tensor algebra - oafak.comoafak.com/wp-content/uploads/2013/01/2-tensor-algebra-jan-2013.pdftensor...

110
Tensor Algebra Tensors as Linear Mappings

Upload: buihanh

Post on 15-Feb-2019

237 views

Category:

Documents


2 download

TRANSCRIPT

Tensor Algebra Tensors as Linear Mappings

A second Order Tensor ๐‘ป is a linear mapping from a vector space to itself. Given ๐’– โˆˆ V the mapping,

๐‘ป: V โ†’ V

states that โˆƒ ๐’˜ โˆˆ V such that, ๐‘ป ๐’– = ๐’˜.

Every other definition of a second order tensor can be derived from this simple definition. The tensor character of an object can be established by observing its action on a vector.

Second Order Tensor

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 2

The mapping is linear. This means that if we have two runs of the process, we first input ๐’– and later input ๐ฏ. The outcomes ๐‘ป(๐’–) and ๐‘ป(๐ฏ), added would have been the same as if we had added the inputs ๐’– and ๐ฏ first and supplied the sum of the vectors as input. More compactly, this means,

๐‘ป ๐’– + ๐ฏ = ๐‘ป(๐’–) + ๐‘ป(๐ฏ)

Linearity

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 3

Linearity further means that, for any scalar ๐›ผ and tensor ๐‘ป ๐‘ป ๐›ผ๐’– = ๐›ผ๐‘ป ๐’–

The two properties can be added so that, given ๐›ผ, ๐›ฝ โˆˆ R, and ๐’–, ๐ฏ โˆˆ V, then

๐‘ป ๐›ผ๐’– + ๐›ฝ๐ฏ = ๐›ผ๐‘ป ๐’– + ๐›ฝ๐‘ป ๐ฏ

Since we can think of a tensor as a process that takes an input and produces an output, two tensors are equal only if they produce the same outputs when supplied with the same input. The sum of two tensors is the tensor that will give an output which will be the sum of the outputs of the two tensors when each is given that input.

Linearity

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 4

In general, ๐›ผ, ๐›ฝ โˆˆR , ๐’–, ๐ฏ โˆˆ V and ๐‘บ, ๐‘ป โˆˆ T ๐›ผ๐‘บ๐’– + ๐›ฝ๐‘ป๐’– = (๐›ผ๐‘บ + ๐›ฝ๐‘ป)๐’–

With the definition above, the set of tensors constitute a vector space with its rules of addition and multiplication by a scalar. It will become obvious later that it also constitutes a Euclidean vector space with its own rule of the inner product.

Vector Space

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 5

Notation.

It is customary to write the tensor mapping without the parentheses. Hence, we can write,

๐‘ป๐’– โ‰ก ๐‘ป(๐’–)

For the mapping by the tensor ๐‘ป on the vector variable and dispense with the parentheses unless when needed.

Special Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 6

The annihilator ๐‘ถ is defined as the tensor that maps all vectors to the zero vector, ๐’:

๐‘ถ๐‘ข = ๐’, โˆ€๐’– โˆˆ V

Zero Tensor or Annihilator

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 7

The identity tensor ๐Ÿ is the tensor that leaves every vector unaltered. โˆ€๐’– โˆˆ V ,

๐Ÿ๐’– = ๐’–

Furthermore, โˆ€๐›ผ โˆˆ R , the tensor, ๐›ผ๐Ÿ is called a spherical tensor.

The identity tensor induces the concept of an inverse of a tensor. Given the fact that if ๐‘ป โˆˆ T and ๐’– โˆˆ V , the mapping ๐’˜ โ‰ก ๐‘ป๐’– produces a vector.

The Identity

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 8

Consider a linear mapping that, operating on ๐’˜, produces our original argument, ๐’–, if we can find it:

๐’€๐’˜ = ๐’–

As a linear mapping, operating on a vector, clearly, ๐’€ is a tensor. It is called the inverse of ๐‘ป because,

๐’€๐’˜ = ๐’€๐‘ป๐’– = ๐’–

So that the composition ๐’€๐‘ป = ๐Ÿ, the identity mapping. For this reason, we write,

๐’€ = ๐‘ปโˆ’1

The Inverse

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 9

It is easy to show that if ๐’€๐‘ป = ๐Ÿ, then ๐‘ป๐’€ = ๐’€๐‘ป = ๐Ÿ.

HW: Show this.

The set of invertible sets is closed under composition. It is also closed under inversion. It forms a group with the identity tensor as the groupโ€™s neutral element

Inverse

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 10

Given ๐’˜, ๐ฏ โˆˆ V , The tensor ๐‘จT satisfying

๐’˜ โ‹… ๐‘จT๐ฏ = ๐ฏ โ‹… (๐‘จ๐’˜)

Is called the transpose of ๐ด.

A tensor indistinguishable from its transpose is said to be symmetric.

Transposition of Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 11

There are certain mappings from the space of tensors to the real space. Such mappings are called Invariants of the Tensor. Three of these, called Principal invariants play key roles in the application of tensors to continuum mechanics. We shall define them shortly.

The definition given here is free of any association with a coordinate system. It is a good practice to derive any other definitions from these fundamental ones:

Invariants

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 12

If we write ๐š, ๐›, ๐œ โ‰ก ๐š โ‹… ๐› ร— ๐œ

where ๐š, ๐›, and ๐œ are arbitrary vectors.

For any second order tensor ๐‘ป, and linearly independent ๐š, ๐›, and ๐œ, the linear mapping ๐ผ1: T โ†’R

๐ผ1 ๐‘ป โ‰ก tr ๐‘ป =๐‘ป๐š, ๐›, ๐œ + ๐š, ๐‘ป๐›, ๐œ + [๐š, ๐›, ๐‘ป๐œ]

[๐š, ๐›, ๐œ]

Is independent of the choice of the basis vectors ๐š, ๐›, and ๐œ. It is called the First Principal Invariant of ๐‘ป or Trace of ๐‘ป โ‰ก tr ๐‘ป โ‰ก ๐ผ1(๐‘ป)

The Trace

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 13

The trace is a linear mapping. It is easily shown that ๐›ผ, ๐›ฝ โˆˆ R , and ๐‘บ, ๐‘ป โˆˆ T

tr ๐›ผ๐‘บ + ๐›ฝ๐‘ป = ๐›ผtr ๐‘บ + ๐›ฝtr(๐‘ป)

HW. Show this by appealing to the linearity of the vector space.

