the fields of a charged particle in hyperbolic motion...the fields of a charged particle in...

9
The fields of a charged particle in hyperbolic motion Joel Franklin a) and David J. Griffiths b) Department of Physics, Reed College, Portland, Oregon 97202 (Received 13 February 2014; accepted 24 April 2014) A particle in hyperbolic motion produces electric fields that appear to terminate in mid-air, violating Gauss’s law. The resolution to this paradox has been known for sixty years but exactly why the naive approach fails is not so clear. V C 2014 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4875195] I. INTRODUCTION In special relativity, a particle of mass m subject to a con- stant force F undergoes “hyperbolic motion”: zðtÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðctÞ 2 q ; (1) where b mc 2 =F. The particle flies in from infinity along (say) the z-axis, comes to rest at z(0) ¼ b, and returns to infin- ity; its velocity approaches 6c asymptotically as t ! 61 (Fig. 1). Because information cannot travel faster than the speed of light, the region below the main diagonal (z ¼ ct) is igno- rant of the particle’s existence—the particle is “over the horizon.” For someone at the origin it first comes into view at t ¼ 0. If the particle is electrically charged, its fields are necessarily zero for all z < 0, at time t ¼ 0. But the electric field for z > 0 is not zero, and as we shall see the field lines appear to terminate in mid-air at the xy-plane. 1 This would violate Gauss’s law; it cannot be true. Our task is to locate the error and fix it. 2 In Sec. II, we calculate the electric field of a charge q in hyperbolic motion, at time t ¼ 0. A plot of the field lines shows that they do not go continuously to zero at the xy- plane. In Sec. III, we explore the case of “truncated” hyper- bolic motion (hyperbolic motion back to time t ¼ t 0 , adjoined to constant velocity for earlier times). In this case, the field lines make a sharp turn as they approach the xy-plane, and there is no violation of Gauss’s law. In Sec. IV, we work out the potentials for a charge in hyperbolic motion, finding once again that we must adjoin “by hand” a term inspired by the truncated case. In Sec. V, we ask how the naive calculations missed the extra term, and conclude with the puzzle unresolved. Appendices A and B supply some algebraic details, and Appendix C examines the radia- tion from a charge in hyperbolic motion; surprisingly, the “extra” terms do not contribute. II. ELECTRIC FIELD OF A CHARGE IN HYPERBOLIC MOTION We begin by calculating the electric field at the point r ¼ (x, 0, z), with z > 0. According to the standard formula, 3 Eðr; tÞ¼ q 4p 0 r ðr uÞ 3 ðc 2 v 2 Þu þ r ðu aÞ ; (2) where r ¼ x ^ x þ z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðct r Þ 2 q ^ z ; (3) u ¼ c^ r v ¼ 1 r ðcr rvÞ; (4) v ¼ c 2 t r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðct r Þ 2 q ^ z ; (5) and a ¼ ðbcÞ 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðct r Þ 2 q 3 ^ z : (6) The retarded time t r is defined in general by r ¼ cðt t r Þ; (7) but for the moment we’ll assume t ¼ 0 (so t r is negative). Then ðct r Þ 2 ¼ x 2 þ z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðct r Þ 2 q 2 ¼ x 2 þ z 2 2z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b 2 þðct r Þ 2 q þ b 2 þðct r Þ 2 ; (8) and hence Fig. 1. Hyperbolic motion. 755 Am. J. Phys. 82 (8), August 2014 http://aapt.org/ajp V C 2014 American Association of Physics Teachers 755

Upload: others

Post on 21-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

The fields of a charged particle in hyperbolic motion

Joel Franklina) and David J. Griffithsb)

Department of Physics, Reed College, Portland, Oregon 97202

(Received 13 February 2014; accepted 24 April 2014)

A particle in hyperbolic motion produces electric fields that appear to terminate in mid-air,violating Gauss’s law. The resolution to this paradox has been known for sixty years but exactlywhy the naive approach fails is not so clear. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4875195]

I. INTRODUCTION

In special relativity, a particle of mass m subject to a con-stant force F undergoes “hyperbolic motion”:

zðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctÞ2

q; (1)

where b % mc2=F. The particle flies in from infinity along(say) the z-axis, comes to rest at z(0)¼ b, and returns to infin-ity; its velocity approaches 6c asymptotically as t! 61(Fig. 1).

