of the National Academy of Sciences, 2015; 201419028

DOI: 10.1073/pnas.1419028112

57. Knob, A. and Eleonora Cano Carmona . Xylanase Production by Penicillium sclerotiorum and its

Characterization World Applied Sciences Journal 4 (2): 277-283, 2008

58. Knudsen, P B ,B Hanna, S Ohl, L Sellner, T Zenz, H Döhner, S Stilgenbauer, T O Larsen, P

Lichter and M Seiffert. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic

leukemia cells by targeting the cytoskeleton. Leukemia (27 November 2013)

| doi:10.1038/leu.2013.360

59. Lathadevi Karuna Chintapenta, Chandi Charan Rath, Bapuji Maringinti and Gulnihal Ozbay

CULTURE CONDITIONS FOR GROWTH AND PIGMENT PRODUCTION OF A MANGROVE

PENICILLIUM SPECIES. Journal of Multidisciplinary Scientific Research , 2014,2(3):01-05

60. Liu G , Qin Y, Hu Y, Gao M, Peng S, Qu Y. An endo-1,4-β-glucanase PdCel5C from cellulolytic

fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile.

Enzyme Microb Technol. 2013 Mar 5;52(3):190-5

61. Liu G, Zhang L, Wei X, Zou G, Qin Y, et al. (2013) Genomic and Secretomic Analyses Reveal

Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens. PLoS ONE 8(2):

e55185. doi:10.1371/journal.pone.0055185

62. Li B, Zong Y, Du Z, Chen Y, Zhang Z, Qin G, Zhao W, Tian S. Genomic characterization reveals

insights into patulin biosynthesis and pathogenicity in Penicillium species. Mol Plant Microbe

Interact. 2015 Jan 27. [Epub ahead of print]

63. Liu J , Yuan Y

, Wu Z

, Li N

, Chen Y

, Qin T

, Geng H

, Xiong L

, Liu D

. A Novel Sterol Regulatory

Element-Binding Protein Gene (sreA) Identified in Penicillium digitatum Is Required for Prochloraz

Resistance, Full Virulence and erg11 (cyp51) Regulation. PLoS One. 2015 Feb 20;10(2):e0117115

64. López-Pérez M, Ballester AR, González-Candelas L. Identification and functional analysis

of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. Mol Plant

Pathol. 2014 Aug 7. doi: 10.1111/mpp.12179. [Epub ahead of print]

65. Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios Ade O, Brandelli A. Pigment production by

filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem

Biotechnol. 2013 Oct;171(3):616-25.

66. Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by

heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb

Technol. 2011 Sep 10;49(4):366-71

67. Maĭsuradze IG, Chulkin AM, Vavilova EA, Benevolenskiĭ SV. [Multigene families of endo-(1-4)-

beta-xylanases of Penicillium canescens. Genetika. 2011 Feb;47(2):174-82.

68. Mala B. Rao, A. J. Varma, Sumedha S. Deshmukh production of single cell protein, essential amino

acids, and xylanase by Penicillium janthinellum. BioResources! 5, 4, 2010

69. Marcet-Houben M1, Ballester AR, de la Fuente B, Harries E, Marcos JF, González-Candelas

L, Gabaldón T. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main

postharvest pathogen of citrus. BMC Genomics. 2012 Nov 21;13:646.

70. Martinez AT, Calvo MA, Ramirez C. Scanning electron microscopy of penicillium conidia. Antonie

Van Leeuwenhoek. 1982;48(3):245-55.

71. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN. Red pigment production by Penicillium

purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B. 2011

Dec;12(12):961-8.

72. Mona Nur Moulia1), Sigit Setyabudi1), Baharuddin Salleh2) , Endang S. Rahayu. Penicillium

Species Isolated From Cocoa, Coffee Beans, and Dried Cassava in Yogyakarta Indonesia and Their

Ochratoxin Production. Indonesian Food and Nutrition Progress, 2014, Vol. 13, Issue 1

73. Narasimhachari, N. , L. C. Vining. Studies on the pigments of Penicillium herquei. Canadian Journal

of Chemistry, 1963, 41(3): 641-648

Page 153: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

153

74. Neil Robinson , Keith Wood , Peter J. Hylands ,Trevor M. Gibson , Christopher J. Weedon , Nikki

Covill. Blue pigments of Penicillium herquei . J. Nat. Prod., 1992, 55 (6), pp 814–817

75. Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO. Andrastins A-D, Penicillium roqueforti

Metabolites consistently produced in blue-mold-ripened cheese. J Agric Food Chem. 2005 Apr

20;53(8):2908-13.