While the trace of a tensor is linear, the other two principal invariants are nonlinear. WE now proceed to define them

The Trace

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 14

The second principal invariant ๐ผ2 ๐‘บ is related to the trace. In fact, you may come across books that define it so. However, the most common definition is that

๐ผ2 ๐‘บ =1

2๐ผ12 ๐‘บ โˆ’ ๐ผ1(๐‘บ

2)

Independently of the trace, we can also define the second principal invariant as,

Square of the trace

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 15

The Second Principal Invariant, ๐ผ2 ๐‘ป , using the same notation as above is ๐‘ป๐’‚ , ๐‘ป๐’ƒ , ๐’„ + ๐’‚, ๐‘ป๐’ƒ , ๐‘ป๐’„ + ๐‘ป๐’‚ , ๐’ƒ, ๐‘ป๐’„

๐’‚, ๐’ƒ, ๐’„

=1

2tr2 ๐‘ป โˆ’ tr ๐‘ป2

that is half the square of trace minus the trace of the square of ๐‘ป which is the second principal invariant.

This quantity remains unchanged for any arbitrary selection of basis vectors ๐’‚, ๐’ƒ and ๐’„.

Second Principal Invariant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 16

The third mapping from tensors to the real space underlying the tensor is the determinant of the tensor. While you may be familiar with that operation and can easily extract a determinant from a matrix, it is important to understand the definition for a tensor that is independent of the component expression. The latter remains relevant even when we have not expressed the tensor in terms of its components in a particular coordinate system.

The Determinant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 17

As before, For any second order tensor ๐‘ป, and any linearly independent vectors ๐š, ๐›, and ๐œ,

The determinant of the tensor ๐‘ป,

det ๐‘ป =๐‘ป๐’‚ , ๐‘ป๐’ƒ , ๐‘ป๐’„

๐’‚, ๐’ƒ, ๐’„

(In the special case when the basis vectors are orthonormal, the denominator is unity)

The Determinant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 18

It is good to note that there are other principal invariants that can be defined. The ones we defined here are the ones you are most likely to find in other texts.

An invariant is a scalar derived from a tensor that remains unchanged in any coordinate system. Mathematically, it is a mapping from the tensor space to the real space. Or simply a scalar valued function of the tensor.

Other Principal Invariants

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 19

The trace provides a simple way to define the inner product of two second-order tensors. Given ๐‘บ, ๐‘ป โˆˆ T

The trace, tr ๐‘บ๐‘‡๐‘ป = tr(๐‘บ๐‘ป๐‘‡)

Is a scalar, independent of the coordinate system chosen to represent the tensors. This is defined as the inner or scalar product of the tensors ๐‘บ and ๐‘ป. That is,

๐‘บ: ๐‘ป โ‰ก tr ๐‘บ๐‘‡๐‘ป = tr(๐‘บ๐‘ป๐‘‡)

Inner Product of Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 20

The trace automatically induces the concept of the norm of a vector (This is not the determinant! Note!!) The square root of the scalar product of a tensor with itself is the norm, magnitude or length of the tensor:

๐‘ป = tr(๐‘ป๐‘‡๐‘ป) = ๐‘ป: ๐‘ป

Attributes of a Euclidean Space

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 21

Furthermore, the distance between two tensors as well as the angle they contain are defined. The scalar distance ๐‘‘(๐‘บ, ๐‘ป)between tensors ๐‘บ and ๐‘ป :

๐‘‘ ๐‘บ, ๐‘ป = ๐‘บ โˆ’ ๐‘ป = ๐‘ป โˆ’ ๐‘บ

And the angle ๐œƒ(๐‘บ, ๐‘ป),

๐œƒ = cosโˆ’1๐‘บ: ๐‘ป

๐‘บ ๐‘ป

Distance and angles

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 22

A product mapping from two vector spaces to T is defined as the tensor product. It has the following properties:

"โŠ—":V ร—V โ†’ T ๐’–โŠ— ๐’— ๐’˜ = (๐’— โ‹… ๐’˜)๐’–

It is an ordered pair of vectors. It acts on any other vector by creating a new vector in the direction of its first vector as shown above. This product of two vectors is called a tensor product or a simple dyad.

The Tensor Product

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 23

It is very easily shown that the transposition of dyad is simply a reversal of its order. (HW. Show this).

The tensor product is linear in its two factors.

Based on the obvious fact that for any tensor ๐‘ป and ๐’–, ๐’—,๐’˜ โˆˆ V , ๐‘ป ๐’–โŠ— ๐’— ๐’˜ = ๐‘ป๐’– ๐’— โ‹… ๐’˜ = ๐‘ป๐’– โŠ— ๐’— ๐’˜

It is clear that ๐‘ป ๐’–โŠ— ๐’— = ๐‘ป๐’– โŠ— ๐’—

Show this neatly by operating either side on a vector

Furthermore, the contraction, ๐’–โŠ— ๐’— ๐‘ป = ๐’–โŠ— ๐‘ป๐‘‡๐’—

A fact that can be established by operating each side on the same vector.

Dyad Properties

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 24

Recall that for ๐’˜, ๐ฏ โˆˆ V , The tensor ๐‘จT satisfying

๐’˜ โ‹… ๐‘จT๐ฏ = ๐ฏ โ‹… (๐‘จ๐’˜)

Is called the transpose of ๐‘จ. Now let ๐‘จ = ๐’‚โŠ— ๐’ƒ a dyad. ๐ฏ โ‹… ๐‘จ๐’˜ =

= ๐ฏ โ‹… ๐’‚โŠ— ๐’ƒ ๐’˜ = ๐ฏ โ‹… ๐’‚ ๐’ƒ โ‹… ๐’˜ = ๐ฏ โ‹… ๐’‚ ๐’ƒ โ‹… ๐’˜ = ๐’˜ โ‹… ๐’ƒ ๐ฏ โ‹… ๐’‚ = ๐’˜ โ‹… ๐’ƒโŠ— ๐’‚ ๐ฏ

So that ๐’‚โŠ— ๐’ƒ T = ๐’ƒโŠ— ๐’‚

Showing that the transpose of a dyad is simply a reversal of its factors.