Because information cannot travel faster than the speed oflight, the region below the main diagonal (z¼ –ct) is igno-rant of the particle’s existence—the particle is “over thehorizon.” For someone at the origin it first comes into viewat t¼ 0. If the particle is electrically charged, its fields arenecessarily zero for all z< 0, at time t¼ 0. But the electricfield for z> 0 is not zero, and as we shall see the field linesappear to terminate in mid-air at the xy-plane.1 This wouldviolate Gauss’s law; it cannot be true. Our task is to locatethe error and fix it.2

In Sec. II, we calculate the electric field of a charge q inhyperbolic motion, at time t¼ 0. A plot of the field linesshows that they do not go continuously to zero at the xy-plane. In Sec. III, we explore the case of “truncated” hyper-bolic motion (hyperbolic motion back to time t¼ –t0,adjoined to constant velocity for earlier times). In this case,the field lines make a sharp turn as they approach thexy-plane, and there is no violation of Gauss’s law. In Sec.IV, we work out the potentials for a charge in hyperbolicmotion, finding once again that we must adjoin “by hand” aterm inspired by the truncated case. In Sec. V, we ask howthe naive calculations missed the extra term, and concludewith the puzzle unresolved. Appendices A and B supplysome algebraic details, and Appendix C examines the radia-tion from a charge in hyperbolic motion; surprisingly, the“extra” terms do not contribute.

II. ELECTRIC FIELD OF A CHARGE INHYPERBOLIC MOTION

We begin by calculating the electric field at the pointr¼ (x, 0, z), with z> 0. According to the standard formula,3

Eðr; tÞ ¼ q

4p!0

rðr & uÞ3

ðc2 ' v2Þuþ r( ðu( aÞ" #

; (2)

where

r ¼ x xþ z 'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctrÞ2

q$ %z; (3)

u ¼ cr ' v¼ 1

rðcr' rvÞ; (4)

v¼ c2trffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctrÞ2

q z; (5)

and

a ¼ ðbcÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctrÞ2

q$ %3z: (6)

The retarded time tr is defined in general by

r ¼ cðt' trÞ; (7)

but for the moment we’ll assume t¼ 0 (so tr is negative). Then

ðctrÞ2 ¼ x2 þ z'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctrÞ2

q$ %2

¼ x2 þ z2 ' 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctrÞ2

qþ b2 þ ðctrÞ2; (8)

and hence

Fig. 1. Hyperbolic motion.

755 Am. J. Phys. 82 (8), August 2014 http://aapt.org/ajp VC 2014 American Association of Physics Teachers 755

Page 2: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

ctr ¼ '1

2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2 þ z2 þ b2ð Þ2 ' ð2zbÞ2

q: (9)

Putting all this together and simplifying gives

Eðx; 0; zÞ ¼ qb2

p!0

z2 ' x2 ' b2ð Þ z þ ð2xzÞ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz2 þ x2 þ b2Þ2 ' ð2zbÞ2

q$ %3: (10)

That is for z> 0, of course; for z< 0 the field is zero. Incylindrical coordinates ðs;/; zÞ, then4

Eðs;/; zÞ ¼ qb2

p!0

z2 ' s2 ' b2ð Þ z þ 2z sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz2 þ s2 þ b2Þ2 ' ð2zbÞ2

q$ %3hðzÞ;

(11)

where hðzÞ is the step function (1 if z> 0, otherwise 0). Thisfield is plotted in Fig. 2; the field lines are circles, centeredon the s axis and passing through the instantaneous positionof the charge.

As required by Gauss’s law, r & E ¼ 0 for all z> 0(except at the point s¼ 0, z¼ b, where the charge is located).However, E is plainly not divergenceless at the xy-plane,where the field lines terminate in mid-air. Indeed, the fieldimmediately to the right of the z¼ 0 plane is

Eðs;/; 0þÞ ¼ ' qb2

p!0

1

ðs2 þ b2Þ2z; (12)

and the flux of E through a cylindrical Gaussian “pillbox” ofradius r, centered at the origin and straddling the plane, withinfinitesimal thickness, is

ðE & da ¼ ' qb2

p!0

ðr

0

1

ðs2 þ b2Þ22ps ds ¼ ' q

!0

r2

r2 þ b2

$ %;

(13)

even though the pillbox encloses no charge. Something isobviously amiss—we appear to have lost a crucial piece ofthe field at z¼ 0.