76. Nongnuch Vanittanakom,1 Chester R. Cooper, Jr.,

2 Matthew C. Fisher,

3 and Thira Sirisanthana

.

Penicillium marneffei Infection and Recent Advances in the Epidemiology and Molecular Biology

Aspects. Clin Microbiol Rev. Jan 2006; 19(1): 95–110.

77. Oliveri, C.; Campisano, A.; Catara, A.; Cirvilleri, G., 2007: Characterization and fAFLP genotyping

of Penicillium strains from postharvest samples and packinghouse environments. Journal of Plant

Pathology 89(1): 29-40, 2007

78. Oxford AE1, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin,

C(17)H(17)O(6)Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem J. 1939

Feb;33(2):240-8.

79. Park MS1, Fong JJ

1, Oh SY

1, Houbraken J

2, Sohn JH

3, Hong SB

4, Lim YW

5. Penicillium jejuense sp.

nov., isolated from the marine environments of Jeju Island, Korea. Mycologia. 2015 Jan-

Feb;107(1):209-16.

80. Patil, N.S. and Jadhav,J.P. Single Cell Protein Production Using Penicillium ochrochloron Chitinase

and Its Evaluation in Fish Meal Formulations. J Microbial Biochem Technol 2014, S4

81. Paul Simonart & Anselme Wiaux .Production of Shikimic Acid by Penicillium griseofulvum Dierckx.

Nature 186, 78 - 79 (02 April 1960); doi:10.1038/186078a0

82. Peng Q, Yuan Y, Gao M1, Chen X, Liu B, Liu P, Wu Y, Wu D. Genomic characteristics and

comparative genomics analysis of Penicillium chrysogenum KF-25. BMC Genomics. 2014 Feb

21;15:144. doi: 10.1186/1471-2164-15-144.

83. Perrone , Giancarlo, Robert A. Samson

, Jens C. Frisvad

, Antonia Susca

a, Nina Gunde-

Cimerman , Filomena Epifania, Jos Houbraken

b Penicillium salamii, a new species occurring during

seasoning of dry-cured meat.International Journal of Food Microbiology, Volume 193, 16 January

2015, Pages 91–98.

84. Peterson, S.P.,1 ,* Samantha S. Orchard,

2 and Suresh Menon

2 Penicillium menonorum, a new

species related to P. pimiteouiense. IMA Fungus. 2011 Dec; 2(2): 121–125.

85. Peterson SW1, Bayer EM, Wicklow DT. Penicillium thiersii, Penicillium angulare and Penicillium

decaturense, new species isolated from wood-decay fungi in North America and their phylogenetic

placement from multilocus DNA sequence analysis. Mycologia. 2004 Nov-Dec;96(6):1280-93.

86. J.I. Pitt. The genus Penicillium and its teleomorphicstates Eupenicillium and Talaromyces

Academic Press Inc, London (1979)

87. J.I. Pitt, A.D. Hocking Fungi and Food Spoilage Springer, New York (2009)

88. Qin Y , Bao L, Gao M, Chen M, Lei Y, Liu G, Qu Y. Penicillium decumbens BrlA extensively

regulates secondary metabolism and functionally associates with the expression of cellulase genes.

Appl Microbiol Biotechnol. 2013 Dec;97(24):10453-67

89. Qing-Na Cao, Marlene Stubbs,1 Kenny Q.P. Ngo, Michael Ward, Annie Cunningham, Emil F. Pai,

Guang-Chou Tu, and Theo Hofmann . Penicillopepsin-JT , A recombinant enzyme from Penicillium

janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat . Protein Science ~2000!,

9:991–1001.