Transpose of a Dyad

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 25

If ๐ง is the unit normal to a given plane, show that the tensor ๐“ โ‰ก ๐Ÿ โˆ’ ๐งโŠ— ๐ง is such that ๐“๐ฎ is the projection of the vector ๐ฎ to the plane in question.

Consider the fact that ๐“ โ‹… ๐ฎ = ๐Ÿ๐ฎ โˆ’ ๐ง โ‹… ๐ฎ ๐ง = ๐ฎ โˆ’ ๐ง โ‹… ๐ฎ ๐ง

The above vector equation shows that ๐“๐ฎ is what remains after we have subtracted the projection ๐ง โ‹… ๐ฎ ๐ง onto the normal. Obviously, this is the

projection to the plane itself. ๐“ as we shall see later is called a tensor projector.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 26

Consider a contravariant vector component ๐‘Ž๐‘˜ let us take a product of this with the Kronecker Delta:

๐›ฟ๐‘—๐‘–๐‘Ž๐‘˜

which gives us a third-order object. Let us now perform a contraction across (by taking the superscript index from ๐ด๐‘˜

and the subscript from ๐›ฟ๐‘—๐‘–) to arrive at,

๐‘‘๐‘– = ๐›ฟ๐‘—๐‘–๐‘Ž๐‘—

Observe that the only free index remaining is the superscript ๐‘– as the other indices have been contracted (it is consequently a summation index) out in the implied summation. Let us now expand the RHS above, we find,

Substitution Operation

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 27

๐‘‘๐‘– = ๐›ฟ๐‘—๐‘–๐‘Ž๐‘— = ๐›ฟ1

๐‘–๐‘Ž1 + ๐›ฟ2๐‘–๐‘Ž2 + ๐›ฟ3

๐‘–๐‘Ž3

Note the following cases:

if ๐‘– = 1, we have ๐‘‘1 = ๐‘Ž1, if ๐‘– = 2, we have ๐‘‘2 = ๐‘Ž2 if ๐‘– = 3, we have ๐‘‘3 = ๐‘Ž3. This leads us to conclude

therefore that the contraction, ๐›ฟ๐‘—๐‘–๐‘Ž๐‘— = ๐‘Ž๐‘–. Indicating

that that the Kronecker Delta, in a contraction, merely substitutes its own other symbol for the symbol on the vector ๐‘Ž๐‘— it was contracted with. This fact, that the Kronecker Delta does this in general earned it the alias of โ€œSubstitution Operatorโ€.

Substitution

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 28

Operate on the vector ๐’› and let ๐‘ป๐’› = ๐’˜. On the LHS, ๐’–โŠ— ๐’— ๐‘ป๐’› = ๐’–โŠ— ๐’— ๐’˜

On the RHS, we have:

๐’–โŠ— ๐‘ป๐‘‡๐’— ๐’› = ๐’– ๐‘ป๐‘‡๐’— โ‹… ๐’› = ๐’– ๐’› โ‹… ๐‘ป๐‘‡๐’—

Since the contents of both sides of the dot are vectors and dot product of vectors is commutative. Clearly,

๐’–โŠ— ๐’› โ‹… ๐‘ป๐‘‡๐’— = ๐’–โŠ— ๐’— โ‹… ๐‘ป๐’›

follows from the definition of transposition. Hence,

๐’–โŠ— ๐‘ป๐‘‡๐’— ๐’› = ๐’– ๐’— โ‹… ๐’˜ = ๐’–โŠ— ๐’— ๐’˜

Composition with Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 29

For ๐’–, ๐’—,๐’˜, ๐’™ โˆˆ V , We can show that the dyad composition,

๐’–โŠ— ๐’— ๐’˜โŠ— ๐’™ = ๐’–โŠ— ๐’™ ๐’— โ‹… ๐’˜

Again, the proof is to show that both sides produce the same result when they act on the same vector. Let ๐’š โˆˆ V , then the LHS on ๐’š yields:

๐’–โŠ— ๐’— ๐’˜โŠ— ๐’™ ๐’š = ๐’–โŠ— ๐’— ๐’˜(๐’™ โ‹… ๐’š)= ๐’– ๐’— โ‹… ๐’˜ (๐’™ โ‹… ๐’š)

Which is obviously the result from the RHS also.

This therefore makes it straightforward to contract dyads by breaking and joining as seen above.

Dyad on Dyad Composition

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 30

Show that the trace of the tensor product ๐ฎโŠ— ๐ฏ is ๐ฎ โ‹…๐ฏ.

Given any three independent vectors ๐š, ๐›, and ๐œ, (No loss of generality in letting the three independent vectors be the curvilinear basis vectors ๐ 1, ๐ 2 and ๐ 3). Using the above definition of trace, we can write that,

Trace of a Dyad

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 31

tr ๐ฎโŠ— ๐ฏ

=๐ฎโŠ— ๐ฏ ๐ 1 , ๐ 2, ๐ 3 + ๐ 1, ๐ฎ โŠ— ๐ฏ ๐ 2 , ๐ 3 + ๐ 1, ๐ 2, ๐ฎ โŠ— ๐ฏ ๐ 3

๐ 1, ๐ 2, ๐ 3

=1

๐œ–123๐‘ฃ1๐ฎ, ๐ 2, ๐ 3 + ๐ 1, ๐‘ฃ2๐ฎ, ๐ 3 + ๐ 1, ๐ 2, ๐‘ฃ3๐ฎ

=1

๐œ–123๐‘ฃ1๐ฎ โ‹… ๐œ–23๐‘–๐ 

๐‘– + ๐œ–31๐‘–๐ ๐‘– โ‹… ๐‘ฃ2๐ฎ + ๐œ–12๐‘–๐ 

๐‘– โ‹… ๐‘ฃ3๐ฎ

=1

๐œ–123๐‘ฃ1๐ฎ โ‹… ๐œ–231๐ 

1 + ๐œ–312๐ 2 โ‹… ๐‘ฃ2๐ฎ + ๐œ–123๐ 

3 โ‹… ๐‘ฃ3๐ฎ

= ๐‘ฃ๐‘–๐‘ข๐‘– = ๐ฎ โ‹… ๐ฏ

Trace of a Dyad

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 32

It is easy to show that for a tensor product ๐‘ซ = ๐’–โŠ— ๐’— โˆ€๐’–, ๐’— โˆˆ V ๐‘ฐ2 ๐‘ซ = ๐‘ฐ3 ๐‘ซ = 0

HW. Show that this is so.