III. TRUNCATED HYPERBOLIC MOTION

Suppose the acceleration does not extend all the way backto t ¼ '1 but begins at time t0 ¼ 'ab=c (for some a> 0),when the particle was at

zðt0Þ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi1þ a2

p; (14)

and its velocity was

vðt0Þ ¼ 'acffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2p z; (15)

prior to t0 the velocity was constant. In other words, replaceEq. (1) with

zðtÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi1þ a2p ðb' actÞ ðt < t0 ¼ 'ab=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctÞ2

qðt ) t0Þ:

8>>><

>>>:(16)

At time t¼ 0, for all points outside a sphere of radiusr ¼ 'ct0 ¼ ab, centered at z(t0), the field is that of a chargemoving at constant velocity—the “flattened” Heaviside field5

radiating from the place q would have reached, had it contin-ued on its original flight plan ðb=

ffiffiffiffiffiffiffiffiffiffiffiffiffi1þ a2p

Þ:

E ¼ q

4p!0

1' ðv=cÞ2

½1' ðv=cÞ2sin2h+3=2

R

R3: (17)

The left edge of the sphere is atffiffiffiffiffiffiffiffiffiffiffiffiffi1þ a2p

' a' (

b (which isalways positive, but goes to zero as a!1). Inside thesphere, where news of the acceleration has been received,the field is given by Eq. (11) (Fig. 3). The field lines

Fig. 2. Field of a charged particle in hyperbolic motion at t¼ 0 (particle atz¼ b). Fig. 3. Field lines for truncated hyperbolic motion (b¼ 1, a¼ 12=5).

756 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 756

Page 3: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

evidently join up in a thin layer at the surface of the sphere,representing the brief interval during which the motionswitches from uniform to hyperbolic.

As alpha increases (that is, as t0 recedes into the more dis-tant past), the radius of the sphere increases, and its left sur-face flattens out against the xy-plane. Meanwhile, the“outside” field compresses into a disk perpendicular to themotion, and squeezes also onto the xy-plane. The completefield lines now execute a 908 turn at z¼ 0, as required to res-cue Gauss’s law. Indeed, for a!1 the constant velocityportion of the field approaches that of a point charge movingat speed c:6

E0ðs;/; zÞ ¼ q

2p!0

s

s2dðzÞ: (18)

Using the same Gaussian pillbox as before, this field yields

ðE0 & da ¼ q

2p!0

r

r2ð2prÞ

ðdðzÞ dz ¼ q

!0: (19)

This is appropriate, of course—had the particle continued atits original velocity (c), it would now be inside the box (atthe origin).

Awkwardly, however, this is not what was needed to can-cel the flux from the hyperbolic part of the field [Eq. (13)].For that purpose the field on the xy-plane should have been

Eðs;/; zÞ ¼ q

2p!0

s

s2 þ b2dðzÞ: (20)

It must be that the “connecting” field in the spherical shell(the field produced during the transition from uniform tohyperbolic motion), which (in the limit) coincides with the xy-plane and which we have ignored, accounts for the difference,as suggested in Fig. 4. The net field in the xy-plane consists oftwo parts: the field E0 due to the portion of the motion at con-stant velocity, given (in the limit a!1) by Eq. (18), and theconnecting field that joins it to the hyperbolic part. It is the

sum of these fields that gives Eq. (20). The true field of acharge in hyperbolic motion is evidently7

Eðs;/; zÞ ¼ qb2

p!0

z2 ' s2 ' b2ð Þ z þ 2z sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz2 þ s2 þ b2Þ2 ' ð2zbÞ2

q$ %3hðzÞ

þ q

2p!0

s

s2 þ b2dðzÞ;

(21)

and it does not look like Fig. 2, but rather Fig. 5.As a check, let’s calculate the divergence of E. Writing

E ¼ EhhðzÞ þ Ed (in an obvious notation), we have

r & ½EhhðzÞ+ ¼ ðr & EhÞhðzÞ þ Eh & ½rðhÞ+: (22)