90. Ramos-Ponce, L.M. Contreras-Esquivel, J.C. ; Saenz, J.M. ; Lara-Cisneros, G. ; Garza-Garcia,

Y.Study on production of mycophenolic acid by Penicillium pinophilum using response surface

methodology. Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting in Coimbra, 2012

91. Rani, Singhania Reeta, Jitendra Kumar Saini, Reetu Saini, Mukund Adsul, Anshu Mathur, Ravi

Gupta, Deepak Kumar Tuli. Bioethanol production from wheat straw via enzymatic route

employing Penicillium janthinellum cellulases, Bioresource Technology 169, 2014 Pages 490-495

Page 154: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

154

92. Regueira TB , Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J. Molecular basis

for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol. 2011

May;77(9):3035-43

93. Ren Z, Su C, Yan J, Dai M, Zhao Y, Wang H, Dai M, Zhang J. [Establishment of a genetic

transformation system for Penicillium brevicompactum to produce mycophenolic acid]. Wei Sheng

Wu Xue Bao. 2013 Nov 4;53(11):1226-32.

94. Ribeiro Corrêa TL , de Queiroz MV

, de Araújo EF

. Cloning, recombinant expression and

characterization of a new phytase from Penicillium chrysogenum. Microbiol Res. 2015 Jan;170:205-

12.

95. Rivera, K.G. and K.A. Seifert. A taxonomic and phylogenetic revision of the Penicillium

sclerotiorumcomplex. Stud Mycol. Nov 15, 2011; 70(1): 139–158.

96. Ropars J , López-Villavicencio M

, Dupont J

, Snirc A

, Gillot G

, Coton M

, Jany JL

, Coton E

, Giraud

T . Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti.

Evol Appl. 2014 Apr;7(4):433-41.

97. Rubini MR , Dillon AJ, Kyaw CM, Faria FP, Poças-Fonseca MJ, Silva-Pereira I. Cloning,

characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. J

Appl Microbiol. 2010 Apr;108(4):1187-98.

98. Saeednejad Zanjani L., Sabokbar A. and Bakhtiari A. Recognition and differentiation of various

Penicillium species, Penicillium citrinum, Penicillium notatum, Penicillium oxalicum and Penicillium

frequentans, using random amplified polymorphic DNA-polymerase chain reaction technique.

African Journal of Microbiology Research Vol. 6(39), pp. 6793-6798, 11 October, 2012

99. Sameer A.S. Mapari , Ulf Thrane

, Anne S. Meyer. Fungal polyketide azaphilone pigments as future

natural food colorants?.Trends in Biotechnology, 28,6,300-307

100. Sameer AS Mapari1, Anne S Meyer2, Ulf Thrane1* and Jens C Frisvad1. Identification of

potentially safe promising fungal cell factories for the production of polyketide natural food colorants

using chemotaxonomic rationale. Microbial Cell Factories 2009, 8:24 doi:10.1186/1475-2859-8-24

101. Samson, R. A. , Amelia C. Stolk Revision Of The Subsection Fasciculata Of Penicillium And

Some Allied Species. Centraalbureau voor Schimmelcultures, Baarn and R. HADLOK

102. Samson, R.A. , J. Houbraken, U. Thrane, et al. Food and indoor fungi. CBS KNAW

Biodiversity Center, Utrecht (2010)

103. Samson, R.A. ,K.A. Seifert, A. Kuijpers, et al. Phylogenetic analysis

of Penicillium subgenus Penicillium using partial B-tubulin sequences. Studies in Mycology, 49

(2004), pp. 175–200

104. Samson, R.A. , N. Yilmaz, J. Houbraken, et al. Phylogeny and nomenclature of the

genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in

Mycology, 70 (2011), pp. 159–183

105. Santos-Ebinuma VC , Roberto IC, Simas Teixeira MF, Pessoa A Jr.Improving of red colorants

production by a new Penicillium purpurogenum strain in submerged culture and the effect of different

parameters in their stability. Biotechnol Prog. 2013 May-Jun;29(3):778-85

106. Saroj S , Kumar K

, Pareek N

, Prasad R

, Singh RP

. Biodegradation of azo dyes acid red 183,

direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere. 2014

Jul;107:240-8.