We proved earlier that ๐‘ฐ1 ๐‘ซ = ๐’– โ‹… ๐’—

Furthermore, if ๐‘ป โˆˆ T , then, tr ๐‘ป๐’–โŠ— ๐’— = tr ๐’˜โŠ— ๐’— = ๐’˜ โ‹… ๐’— = ๐‘ป๐’– โ‹… ๐’—

Other Invariants of a Dyad

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 33

Given ๐‘ป โˆˆ T , for any basis vectors ๐ ๐‘– โˆˆ V , ๐‘– = 1,2,3 ๐‘ป๐‘— โ‰ก ๐‘ป๐ ๐‘— โˆˆ V , ๐‘— = 1,2,3

by the law of tensor mapping. We proceed to find the components of ๐‘ป๐‘— on this same basis. Its covariant

components, just like in any other vector are the scalars, ๐‘ป๐›ผ ๐‘— = ๐ ๐›ผ โ‹… ๐‘ป๐‘—

Specifically, these components are ๐‘ป1 ๐‘— , ๐‘ป2 ๐‘— , ๐‘ป3 ๐‘—

Tensor Bases & Component Representation

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 34

We can dispense with the parentheses and write that ๐‘‡๐›ผ๐‘— โ‰ก ๐‘‡๐›ผ ๐‘— = ๐‘ป๐‘— โ‹… ๐ ๐›ผ

So that the vector ๐‘ป๐ ๐‘— = ๐‘ป๐‘— = ๐‘‡๐›ผ๐‘—๐ 

๐›ผ

The components ๐‘‡๐‘–๐‘— can be found by taking the dot

product of the above equation with ๐ ๐‘–:

๐ ๐‘– โ‹… ๐‘ป๐ ๐‘— = ๐‘‡๐›ผ๐‘— ๐ ๐‘– โ‹… ๐ ๐›ผ = ๐‘‡๐‘–๐‘—

๐‘‡๐‘–๐‘— = ๐ ๐‘– โ‹… ๐‘ป๐ ๐‘—

= tr ๐‘ป๐ ๐‘—โŠ—๐ ๐‘– = ๐‘ป: ๐ ๐‘–โŠ—๐ ๐‘—

Tensor Components

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 35

The component ๐‘‡๐‘–๐‘— is simply the result of the inner

product of the tensor ๐‘ป on the tensor product ๐ ๐‘–โŠ—๐ ๐‘—.

These are the components of ๐‘ป on the product dual of this particular product base.

This is a general result and applies to all product bases:

It is straightforward to prove the results on the following table:

Tensor Components

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 36

Components of ๐‘ป Derivation Full Representation

๐‘‡๐‘–๐‘— ๐‘ป: (๐ ๐‘–โŠ—๐ ๐‘—) ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡๐‘–๐‘— ๐‘ป: ๐ ๐‘–โŠ—๐ ๐‘— ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡๐‘–.๐‘—

๐‘ป: (๐ ๐‘–โŠ—๐ ๐‘—) ๐‘ป = ๐‘‡๐‘–

.๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡.๐‘–๐‘— ๐‘ป: (๐ ๐‘—โŠ—๐ ๐‘–) ๐‘ป = ๐‘‡.๐‘–

๐‘—๐ ๐‘—โŠ—๐ 

๐‘–

Tensor Components

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 37

Components of ๐Ÿ Derivation Full Representation

๐Ÿ ๐‘–๐‘— = ๐‘”๐‘–๐‘— ๐Ÿ: (๐ ๐‘–โŠ—๐ ๐‘—) ๐Ÿ = ๐‘”๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐Ÿ ๐‘–๐‘— = ๐‘”๐‘–๐‘— ๐Ÿ: ๐ ๐‘–โŠ—๐ ๐‘— ๐Ÿ = ๐‘”๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐Ÿ ๐‘–.๐‘—= ๐›ฟ๐‘–.๐‘—

๐Ÿ: (๐ ๐‘–โŠ—๐ ๐‘—) ๐Ÿ = ๐›ฟ๐‘–

.๐‘—๐ ๐‘–โŠ—๐ ๐‘— = ๐ 

๐‘–โŠ—๐ ๐‘–

๐Ÿ .๐‘–๐‘—= ๐›ฟ .๐‘–๐‘—

๐Ÿ: (๐ ๐‘—โŠ—๐ ๐‘–) ๐Ÿ = ๐›ฟ.๐‘–๐‘—๐ ๐‘—โŠ—๐ 

๐‘– = ๐ ๐‘—โŠ—๐ ๐‘—

IdentityTensor Components

It is easily verified from the definition of the identity tensor and the inner product that: (HW Verify this)

Showing that the Kronecker deltas are the components of the identity tensor in certain (not all) coordinate bases.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 38

The above table shows the interesting relationship between the metric components and Kronecker deltas.

Obviously, they are the same tensors under different bases vectors.