The first term gives q=!0, for the point charge q at z¼ b; asfor the second term,

rhðzÞ ¼ @h@z

z ¼ dðzÞ z; (23)

so

r & EhhðzÞ½ +

¼ q!0þ qb2

p!0

ðz2 ' s2 ' b2Þ

ðz2 þ s2 þ b2Þ2 ' ð2zbÞ2h i3=2

dðzÞ

¼ q!0' qb2

p!0

1

ðs2 þ b2Þ2dðzÞ: (24)

Meanwhile,

r & Ed ¼q

2p!0r & s

s2 þ b2dðzÞ

) *

¼ q

2p!0

1

s

@

@s

s2

s2 þ b2dðzÞ

) *(25)

so

Fig. 4. Truncated hyperbolic motion for large a, showing the “connecting”field. Fig. 5. Field of a particle in hyperbolic motion (corrected).

757 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 757

Page 4: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

r & Ed ¼q

p!0

b2

ðs2 þ b2Þ2dðzÞ: (26)

This is just right to cancel the extra term in r & EhhðzÞ½ +, andGauss’s law is sustained:

r & E ¼ q!0: (27)

IV. POTENTIAL FORMULATION

A. Li!enard-Wiechert potentials

The truncated hyperbolic problem guided us to the “extra”(delta-function) term in Eq. (21), but it does not explain how wemissed that term in the first place. Did it perhaps get lost in goingfrom the potentials to the fields? Let’s work out the Li!enard-Wiechert potentials,8 and calculate the field more carefully:

Vðr; tÞ ¼ q

4p!0

1

½r' ðr & vÞ=c+; Aðr; tÞ ¼ v

c2Vðr; tÞ;

(28)

where r and v are evaluated at the retarded time tr. For thepoint r¼ (s, z),

Tr ¼'1

2ðT2 ' z2Þ½Tðs2 þ z2 þ b2 ' T2Þ

' zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2

q+ (29)

(T % ct and Tr % ctr).9 This is for z > 'T; as we approach

the horizon ðz! 'TÞ, the retarded time goes to '1, andfor z < 'T there is no solution with T > Tr.

The scalar potential is

V ¼ q

4p!0

1

ðT2 ' z2ÞT ' zðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

4

3

5hðT þ zÞ; (30)

and the vector potential is

A ¼ q

4p!0c

1

ðT2 ' z2Þz' Tðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

4

3

5hðT þ zÞ z: (31)

The electric field is

E ¼ 'rV ' @A

@t¼ qb2

p!0

2z s' ðs2 ' z2 þ b2 þ T2Þ z

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2h i3=2

8<

:

9=

;hðT þ zÞ (32)

which reduces to Eq. (21)—without the extra term—when t¼ 0. Notice that the derivatives of the theta function contributenothing (we use an overbar to denote the potentials shorn of their h’s):

'dðT þ zÞð "V þ c "AzÞ ¼ 'q

4p!0dðT þ zÞ 1

ðT2 ' z2ÞðT þ zÞ ' ðT þ zÞðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

4

3

5

¼ ' q

4p!0

dðT þ zÞðT ' zÞ

1' ðs2 þ b2Þðs2 þ b2Þ

" #

¼ 0: (33)

Evidently there is something wrong with the Li!enard-Wiechert potentials themselves; they too are missing acritical term. To fix them, we play the same game as before:truncate the hyperbolic motion. We might as well go straightto the limit, with the truncation receding to '1; we needthe potentials of a point charge moving at speed c. There aretwo candidates in the literature10 [which differ by a gaugetransformation, though both satisfy the Lorenz condition,@V=@t ¼ 'c2ðr & AÞ]:

V0I ¼ 0; A0I ¼ 'q

2p!0c

s

s2hðzþ TÞ; (34)

V0II ¼ 'q

2p!0ln

s

b

$ %dðzþ TÞ;

A0II ¼q

2p!0cln

s

b

$ %dðzþ TÞ z

(35)

758 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 758

Page 5: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

(in the second case b could actually be any constant with thedimensions of length, but we might as well use a parameterthat is already on the table).