107. Satoshi Ohte, Daisuke Matsuda, Ryuji Uchida, Kenichi Nonaka, Rokuro

Masuma, Satoshi Ōmura and Hiroshi Tomoda. Dinapinones, novel inhibitors of triacylglycerol

synthesis in mammalian cells, produced by Penicillium pinophilum FKI-3864 T he Journal of

Antibiotics 64, 489-494 (July 2011) | doi:10.1038/ja.2011.32

108. Scott B , Young CA, Saikia S, McMillan LK, Monahan BJ, Koulman A, Astin J, Eaton

CJ, Bryant A, Wrenn RE, Finch SC, Tapper BA, Parker EJ, Jameson GB. Deletion and gene

Page 155: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

155

expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins

(Basel). 2013 Aug 14;5(8):1422-46.

109. Shinozaki A, Kawakami T, Hosokawa S, Sakamoto T. A novel GH43 α-l-arabinofuranosidase

of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in

arabinan. Enzyme Microb Technol. 2014 May 10;58-59:80-6.

110. Schmidt-Heydt M , Schunck T, Geisen R. Expression of a gfp gene in Penicillium nordicum

under control of the promoter of the ochratoxin A polyketide synthase gene. Int J Food

Microbiol. 2009 Jul 31;133(1-2):161-6.

111. Schneider ,W D H , Laísa dos Reis, Marli Camassola, and Aldo José Pinheiro Dillon.

Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different

Carbon Sources. BioMed Research International Volume 2014 (2014), Article ID 254863,

112. Singh, D., Vandana Rathod, Shivaraj Ninganagouda, Jyothi Hiremath, Ashish Kumar Singh,

and Jasmine Mathew, “Optimization and Characterization of Silver Nanoparticle by Endophytic

Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against

MDR E. coli and S. aureus, ”Bioinorganic Chemistry and Applications, vol. 2014, Article ID 408021,

8 pages, 2014. doi:10.1155/2014/408021

113. Specht T , Dahlmann TA

, Zadra I

, Kürnsteiner H

, Kück U

. Complete Sequencing and

Chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the

Penicillin Producer Penicillium chrysogenum. Genome Announc. 2014 Jul 24;2(4).

114. Sun X , Ruan R, Lin L, Zhu C, Zhang T, Wang M, Li H, Yu D. Genome wide investigation into

DNA elements and ABC transporters involved in imazalil resistance in Penicillium digitatum. FEMS

Microbiol Lett. 2013 Nov;348(1):11-8.

115. Sun X , Xu Q, Ruan R, Zhang T, Zhu C, Li H. PdMLE1, a specific and active transposon acts as

a promoter and confers Penicillium digitatum with DMI resistance. Environ Microbiol Rep. 2013

Feb;5(1):135-42.

116. Sun X , Li H, Yu D. Complete mitochondrial genome sequence of the phytopathogenic

fungus Penicillium digitatum and comparative analysis of closely related species. FEMS Microbiol

Lett. 2011 Oct;323(1):29-34

117. Sun X , Wang J, Feng D, Ma Z, Li H. PdCYP51B, a new putative sterol 14α-demethylase gene

of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol

synthesis. Appl Microbiol Biotechnol. 2011 Aug;91(4):1107-19.

118. Sun Yu-Lin, Zhang Xiao-Yong, Zheng Zhi-Hui, Xu Xin-Ya, Qi Shu-Hua. Three new

polyketides from marine-derived fungus Penicillium citrinum SCSGAF 0167. Natural product

research, 2013;

119. Tannous J , El Khoury R

, Snini SP

, Lippi Y

, El Khoury A

, Atoui A

, Lteif R

, Oswald IP

, Puel

O . Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster

fromPenicillium expansum. Int J Food Microbiol. 2014 Oct 17;189:51-60

120. Teh Li Yee and Latiffah Zakaria. The First Report of Penicillium georgiense in Malaysia.

Mycobiology. 2014 Sep; 42(3): 274–278.

121. Teixeira JA , Gonçalves DB, de Queiroz MV, de Araújo EF. Improved pectinase production

in Penicillium griseoroseum recombinant strains. J Appl Microbiol. 2011 Oct;111(4):818-25.

122. Teixeira JA , Ribeiro JB, Gonçalves DB, de Queiroz MV, de Araújo EF. Overproduction of

polygalacturonase by Penicillium griseoroseum recombinant strains and functional analysis by

targeted disruption of the pgg2 gene. Appl Biochem Biotechnol. 2013 Mar;169(6):1965-77.