Kronecker and Metric Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 39

It is easy to show that the above tables of component representations are valid. For any ๐ฏ โˆˆ V , and ๐‘ป โˆˆ T,

๐‘ป โˆ’ ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— ๐ฏ = ๐‘ป๐ฏ โˆ’ ๐‘‡๐‘–๐‘— ๐ 

๐‘–โŠ—๐ ๐‘— ๐ฏ

Expanding the vector in contravariant components, we have,

๐‘ป๐ฏ โˆ’ ๐‘‡๐‘–๐‘— ๐ ๐‘–โŠ—๐ ๐‘— ๐ฏ = ๐‘ป๐‘ฃ๐›ผ๐ ๐›ผ โˆ’ ๐‘‡๐‘–๐‘— ๐ 

๐‘–โŠ—๐ ๐‘— ๐‘ฃ๐›ผ๐ ๐›ผ

= ๐‘ป๐‘ฃ๐›ผ๐ ๐›ผ โˆ’ ๐‘‡๐‘–๐‘—๐‘ฃ๐›ผ๐ ๐‘– ๐ ๐‘— โ‹… ๐ ๐›ผ

= ๐‘ป๐‘ฃ๐›ผ๐ ๐›ผ โˆ’ ๐‘‡๐‘–๐‘—๐‘ฃ๐›ผ๐ ๐‘–๐›ฟ๐›ผ

๐‘—

= ๐‘ป๐›ผ ๐‘ฃ๐›ผ โˆ’ ๐‘‡๐‘–๐‘—๐‘ฃ

๐‘—๐ ๐‘– = ๐‘ป๐›ผ ๐‘ฃ๐›ผ โˆ’ ๐‘ป๐‘—๐‘ฃ

๐‘—

= ๐’

โˆด ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

Component Representation

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 40

The transpose of ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— is ๐‘ป๐‘‡ = ๐‘‡๐‘–๐‘—๐ 

๐‘—โŠ—๐ ๐‘–.

If ๐‘ป is symmetric, then,

๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— = ๐‘‡๐‘–๐‘—๐ 

๐‘—โŠ—๐ ๐‘– = ๐‘‡๐‘—๐‘–๐ ๐‘–โŠ—๐ ๐‘—

Clearly, in this case, ๐‘‡๐‘–๐‘— = ๐‘‡๐‘—๐‘–

It is straightforward to establish the same for contravariant components. This result is impossible to establish for mixed tensor components:

Symmetry

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 41

For mixed tensor components,

๐‘ป = ๐‘‡๐‘–.๐‘—๐ ๐‘–โŠ—๐ ๐‘—

The transpose,

๐‘ปT = ๐‘‡๐‘–.๐‘—๐ ๐‘—โŠ—๐ 

๐‘–= ๐‘‡๐‘—.๐‘–๐ ๐‘–โŠ—๐ 

๐‘—

While symmetry implies that,

๐‘ป = ๐‘‡๐‘–.๐‘—๐ ๐‘–โŠ—๐ ๐‘— = ๐‘ป

T = ๐‘‡๐‘—.๐‘–๐ ๐‘–โŠ—๐ 

๐‘—

We are not able to exploit the dummy variables to bring the two sides to a common product basis. Hence the symmetry is not expressible in terms of their components.

Symmetry

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 42

A tensor is antisymmetric if its transpose is its negative. In product bases that are either covariant or contravariant, antisymmetry, like symmetry can be expressed in terms of the components:

The transpose of ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— is ๐‘ป๐‘‡ = ๐‘‡๐‘–๐‘—๐ 

๐‘—โŠ—๐ ๐‘–.

If ๐‘ป is antisymmetric, then,

๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— = โˆ’๐‘‡๐‘–๐‘—๐ 

๐‘—โŠ—๐ ๐‘– = โˆ’๐‘‡๐‘—๐‘–๐ ๐‘–โŠ—๐ ๐‘—

Clearly, in this case, ๐‘‡๐‘–๐‘— = โˆ’๐‘‡๐‘—๐‘–

It is straightforward to establish the same for contravariant components. Antisymmetric tensors are also said to be skew-symmetric.

AntiSymmetry

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 43

For any tensor ๐“, define the symmetric and skew parts

sym ๐“ โ‰ก1

2๐“ + ๐“T , and skw ๐“ โ‰ก

1

2๐“ โˆ’ ๐“T . It is easy

to show the following: ๐“ = sym ๐“ + skw ๐“

skw sym ๐“ = sym skw ๐“ = 0

We can also write that,

sym ๐“ =1

2๐‘‡๐‘–๐‘— + ๐‘‡๐‘—๐‘– ๐ 

๐‘–โŠ—๐ ๐‘—

and

skw ๐“ =1

2๐‘‡๐‘–๐‘— โˆ’ ๐‘‡๐‘—๐‘– ๐ 

๐‘–โŠ—๐ ๐‘—

Symmetric & Skew Parts of Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 44

Composition of tensors in component form follows the rule of the composition of dyads.

๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— ,

๐‘บ = ๐‘†๐‘–๐‘— ๐ ๐‘–โŠ—๐ ๐‘—

๐‘ป๐‘บ = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— ๐‘†๐›ผ๐›ฝ๐ ๐›ผโŠ—๐ ๐›ฝ

= ๐‘‡๐‘–๐‘—๐‘†๐›ผ๐›ฝ ๐ ๐‘–โŠ—๐ ๐‘— ๐ ๐›ผโŠ—๐ ๐›ฝ

= ๐‘‡๐‘–๐‘—๐‘†๐›ผ๐›ฝ๐ ๐‘–โŠ—๐ ๐›ฝ๐‘”๐‘—๐›ผ

= ๐‘‡ .๐‘—๐‘–.๐‘†๐‘—๐›ฝ๐ ๐‘–โŠ—๐ ๐›ฝ

= ๐‘‡ .๐›ผ๐‘–. ๐‘†๐›ผ๐‘—๐ ๐‘–โŠ—๐ ๐‘—

Composition

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 45

Addition of two tensors of the same order is the addition of their components provided they are refereed to the same product basis.

Addition

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 46

Components ๐‘ป + ๐‘บ

๐‘‡๐‘–๐‘— +๐‘†๐‘–๐‘— ๐‘‡๐‘–๐‘— +๐‘†๐‘–๐‘— ๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡๐‘–๐‘— + ๐‘†๐‘–๐‘— ๐‘‡๐‘–๐‘— + ๐‘†๐‘–๐‘— ๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡๐‘–.๐‘—+ ๐‘†๐‘–.๐‘—

๐‘‡๐‘–.๐‘—+ ๐‘†๐‘–.๐‘—๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡.๐‘–๐‘—+๐‘†.๐‘–๐‘— ๐‘‡.๐‘–

๐‘—+๐‘†.๐‘–๐‘—๐ ๐‘—โŠ—๐ 

๐‘–

Component Addition

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 47

Invoking the definition of the three principal invariants, we now find expressions for these in terms of the components of tensors in various product bases.