We also need the “connecting” potentials; our experiencewith the fields [going from Eq. (18) to Eq. (20)] suggests thefollowing ansatz

VI ¼ 0; AI ¼ 'q

2p!0c

s

ðs2 þ b2Þhðzþ TÞ; (36)

VII ¼ 'q

4p!0ln

s2 þ b2

b2

$ %dðzþ TÞ;

AII ¼q

4p!0cln

s2 þ b2

b2

$ %dðzþ TÞ z:

(37)

It is easy to check, in either case, that we recover the correct“extra” term in the field [Eq. (21)]. However, we prefer VII

and AII because they preserve the Lorenz gauge.11

The correct potentials for a point charge in hyperbolicmotion are thus12

V ¼ q

4p!0

1

ðT2 ' z2ÞT ' zðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

64

3

75hðT þ zÞ' lns2 þ b2

b2

$ %dðzþ TÞ

8><

>:

9>=

>;; (38)

A ¼ q

4p!0c

1

ðT2 ' z2Þz' Tðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

64

3

75hðT þ zÞþ lns2 þ b2

b2

$ %dðzþ TÞ

8><

>:

9>=

>;z: (39)

How did the standard Li!enard-Wiechert construction missthe extra (delta function) terms? Was it perhaps in the deri-vation of the Li!enard-Wiechert potentials from the retardedpotentials?

B. Retarded potentials

Let’s take a further step back, then, and examine theretarded potential13

Vðs; zÞ ¼ 1

4p!0

ðqðr0; trÞ

rd3r0: (40)

In this case

qðr; tÞ ¼ qd3 r'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðctÞ2

qz

$ %(41)

and we need qðr0; trÞ, where (for t¼ 0)

'ctr ¼ jr' r0j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx' x0Þ2 þ ðy' y0Þ2 þ ðz' z0Þ2

q:

(42)

Thus

qðr0; trÞ ¼ qd3

$x0 xþ y0 yþ z0 z

'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðx' x0Þ2 þ ðy' y0Þ2 þ ðz' z0Þ2

qz

%:

(43)

Because of the delta function, the denominator ðr ¼jr' r0jÞ in Eq. (40) comes outside the integral—with r0,now, at the retarded point (where the argument of the delta-function vanishes). What remains is

ðqðr0; trÞ d3r0 ¼ q

ðdðx0Þdðy0Þd z0 '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ ðx' x0Þ2 þ ðy' y0Þ2 þ ðz' z0Þ2

q$ %dx0dy0dz0

¼ q

ðd z0 '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ s2 þ ðz' z0Þ2

q$ %dz0 ¼ q

ðd f ðz0Þ' (

dz0 % Q; (44)

where s2¼ x2 þ y2 and

f ðz0Þ % z0 'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ s2 þ ðz' z0Þ2

q: (45)

The argument of the delta function vanishes when z0 ¼ z0,given by f(z0)¼ 0:

z0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ s2 þ ðz' z0Þ2

q; (46)

or

z0 ¼1

2zs2 þ z2 þ b2ð Þ: (47)

Note that z0 is non-negative, so there is no solution whenz< 0. Now

759 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 759

Page 6: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

df

dz0¼ 1þ ðz' z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ s2 þ ðz' z0Þ2q ; (48)

so

f 0ðz0Þ ¼ 1þ ðz' z0Þz0

¼ z

z0¼ 2z2

s2 þ z2 þ b2; (49)

and hence

d f ðz0Þ' (

¼ 1

jf 0ðz0Þjdðz0 ' z0Þ

¼ s2 þ z2 þ b2

2z2

$ %dðz0 ' z0Þ: (50)

Thus

Q ¼ qs2 þ z2 þ b2

2z2

$ %hðzÞ: (51)

The retarded potential is

V ¼ 1

4p!0

Q

r; (52)

and from Eq. (29) (with t¼ 0)

r ¼ 'ctr ¼ 'Tr ¼1

2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2 þ z2 þ b2Þ2 ' ð2bzÞ2

q; (53)

so

V ¼ q

4p!0

ðs2 þ z2 þ b2Þ

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2 þ z2 þ b2Þ2 ' ð2bzÞ2

q hðzÞ; (54)

and we recover Eq. (30) (for t¼ 0). Still no sign of the extraterm in Eq. (38); evidently the retarded potentials themselvesare incorrect, in this case.