123. Teixeira JA , Nogueira GB, de Queiroz MV, de Araújo EF. Genome organization and

assessment of high copy number and increased expression of pectinolytic genes from

Penicillium griseoroseum: a potential heterologous system for protein production. J Ind Microbiol

Biotechnol. 2014 Oct;41(10):1571-80.

Page 156: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

156

124. Toledo TR , Dejani NN

, Monnazzi LG

, Kossuga MH

, Berlinck RG

, Sette LD

, Medeiros AI

.

Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived

fungus Penicillium paxilli Ma(G)K. Mediators Inflamm. 2014;2014:767061.

125. Thom. C., Fungi in cheese ripening: Camembert and Roquefort.U.S. Department of Agriculture,

Bureau of Animal Industry – Bulletin, 82 (1906), pp. 1–39

126. C. Thom. The Penicillia The Williams & Wilkins Company, Baltimore (1930)

127. Tzean, S. S. , S. C. Chiu, J. L. Chen, S. H. Hseu, G. H. Lin, G. Y. Liou, C. C. Chen & W. H.

Hsu. 1994. Penicillium and related teleomorphs from Taiwan. Mycological Monograph of the Food

Industry Research & Development Institute (9): v+159pp.

128. Valdez, J., M.A. Makuch, A.F. Ordovini, R.W. Masuelli1, D.P. Overy

and R.J. Piccolo

. First

report of Penicillium allii as a field pathogen of garlic (Allium sativum). New Disease

Reports (2006) 13, 4.

129. Vanishree, M., A.J. Thatheyus and D. Ramya , 2014. Biodegradation of Petrol Using the

Fungus Penicillium sp.. Science International, 2: 26-31

130. Vasanthakumar A1, DeAraujo A

1, Mazurek J

2, Schilling M

2, Mitchell R

1. Pyomelanin

production in Penicillium chrysogenum is stimulated by L-Tyrosine. Microbiology. 2015 Jan 7. pii:

mic.0.000030.

131. Visagie.C.M.Thesis presented in partial fulfillment of the requirements for the degre

of Master Science .Stellenbosch University 2008

132. Visagie, C.M., Francois Roets, and Karin Jacobs. A new species of Penicillium, P.

ramulosum sp. nov., from the natural environment.MycologiaNovember/December 2009vol. 101 no.

6 888-895

133. Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone,

G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus

Penicillium. In: Studies in Mycology, Vol. 78, 2014, p. 343-371

134. Visagie, , C.M. J. Houbraken,

2 C. Rodriques,

4 C. Silva Pereira,

4 , 5 J. Dijksterhuis,

2 K.A.

Seifert, 3

K. Jacobs, 1and R.A. Samson

Five new Penicillium species in section Sclerotiora: a tribute

to the Dutch Royal family. Persoonia. Dec 2013; 31: 42–62.

135. Visagie, C.M.; Varga, J.; Houbraken, J.; Meijer, M.; Kocsubé, S.; Yilmaz, N.; Fotedar, R.;

Seifert, K.A.; Frisvad, Jens Christian; Samson, R.A. Ochratoxin production and taxonomy of the

yellow aspergilli (Aspergillus section Circumdati). In: Studies in Mycology, . 78, 2014, p. 1-61.

136. Wada S , Usami I, Umezawa Y, Inoue H, Ohba S, Someno T, Kawada M, Ikeda D. Rubratoxin

A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer

Sci. 2010 Mar;101(3):743-50.

137. Wang ,L., Han-Bai Zhou1 , Jens C. Frisvad2 and Robert A. Samson3, Penicillium persicinum,

a new griseofulvin, chrysogine and roquefortine C producing species from Qinghai province, China.

Antonie van Leeuwenhoek 86: 173–179, 2004.

138. Wang C , Wu G, Li Y, Huang Y, Zhang F, Liang X. Genome shuffling of Penicillium citrinum

for enhanced production of nuclease P1. Appl Biochem Biotechnol. 2013 Jul;170(6):1533-45

139. Wang FQ, Zhong J, Zhao Y, Xiao J, Liu J, Dai M, Zheng G, Zhang L, Yu J, Wu J, Duan B.

Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum. BMC

Genomics. 2014;15 Suppl 1:S11.