First note that for ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—, the triple product,

๐‘ป๐ 1 , ๐ 2, ๐ 3 = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘— ๐ 1 , ๐ 2, ๐ 3

= ๐‘‡๐‘–๐‘—๐ ๐‘–๐›ฟ1๐‘— , ๐ 2, ๐ 3 = ๐‘‡๐‘–1๐ 

๐‘– โ‹… (๐œ–231๐ 1) = ๐‘‡๐‘–1๐‘”

๐‘–1๐œ–231

Recall that ๐ ๐‘– ร— ๐ ๐‘— = ๐œ–๐‘–๐‘—๐‘˜๐ ๐‘˜

Component Representation of Invariants

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 48

The Trace of the Tensor ๐‘ป = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

tr ๐‘ป =๐‘ป๐ 1 , ๐ 2, ๐ 3 + ๐ 1, ๐‘ป๐ 2 , ๐ 3 + ๐ 1, ๐ 2, ๐‘ป๐ 3

๐ 1, ๐ 2, ๐ 3

=๐‘‡๐‘–1๐‘”๐‘–1๐œ–231 + ๐‘‡๐‘–2๐‘”

๐‘–2๐œ–312 + ๐‘‡๐‘–3๐‘”๐‘–3๐œ–123

๐œ–123

= ๐‘‡๐‘–1๐‘”๐‘–1 + ๐‘‡๐‘–2๐‘”

๐‘–2 + ๐‘‡๐‘–3๐‘”๐‘–3 = ๐‘‡๐‘–๐‘—๐‘”

๐‘–๐‘— = ๐‘‡๐‘–.๐‘–

The Trace

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 49

๐‘ป๐’‚ , ๐‘ป๐’ƒ , ๐’„ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘–๐‘Ž๐›ผ๐‘‡๐›ฝ

๐‘—๐‘๐›ฝ๐‘๐‘˜

๐’‚, ๐‘ป๐’ƒ , ๐‘ป๐’„ = ๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘‡๐›ฝ๐‘—๐‘๐›ฝ๐‘‡๐›พ๐‘˜๐‘๐›พ

๐‘ป๐’‚ , ๐’ƒ, ๐‘ป๐’„ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘–๐‘Ž๐›ผ๐‘๐‘—๐‘‡๐›พ

๐‘˜๐‘๐›พ

Changing the roles of dummy variables, we can write,

๐‘ป๐’‚ , ๐‘ป๐’ƒ , ๐’„ + ๐’‚, ๐‘ป๐’ƒ , ๐‘ป๐’„ + ๐‘ป๐’‚ , ๐’ƒ, ๐‘ป๐’„

= ๐œ–๐›ผ๐›ฝ๐‘˜๐‘‡๐‘–๐›ผ๐‘Ž๐‘–๐‘‡๐‘—

๐›ฝ๐‘๐‘—๐‘๐‘˜ + ๐œ–๐‘–๐›ฝ๐›พ๐‘Ž

๐‘–๐‘‡๐‘—๐›ฝ๐‘๐‘—๐‘‡๐‘˜๐›พ๐‘๐‘˜

+ ๐œ–๐›ผ๐‘—๐›พ๐‘‡๐‘–๐›ผ๐‘Ž๐‘–๐‘๐‘—๐‘‡๐‘˜

๐›พ๐‘๐‘˜

= ๐‘‡๐‘–๐›ผ๐‘‡๐‘—๐›ฝ๐œ–๐›ผ๐›ฝ๐‘˜ + ๐‘‡๐‘—

๐›ฝ๐‘‡๐‘˜๐›พ๐œ–๐‘–๐›ฝ๐›พ + ๐‘‡๐‘–

๐›ผ๐‘‡๐‘˜๐›พ๐œ–๐›ผ๐‘—๐›พ ๐‘Ž

๐‘–๐‘๐‘—๐‘๐‘˜

=1

2๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ๐œ–๐‘–๐‘—๐‘˜๐‘Ž

๐‘–๐‘๐‘—๐‘๐‘˜

Second Invariant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 50

The last equality can be verified in the following way. Contracting the coefficient

๐‘‡๐‘–๐›ผ๐‘‡๐‘—๐›ฝ๐œ–๐›ผ๐›ฝ๐‘˜ + ๐‘‡๐‘—

๐›ฝ๐‘‡๐‘˜๐›พ๐œ–๐‘–๐›ฝ๐›พ + ๐‘‡๐‘–

๐›ผ๐‘‡๐‘˜๐›พ๐œ–๐›ผ๐‘—๐›พ

with ๐œ–๐‘–๐‘—๐‘˜

๐œ–๐‘–๐‘—๐‘˜ ๐‘‡๐‘–๐›ผ๐‘‡๐‘—๐›ฝ๐œ–๐›ผ๐›ฝ๐‘˜ + ๐‘‡๐‘—

๐›ฝ๐‘‡๐‘˜๐›พ๐œ–๐‘–๐›ฝ๐›พ + ๐‘‡๐‘–

๐›ผ๐‘‡๐‘˜๐›พ๐œ–๐›ผ๐‘—๐›พ

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ๐‘—โˆ’ ๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘– ๐‘‡๐‘–๐›ผ๐‘‡๐‘—๐›ฝ+ ๐›ฟ๐›ฝ

๐‘—๐›ฟ๐›พ๐‘˜ โˆ’ ๐›ฟ๐›พ

๐‘—๐›ฟ๐›ฝ๐‘˜ ๐‘‡๐‘—๐›ฝ๐‘‡๐‘˜๐›พ

+ ๐›ฟ๐›ผ๐‘– ๐›ฟ๐›พ๐‘˜ โˆ’ ๐›ฟ๐›ผ

๐‘˜๐›ฟ๐›พ๐‘– ๐‘‡๐‘–๐›ผ๐‘‡๐‘˜๐›พ

= ๐‘‡๐›ผ๐›ผ ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ+ ๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ+ ๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ

= 3 ๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ

Second Invariant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 51

Similarly, contracting ๐œ–๐‘–๐‘—๐‘˜ with ๐œ–๐‘–๐‘—๐‘˜, we have,

๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘–๐‘—๐‘˜ = 6.