V. WHAT WENT WRONG?

Straightforward application of the standard formulas forthe field [Eq. (2)], the Li!enard-Weichert potentials [Eq.(28)], and the retarded potential [Eq. (40)], yield incorrectresults (inconsistent with Maxwell’s equations) in the case ofa charged particle in hyperbolic motion—they all miss anessential delta-function contribution. How did this happen?Bondi and Gold14 write,

“The failure of the method of retarded potentials togive the correct field is hardly surprising. Thesolution of the wave equation by retarded potentialsis valid only if the contributions due to distantregions fall off sufficiently rapidly with distance.”

Fulton and Rohrlich15 write,

“The Li!enard/Wiechert potentials are not valid in thepresent case at Tþ z¼ 0, because their derivationassumes that the source is not at infinity.”

But where, exactly, do the standard derivations make theseassumptions, and how can they be generalized to cover the

hyperbolic case?16 Zangwill17 offers a careful, step-by-stepderivation of the retarded potentials; one of those steps mustfail, but we have been unsuccessful in identifying the guiltyparty. And although it is easy to construct configurations forwhich the retarded potentials break down, we know of noother case for which the field formula [Eq. (2)] fails.

ACKNOWLEDGMENT

The authors thank Colin LaMont for introducing us to thisproblem.18

APPENDIX A: RETARDED TIME FOR POINTS ONTHE xy-PLANE

The retarded time for a point in the xy-plane, at time t, isgiven by

cðt' trÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2 þ y2 þ zðtrÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix2 þ y2 þ b2 þ c2t2

r

q;

(A1)

or

c2t2 ' 2c2ttr þ c2t2r ¼ x2 þ y2 þ b2 þ c2t2

r ; (A2)

so

tr ¼c2t2 ' x2 ' y2 ' b2

2c2t¼ t2 ' a2

2t; (A3)

where

a2 % x2 þ y2 þ b2

c2: (A4)

In Fig. 6, tr is plotted (as a function of t) for a¼ 1. It is clearthat tr < t for all positive t, but tr > t for all negative t. Thelatter is no good, of course, but we do get an acceptable solu-tion for all t ) 0. For t¼ 0 the retarded time is (minus) infin-ity, regardless of the values of x and y.

Fig. 6. Graph of the retarded time, as a function of t, for points in the xy-plane.

760 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 760

Page 7: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

APPENDIX B: POTENTIALS

The vector from the (retarded) position of the charge tothe point r¼ (s, z), is

r ¼ sþ z'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

q$ %z: (B1)

The retarded time is given by

T ' Tr ¼ r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ z'ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

q$ %2s

: (B2)

Squaring twice and solving the resulting quadratic yields Eq.(29).19

Referring back to Eqs. (3) and (5), the denominator in Eq.(28) is

d % r' r & vc¼ ðT ' TrÞ ' z'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

q$ %Trffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ T2r

p

¼ T ' zTrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

p : (B3)

It pays to use Eq. (B2) to eliminate the radical:

2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

q¼ ðs2 þ z2 þ b2 ' T2Þ þ 2TTr; (B4)

so

d ¼ T ' 2z2Tr

ðs2 þ z2 þ b2 ' T2Þ þ 2TTr: (B5)

Putting in Eq. (29), and simplifying,

d ¼ðT2 ' z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2 þ z2 þ b2 ' T2Þ2 þ 4b2ðT2 ' z2Þ

q

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2 þ z2 þ b2 ' T2Þ2 þ 4b2ðT2 ' z2Þ

q' zðs2 þ z2 þ b2 ' T2Þ

; (B6)

so

V ¼ q

4p!0

1

d¼ q

4p!0

1

ðT2 ' z2ÞT ' zðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2q

2

4

3

5 (B7)

[Eq. (30)].Meanwhile, the vector potential [Eq. (28)] is

A ¼ v

c2V ¼ Tr

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 þ T2

r

p V z ¼ 2zTr

c½ðs2 þ z2 þ b2 ' T2Þ þ 2TTr+q

4p!0d

$ %z

¼ q

4p!0c

$ %2zTr

T½ðs2 þ z2 þ b2 ' T2Þ þ 2TTr+ ' 2z2Trz

¼ q

4p!0c

1

ðT2 ' z2Þz' T

ðs2 þ z2 þ b2 ' T2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4b2ðT2 ' z2Þ þ ðs2 þ z2 þ b2 ' T2Þ2

q2

4

3

5 z

(B8)

[Eq. (31)].

