pic method for numerical...

23
PIC Method for Numerical Simulation AG-NNP Riezlern 2010 Ninad Joshi 1 Ninad Joshi NNP – Group

Upload: others

Post on 01-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

PIC Method for Numerical Simulation

AG-NNPRiezlern 2010 Ninad Joshi 1

Ninad Joshi

NNP – Group

Page 2: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Contents

• Motivation

• Particle In Cell Method

• Projects

• Plasma and Ion Beam Simulations

AG-NNPRiezlern 2010 Ninad Joshi 2

Page 3: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Motivation

AG-NNPRiezlern 2010 Ninad Joshi 3

Page 4: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Particle simulation

Ion beams and Plasmas– Accelerators

• Mostly single specie ions, different A/q ratio• Energy range from few keV• Main momentum component in forward

direction– Stellarators and Tokamaks

• Thermal / Maxwellian distribution of momentum

AG-NNPRiezlern 2010 Ninad Joshi 4

• Energy range from few keV till MeV• Magnetic confinement is the main issue• Neutral or non neutral

– Discharge plasmas• Pressure• Multi specie model: Ions, electrons, neutral

atoms or molecules• Energy range upto few keV

Page 5: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Particle in Cell : Philosophy

• Main Task

– Calculate the force on charged particles through Lorentz Equation

– Simulate many particles

)( BvEqamF�����

×+==

( )∑≠=

−−

=n

ijj

ji

ji

ji

i rrrr

qqE

02

04

1 ��

��

πε

AG-NNPRiezlern 2010 Ninad Joshi 5

≠−

ij ji rr

)( gp NNcountOperation βα +=

• Prof. Hartree and Phyllis Nicolson (1941-1944) used desk calculator

30 electrons in Magnetron, 1D, Space charge included

PMforonds

PPfordaytimeCPU

NNNN p

sec5.4

1

1032log520 53

2

3

=

=

==== βα

• Computer with floating

point operation 1µs

Page 6: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

PIC model

• Disordered data to the structured

data form

• Periodicity, Symmetry

AG-NNPRiezlern 2010 Ninad Joshi 6

• Charge distribution on grid points and back

interpolation

• Weighing schemes according to nessecity

- Linear weighing

- Functional form

Page 7: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

ρφ −=⋅A

Poisson Equation

0

2 )()(

ε

ρφ

rr −=∇

NgNgNg

NgNgNgNg

Ng

ρφφφ

ρφφφ

ρφφφ

ρφφφ

=+−

=+−

=+−

=+−

−−−

11

112

2321

121

2

2

2

2

Boundary conditions

AG-NNPRiezlern 2010 Ninad Joshi 7

)()()()()( xExkkx →→→→ φφρρ

1. Fourier Transform

2. Iterative methods

)()()( xExx →→ φρ

Page 8: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Applications

• Project MSR (Magnetostatic Storage Ring) at Frankfurt am Main

– Ion Beam transport through toroidal segments

– Confinement and guidance properties for ion storage

– Injection scheme

• FRANZ facilty

– Chopper System in LEBT setion

• SPIE-Program: Simulation code for Plasma and Ion Extraction

AG-NNPRiezlern 2010 Ninad Joshi 8

• SPIE-Program: Simulation code for Plasma and Ion Extraction

– Dynamics of plasmas in small volume type ion source

– Ion extraction

– Production mechanism different species

Page 9: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Project MSR

• High current beam storage in longitudinal magnetic field with closed magnetic field lines

– Multi ampere proton beam with energy 150keV ~ few MeV

• PIC simulation in toroidal coordinates

• Ion beam transport with electrons

• Direct comparison with experiments

AG-NNPRiezlern 2010 Ninad Joshi 9

Page 10: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

FRANZ Facilty

• Chopper in Low Energy Beam Transport (LEBT) section

– Input proton beam with current 200 mA at the energy of 120 keV

• Semi-open boundary

conditions with definition of

curved electrodes

• Continual generation of ions

AG-NNPRiezlern 2010 Ninad Joshi 10

• Space charge compensation

due rest gas ionization and

secondary electrons produced

on wall

• Deflection due to electric field

can be compared with

experiments

Page 11: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

SPIE : Ion source

• Hot filament driven volume

type ion source

• Originally constructed and

developed by Peter Groß in

2000

Simulation code for Plasma and Ion Extraction - Program

AG-NNPRiezlern 2010 Ninad Joshi 11

2000

• Triode extraction 20keV max

• He ions as reference

• Proton beam for MSR

experiments

• Ref: N. Joshi, doctoral thesis

Page 12: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Ref: A. J. T. Holmes, et.al., „A

compact ion source with high

Ion species

Ref: R. Hollinger, K. Volk, et.al.,

„Measurement of the beam

emittance of the Frankfurt proton

source“, RSI, 2002;

and doctoral thesis

200 mA, ~93% p, @ 55 keV

AG-NNPRiezlern 2010 Ninad Joshi 12

compact ion source with high

brightness“, J. Phy. E, 1980

40 mA, ~60% p, @ 50 keV

Ref: N. Joshi, O. Meusel, et.al., NIM A, 2009, 5.0 mA, ~58% p, @ 10 keV

Page 13: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Questions

• Can we find theoretical limits of a given ion source by developing a

simulation code ?

• How do the external components and fields influence the plasma properties

and the production mechanism of different species in this type of source?