Hence

๐‘‡๐‘–๐›ผ๐‘‡๐‘—๐›ฝ๐œ–๐›ผ๐›ฝ๐‘˜ + ๐‘‡๐‘—

๐›ฝ๐‘‡๐‘˜๐›พ๐œ–๐‘–๐›ฝ๐›พ + ๐‘‡๐‘–

๐›ผ๐‘‡๐‘˜๐›พ๐œ–๐›ผ๐‘—๐›พ ๐‘Ž

๐‘–๐‘๐‘—๐‘๐‘˜

๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

=3 ๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

6๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

=๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ๐œ–๐‘–๐‘—๐‘˜๐‘Ž

๐‘–๐‘๐‘—๐‘๐‘˜

2๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

=1

2๐‘‡๐›ผ๐›ผ๐‘‡๐›ฝ๐›ฝโˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ๐›ฝ

Which is half the difference between square of the trace and the trace of the square of tensor ๐‘ป.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 52

The invariant,

๐‘ป๐’‚ , ๐‘ป๐’ƒ , ๐‘ป๐’„ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘–๐‘Ž๐›ผ๐‘‡๐›ฝ

๐‘—๐‘๐›ฝ๐‘‡๐›พ๐‘˜๐‘๐›พ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘–๐‘‡๐›ฝ๐‘—๐‘‡๐›พ๐‘˜๐‘Ž๐›ผ๐‘๐›ฝ๐‘๐›พ

= det ๐‘ป ๐œ–๐›ผ๐›ฝ๐›พ๐‘Ž๐›ผ๐‘๐›ฝ๐‘๐›พ

= det ๐‘ป ๐’‚, ๐’ƒ, ๐’„

From which

det ๐‘ป = ๐œ–๐‘–๐‘—๐‘˜๐‘‡1๐‘–๐‘‡2๐‘—๐‘‡3๐‘˜

Determinant

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 53

Given a vector ๐’– = ๐‘ข๐‘–๐ ๐‘–, the tensor

๐’– ร— โ‰ก ๐œ–๐‘–๐›ผ๐‘—๐‘ข๐›ผ๐ ๐‘–โŠ—๐ ๐‘—

is called a vector cross. The following relation is easily established between a the vector cross and its associated vector:

โˆ€๐ฏ โˆˆ V , ๐’– ร— ๐ฏ = ๐’– ร— ๐ฏ

The vector cross is traceless and antisymmetric. (HW. Show this)

Traceless tensors are also called deviatoric or deviator tensors.

The Vector Cross

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 54

For any antisymmetric tensor ๐›€, โˆƒ๐Ž โˆˆ V , such that ๐›€ = ๐Ž ร—

๐Ž which can always be found, is called the axial vector to the skew tensor.

It can be proved that

๐Ž = โˆ’1

2๐œ–๐‘–๐‘—๐‘˜ฮฉ๐‘—๐‘˜๐ ๐‘– = โˆ’

1

2๐œ–๐‘–๐‘—๐‘˜ฮฉ

๐‘—๐‘˜๐ ๐‘–

(HW: Prove it by contracting both sides of ฮฉ๐‘–๐‘— = ๐œ–๐‘–๐›ผ๐‘—๐œ”๐›ผ

with ๐œ–๐‘–๐‘—๐›ฝwhile noting that ๐œ–๐‘–๐‘—๐›ฝ๐œ–๐‘–๐›ผ๐‘— = ๐›ฟ๐‘–๐›ผ๐‘—๐‘–๐‘—๐›ฝ= โˆ’2๐›ฟ๐›ผ

๐›ฝ)

Axial Vector

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 55

Gurtin 2.8.5 Show that for any two vectors ๐ฎ and ๐ฏ, the inner product ๐ฎ ร— : ๐ฏ ร— = 2๐ฎ โ‹… ๐ฏ. Hence show that ๐ฎ ร— = โˆš2 ๐ฎ

๐ฎ ร— = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐‘˜, ๐ฏ ร— = ๐œ–๐‘™๐‘š๐‘›๐‘ฃ๐‘š๐ ๐‘™โŠ—๐ ๐‘›. Hence,

๐ฎ ร— : ๐ฏ ร— = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘™๐‘š๐‘›๐‘ข๐‘—๐‘ฃ๐‘š ๐ ๐‘–โŠ—๐ ๐‘˜ : ๐ 

๐‘™โŠ—๐ ๐‘›

= ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘™๐‘š๐‘›๐‘ข๐‘—๐‘ฃ๐‘š ๐ ๐‘– โ‹… ๐ 

๐‘™ ๐ ๐‘˜ โ‹… ๐ ๐‘›

= ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘™๐‘š๐‘›๐‘ข๐‘—๐‘ฃ๐‘š๐›ฟ๐‘–๐‘™๐›ฟ๐‘˜๐‘› = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘–๐‘š๐‘˜๐‘ข๐‘—๐‘ฃ

๐‘š

= 2๐›ฟ๐‘š๐‘—๐‘ข๐‘—๐‘ฃ๐‘š = 2๐‘ข๐‘—๐‘ฃ

๐‘— = 2 ๐ฎ โ‹… ๐ฏ

The rest of the result follows by setting ๐ฎ = ๐ฏ

HW. Redo this proof using the contravariant alternating tensor components, ๐œ–๐‘–๐‘—๐‘˜ and ๐œ–๐‘™๐‘š๐‘›.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 56

Examples

For vectors ๐ฎ, ๐ฏ and ๐ฐ, show that ๐ฎ ร— ๐ฏ ร— ๐ฐ ร— =๐ฎโŠ— ๐ฏ ร—๐ฐ โˆ’ ๐ฎ โ‹… ๐ฏ ๐ฐ ร—.