140. Wang J , Mai G, Liu G, Yu S. Molecular cloning and heterologous expression of an acid-stable

endoxylanase gene from Penicillium oxalicum in Trichoderma reesei. J Microbiol Biotechnol. 2013

Feb;23(2):251-9.

141. Watanabe T , Tanaka M, Masaki K, Fujii T, Iefuji H. Decolorization and treatment of Kokuto-

shochu distillery wastewater by the combination treatment involving biodecolorization and

biotreatment by Penicillium oxalicum d, physical decolorization by ozonation and treatment by

activated sludge. Biodegradation. 2010 Nov;21(6):1067-75

Page 157: The genus Penicillium - Cairo Universityscholar.cu.edu.eg/?q=hanem/files/monograph_on_the_genus_penicillium.pdf · 5 2. Penicillium history 1809, Link created the genus Penicillium,

157

142. Weber SS , Polli F, Boer R, Bovenberg RA, Driessen AJ. Increased penicillin production

in Penicillium chrysogenum production strains via balanced overexpression of isopenicillin N

acyltransferase. Appl Environ Microbiol. 2012 Oct;78(19):7107-13.

143. Willian Daniel Hahn Schneider, Laísa dos Reis, Marli Camassola, and Aldo José Pinheiro

Dillon, “Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to

Different Carbon Sources,” BioMed Research International, vol. 2014, Article ID 254863, 10 pages,

2014.

144. Won Ki Kim, Hyun Kyu Sang, Sung Kyoon Woo, Myung Soo Park, Narayan Chandra

Paul and Seung Hun Yu . Six Species of Penicillium Associated with Blue Mold of Grape.

Mycobiology. 2007 Dec;35(4):180-185

145. Won Ki Kim, Myung Soo Park, Soo-Sang Hahm,1 and Seung Hun Yu

. Two New Records

of Penicillium Associated with Blue Moldy Bulbs of Lily in Korea. Mycobiology. 2006

Dec;34(4):176-179

146. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks

JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang Q, Liu H, Bellgard MI,Qiu D1, Lai

J, Hoffman A. Genome sequencing and analysis of the paclitaxel-producing endophytic

fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics. 2014 Jan 25;15:69. doi:

10.1186/1471-2164-15-69.

147. Young-Hyun You , Hye Sun Cho , Jaekyeong Song , Dae-Ho Kim , Jos Houbraken3 , and

Seung-Beom Hong1 Penicillium koreense sp. nov., Isolated from Various Soils in Korea. J.

Microbiol. Biotechnol. (2014), 24(12), 1606–1608

148. Yu J, Jurick WM 2nd, Cao H, Yin Y, Gaskins VL, Losada L, Zafar N, Kim M, Bennett

JW, Nierman WC. Draft Genome Sequence of Penicillium expansum Strain R19, Which Causes

Postharvest Decay of Apple Fruit. Genome Announc. 2014 Jun 19;2(3).

149. Zhang T , Qi Z, Yu QS, Tang KX. Molecular cloning and characterization of the

glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12. Genet Mol

Res. 2013 Jul 15;12(3):2442-54.

150. Zhang Y , Zhang J, Xiao P, Wang T, Qu Y. Improved cellulase production via disruption of

PDE01641 in cellulolytic fungus Penicillium decumbens. Bioresour Technol. 2012 ;123:733-7

151. Zhu C1, Wang M

1, Wang W

1, Ruan R

1, Ma H

1, Mao C

2, Li H

3. Glucosylceramides are required

for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res

Commun. 2014 Dec 12;455(3-4):165-71.

152. Xiuping Lin , Xuefeng Zhou

1, Fazuo Wang

1, Kaisheng Liu

2, Bin Yang

1, Xianwen Yang

1, Yan

Peng 1, Juan Liu

1, Zhe Ren

2 andYonghong Liu

. A New Cytotoxic Sesquiterpene Quinone Produced

by Penicillium sp. F00120 Isolated from a Deep Sea Sediment Sample. Mar. Drugs 2012, 10(1), 106-

115