APPENDIX C: RADIATION

From the potentials [Eqs. (38) and (39)], we obtain the fields:20

Eðs;/; z; tÞ ¼ qb2

p!0

z2 ' s2 ' b2 ' T2ð Þ z þ 2z s

ðz2 þ s2 þ b2 ' T2Þ2 ' 4b2ðz2 ' T2Þh i3=2

8<

:

9=

;hðzþ TÞ þ q

2p!0

s

s2 þ b2dðzþ TÞ; (C1)

Bðs;/; z; tÞ ¼ qb2

p!0c

2Ts

ðz2 þ s2 þ b2 ' T2Þ2 ' 4b2ðz2 ' T2Þh i3=2

hðzþ TÞ' q

2p!0c

s

s2 þ b2dðzþ TÞ

8<

:

9=

;/ ¼ 1

cðr ( EÞ:

(C2)

761 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 761

Page 8: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

To calculate the power radiated by the charge at a time tr(when it is located at the point zðtrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffib2 ' T2

r

p), we inte-

grate the Poynting vector

S ¼ 1

l 0

ðE( BÞ (C3)

over a sphere of radius r ¼ T ' Tr centered at z(tr), and takethe limit as r!1 with Tr¼ ctr held constant. (That is, wetrack the energy as it flows outward at the speed of light;“radiation” is the portion that makes it “all the way to infin-ity.”) We need the fields, then, at later and later times, as thesphere expands. Now, the delta-function term is confined to theplane z¼ –T, which recedes farther and farther to the left astime goes on (Fig. 7), and the expanding sphere never catchesup. Curiously, then, the delta-function term does not contributeto the power radiated by the charge at any (finite) point on itstrajectory. By the same token, the spherical surface is always inthe region where zþ T> 0, so we can drop the theta functions.

Now,

S ¼ 1

l 0

ðE( BÞ ¼ 1

l 0c½E( ðr ( EÞ+

¼ 1

l 0c½E2r ' ðr & EÞE+; (C4)

and on the surface of the sphere da ¼ r2 sinh dh d/ r, giving

S & da ¼ 1

l 0c½E2r2 ' ðr & EÞ2+ sinh dh d/: (C5)

The power radiated is21

P ¼ limr!1

1

l 0c

ð1' r & v

rc

$ %½E2r2 ' ðr & EÞ2+ sinh dh d/

+ ,:

(C6)

Using the relevant fields [Eq. (C1)], we find

P ¼ limr!1

rþ Tr

r

$ %2cq2

6p!0b2

( )

¼ cq2

6p!0b2: (C7)

Perhaps surprisingly, it is constant (independent of Tr, andhence the same for all points on the trajectory),22 and itagrees with the Li!enard formula23 (for collinear v and a)

P ¼ q2

6p!0c3c6a2: (C8)

a)Electronic mail: [email protected])Electronic mail: [email protected] entire xy-plane first “sees” the charge at time t¼ 0. If this seems sur-prising, refer to Appendix A.

2The fields of a point charge in hyperbolic motion were first considered byM. Born, “Die Theorie des starren Elektrons in der Kinematik desRelativit€atsprinzips,” Ann. Phys. 30, 1–56 (1909). For the early history ofthe problem see W. Pauli, Theory of Relativity (reprint by Dover, NewYork, 1981), Section 32(c). For a comprehensive history see E. Eriksenand Ø. Grøn, “Electrodynamics of Hyperbolically Accelerated Charges. I.The Electromagnetic Field of a Charged Particle with HyperbolicMotion,” Ann. Phys. 286, 320–342 (2000). See also S. Lyle, UniformlyAccelerating Charged Particles: A Threat to the Equivalence Principle(Springer, Berlin, 2008).

3See, for example, D. J. Griffiths, Introduction to Electrodynamics, 4th ed.(Pearson, Upper Saddle River, NJ, 2013), Eq. (10.72.)

4This field was first obtained by G. A. Schott, Electromagnetic Radiation(Cambridge U.P., Cambridge, UK, 1912), pp. 63–69.