• Along with existing tools can we advance our code to investigate the hot

filament driven ion source and find „science“ behind experimental results?

Recent compititors

AG-NNPRiezlern 2010 Ninad Joshi 13

• Existing codes IGUN , KOBRA, OOPIC

• China: Simulation code for description in complete 3D, with 3D graphics

• France: Simulation code to describe H- production in negative ion source,

ITER, (1D)

Recent compititors

Page 14: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Simulation parameter

• Multiple Grids

• Cartesian mesh with definition of

circular plasma chamber and electrodes

• Magnetic field from coils

• Continual generation of electrons at

cathode

Electron simulation in plasma chamber

AG-NNPRiezlern 2010 Ninad Joshi 14

Typical potentials: HV= extraction voltage

U-cathode = 0 +HV ; U-arc = 100 + HV

U-extraction = 90+ HV;

U-screening = 10% of HV

U-ground = 0.0 !!Without B With B

Electron simulation in plasma chamber

(vertical plane), filament at the center

Page 15: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Hydrogen Plasma

Creation Annihilation

H+ 5 3

H2+ 3 3

Species => H2 H2* H H* H+ H2

+ H3+ H- e-

=> Total = 9

AG-NNPRiezlern 2010 Ninad Joshi 15

H3+ 1 4

H- 1 6

Ref: „Cross Sections for Electron Collisions with Hydrogen

Molecules“, Jung-Sik Yoon et.al., J. Phys Chem.

„Electron Collisions with Atoms and Molecules“, Atomic data

and Nuclear data tables

Page 16: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

PIC with Monte Carlo Collision

PIC

• Deterministic classical mechnics

• Moving particles in small time step

• Collective effect through self and

applied fields

MC

AG-NNPRiezlern 2010 Ninad Joshi 16

MC

• Probablistic

• Collisional effects in relatively weak

electric fields

PsxnE collνσ →∆)()(

Page 17: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

MCC model

2

2

1isi vmE =

∑= )()( ijiT EE σσ

))()(exp(1 itiTii nEtvP xσ∆−−=

Kinetic Energy for i th particle of specie s

Total collisional cross section is sum of

where j is type of cross section

Collisional probability for i th particle

AG-NNPRiezlern 2010 Ninad Joshi 17

i

i

k

k

iP

PPr

−=∑

= 1~

2

2

Random numbers R1, R2 => [0,1]

Random numbers R3, R4 => [0,1]

Error missed collision in ∆t

r<0.01 => Pi <0.095

ScatteringRR

collisonoftypeR

collisionPR i

⇒<

43

2

1

,

Page 18: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Example He- ions

−+− +→+ eHeHee 2

Green : Electrons

Red : He - ions

Single specie plasma from Helium

Plasma chamber

length 0.1m

radius r=0.035m

Filament 90mm

B~few GaussB ~ 0 GaussPotential Plasma

electrode changed

Simulation time

Each step ~ ns

Total time max 0.5 µsHorizontal plane

AG-NNPRiezlern 2010 Ninad Joshi 18

B~few GaussB ~ 0 Gauss electrode changed

Page 19: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Influence on plasma

Shorter filament length 55 mm

with Bw/o BEstimated beam current behaviour

AG-NNPRiezlern 2010 Ninad Joshi 19

Long filament Short filament

with Bwith Bw/o B w/o B

with Bw/o B

Potential distribution

(Horizontal plane)

Page 20: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Comparison

AG-NNPRiezlern 2010 Ninad Joshi 20

Page 21: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Application to MSR

• Designing the target chamber for collision experiments

• Different Larmor gyration for

ions and electrons in strong

magnetic fields

• Configuration of tuning coil can

be investigated for optimized

AG-NNPRiezlern 2010 Ninad Joshi 21

be investigated for optimized

particle density and scattering

cross sections

Page 22: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

References

• Computer simulation using particles– R. W. Hockney and J. W. Eastwood

• Plasma-based ion beam sources– Loeb, Plasma Phys. Control. fusion, (47), 2005

• Charged particle beams– S. Humphries, Jr.

• Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC

– C. K. Birdsall, IEEE Transactions on Plasma science, vol. 19 (2), 1991• A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen

discharge– V. Vahedi, et.al., Comp. Phys. Commun., 87,1995

AG-NNPRiezlern 2010 Ninad Joshi 22

– V. Vahedi, et.al., Comp. Phys. Commun., 87,1995• Particle-in-cell with Monte Carlo collision modelling of the electron and negative hydrogen ion

transport across a localized transverse magnetic field– St. Kolev, et.al., Phys. Plasmas, (16), 2009

• For more informaton see: http://www.uni-frankfurt.de/~joshi

Page 23: PIC Method for Numerical Simulationnnp.physik.uni-frankfurt.de/publications/2010/riezlern2010_nj.pdf · • Charged particle beams – S. Humphries, Jr. • Particle-in-Cell Charged-Particle

Conclusions and Outlook

• Particle-in-cell model has been investigated and successfully applied for different problems

• The code is being upgraded Monte Carlo subroutine for simulation of collision

• The results can be directly compared with experiments

• New approaches required to study the target designing in magnetic field

Acknowledgements

AG-NNPRiezlern 2010 Ninad Joshi 23

Acknowledgements

• Prof. U. Ratzinger

• NNP – Group

Thank you ...!!