5E. M. Purcell and D. J. Morin, Electricity and Magnetism, 3rd ed.(Cambridge U.P., Cambridge, UK, 2013), Section 5.6.

6J. M. Aguirregabiria, A. Hern!andez, and M. Rivas, “d-function convergingsequences,” Am. J. Phys. 70, 180–185 (2002), Eq. (50). The fields of amassless point charge are considered also in J. D. Jackson, ClassicalElectrodynamics, 3rd ed. (Wiley, New York, 1999), Prob. 11.18, W.Thirring Classical Mathematical Physics: Dynamical Systems and FieldTheories (Springer-Verlag, New York, 1997), pp. 367–368 and M. V.Kozyulin and Z. K. Silagadze, “Light bending by a Coulomb field and theAichelburg-Sexl ultraboost,” Eur. J. Phys. 32, 1357–1365 (2011), Eq. (20).

7H. Bondi and T. Gold, “The field of a uniformly accelerated charge, withspecial reference to the problem of gravitational acceleration,” Proc. R.Soc. London Ser. A 229, 416–424 (1955). D. G. Boulware, “Radiationfrom a uniformly accelerated charge,” Ann. Phys. 124, 169–188 (1980)obtained Eq. (21) using the truncated hyperbolic model. The latter wasalso explored by W. Thirring A Course in Mathematical Physics:Classical Field Theory, 2nd ed. (Springer-Verlag, New York, 1992), p. 78.See also Lyle, ref. 2, Section 15.9.

8Reference 3, Eqs. (10.46) and (10.47).9See Appendix B for details of these calculations. Equation (29) reduces toEq. (9), of course, when t¼ 0 and s¼ x.

10R. Jackiw, D. Kabat, and M. Ortiz, “Electromagnetic fields of a masslessparticle and the eikonal,” Phys. Lett. B 277, 148–152 (1992).

11Potentials (30) and (31) satisfy the Lorenz gauge condition, as does Eq.(37), but Eq. (36) does not.

12The delta-function terms in the potentials were first obtained by T. Fultonand F. Rohrlich, “Classical radiation from a uniformly acceleratedcharge,” Ann. Phys. 9, 499–517 (1960).

13Reference 3, Eq. (10.19). Since all we’re doing is searching for a missingterm, we may as well concentrate on V, and set t¼ 0.

14Reference 7, quoted in Eriksen and Grøn, Ref. 2.15Reference 12, quoted in Eriksen and Grøn, Ref. 2.16Lyle (Ref. 2, page 216) thinks it “likely” that the extra terms could in fact

be obtained at the level of the Li!enard-Wiechert potentials “if we were

Fig. 7. Radiation from the charge at time zero (for b¼ 1), showing thespherical surface and the delta-fields at: (a) T¼ 0, (b) T¼ 1/2, (c) T¼ 1.

762 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 762

Page 9: The fields of a charged particle in hyperbolic motion...The fields of a charged particle in hyperbolic motion Joel Franklina) and David J. Griffithsb) Department of Physics, Reed College,

more careful about the step function,” but he offers no justification for thisconjecture.

17A. Zangwill, Modern Electrodynamics (Cambridge U.P., Cambridge,2013), Sec. 20.3.

18C. LaMont, “Relativistic direct interaction electrodynamics: Theory andcomputation,” Reed College senior thesis, 2011.

19The sign of the radical is enforced by the condition T > Tr .20Any reader with lingering doubts is invited to check that these fields sat-

isfy all of Maxwell’s equations. Note the critical role of the delta functionsin Gauss’s law and the Ampere-Maxwell law.

21The factor ð1' r & v=rcÞ accounts for the fact that the rate at which energyleaves a (moving) charge is not the same as the rate at which it (later)crosses a patch of area on the sphere. See Ref. 3, page 485.

22The fact that a charged particle in hyperbolic motion radiates has interest-ing implications for the equivalence principle—in fact, it is this aspect ofthe problem that has attracted the attention of most of the authors citedhere. Incidentally, the particle experiences no radiation reaction force—see R. Peierls, Surprises in Theoretical Physics (Princeton U.P., Princeton,NJ, 1979, Chapter 8.)

23Reference 3, Eq. (11.73).

763 Am. J. Phys., Vol. 82, No. 8, August 2014 Joel Franklin and David J. Griffiths 763