The tensor ๐ฎ ร— = โˆ’๐œ–๐‘™๐‘š๐‘›๐‘ข๐‘›๐ ๐‘™โŠ—๐ ๐‘š

Similarly, ๐ฏ ร— = โˆ’๐œ–๐›ผ๐›ฝ๐›พ๐‘ฃ๐›พ๐ ๐›ผโŠ—๐ ๐›ฝ and ๐ฐร— = โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜๐ ๐‘–โŠ—

๐ ๐‘—. Clearly,

๐ฎ ร— ๐ฏ ร— ๐ฐ ร—

= โˆ’๐œ–๐‘™๐‘š๐‘›๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐›ฝ ๐ 

๐‘™โŠ—๐ ๐‘š ๐ ๐‘–โŠ—๐ ๐‘—= โˆ’๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘™๐‘š๐‘›๐œ–

๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐‘— ๐›ฟ๐›ฝ๐‘™ ๐›ฟ๐‘–๐‘š

= โˆ’๐œ–๐›ผ๐‘™๐›พ๐œ–๐‘™๐‘–๐‘›๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐‘—

= โˆ’๐œ–๐‘™๐›ผ๐›พ๐œ–๐‘™๐‘›๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐‘—

= โˆ’ ๐›ฟ๐‘›๐›ผ๐›ฟ๐‘–๐›พโˆ’ ๐›ฟ๐‘–๐›ผ๐›ฟ๐‘›๐›พ ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘›๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐‘—

= โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘–๐‘ค๐‘˜ ๐ ๐›ผโŠ—๐ ๐‘— + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›พ๐‘ฃ๐›พ๐‘ค๐‘˜ ๐ ๐‘–โŠ—๐ ๐‘—

= ๐ฎโŠ— ๐ฏ ร— ๐ฐ โˆ’ ๐ฎ โ‹… ๐ฏ ๐ฐ ร—

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 57

๐‘”๐‘–๐‘— โ‰ก ๐ ๐‘– โ‹… ๐ ๐‘— and ๐‘”๐‘–๐‘— โ‰ก ๐ ๐‘– โ‹… ๐ ๐‘—

These two quantities turn out to be fundamentally important to any space that which either of these two basis vectors can span. They are called the covariant and contravariant metric tensors. They are the quantities that metrize the space in the sense that any measurement of length, angles areas etc are dependent on them.

Index Raising & Lowering

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 58

Now we start with the fact that the contravariant and covariant components of a vector ๐’‚, ๐‘Ž๐‘— = ๐’‚ โ‹… ๐ ๐‘—, ๐‘Ž๐‘— = ๐’‚ โ‹… ๐ ๐‘— respectively. We can express the vector ๐’‚

with respect to the reciprocal basis as

๐’‚ = ๐‘Ž๐‘–๐ ๐‘–

Consequently, ๐‘Ž๐‘— = ๐’‚ โ‹… ๐ ๐‘— = ๐‘Ž๐‘–๐ 

๐‘– โ‹… ๐ ๐‘— = ๐‘”๐‘–๐‘—๐‘Ž๐‘–

The effect of ๐‘”๐‘–๐‘— contracting ๐‘”๐‘–๐‘— with ๐‘Ž๐‘– is to raise and substitute its index.

Index Raising & Lowering

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 59

With similar arguments, it is easily demonstrated that,

๐‘Ž๐‘– = ๐‘”๐‘–๐‘—๐‘Ž๐‘—

So that ๐‘”๐‘–๐‘—, in a contraction, lowers and substitutes the

index. This rule is a general one. These two components are able to raise or lower indices in tensors of higher orders as well. They are called index raising and index lowering operators.

Index Raising & Lowering

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 60

Tensor components such as ๐‘Ž๐‘– and ๐‘Ž๐‘— related through the index-raising and index lowering metric tensors as we have on the previous slide, are called associated vectors. In higher order quantities, they are associated tensors.

Note that associated tensors, so called, are mere tensor components of the same tensor in different bases.

Associated Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 61

Given any tensor ๐‘จ, the cofactor ๐‘จc of ๐‘จ is the tensor

๐‘ป = ๐‘‡๐‘–.๐‘—๐ ๐‘–โŠ—๐ ๐‘— = ๐‘‡.๐‘—

๐‘–๐ ๐‘–โŠ—๐ ๐‘—

๐‘‡๐‘š๐‘™ =1

2!๐›ฟ๐‘š๐‘—๐‘˜๐‘™๐‘Ÿ๐‘  ๐ด๐‘Ÿ

๐‘—๐ด๐‘ ๐‘˜

is the cofactor of ๐‘จ.

Just as in a matrix, ๐‘จโˆ’T = ๐‘จc

det ๐‘จ

We now show that the tensor ๐‘จc satisfies, ๐‘จc ๐ฎ ร— ๐ฏ = ๐€๐ฎ ร— ๐€๐ฏ

For any two independent vectors ๐ฎ and ๐ฏ.

Cofactor Tensor

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 62

The above vector equation is:

๐‘‡๐‘š๐‘™ ๐ ๐‘™โŠ—๐ 

๐‘š ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐‘– = ๐‘‡๐‘š๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐›ฟ๐‘–

๐‘š๐ ๐‘™

= ๐‘‡๐‘–๐‘™๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐‘™ = ๐œ–

๐‘™๐‘—๐‘˜๐ด๐‘—๐‘Ÿ๐ด๐‘˜๐‘ ๐‘ข๐‘Ÿ๐‘ฃ๐‘ ๐ ๐‘™ = ๐œ–

๐‘™๐‘Ÿ๐‘ ๐ด๐‘Ÿ๐‘—๐ด๐‘ ๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐‘™

The coefficients of the arbitrary tensor ๐‘ข๐‘—๐‘ฃ๐‘˜ are:

๐‘‡๐‘–๐‘™๐œ–๐‘–๐‘—๐‘˜ = ๐œ–๐‘™๐‘Ÿ๐‘ ๐ด๐‘Ÿ

๐‘—๐ด๐‘ ๐‘˜

Contracting on both sides with ๐œ–๐‘š๐‘—๐‘˜ we have,

๐‘‡๐‘–๐‘™๐œ–๐‘–๐‘—๐‘˜๐‘’๐‘š๐‘—๐‘˜ = ๐œ–

๐‘™๐‘Ÿ๐‘ ๐œ–๐‘š๐‘—๐‘˜๐ด๐‘Ÿ๐‘—๐ด๐‘ ๐‘˜ so that,

2! ๐›ฟ๐‘š๐‘– ๐‘‡๐‘–๐‘™ = ๐›ฟ๐‘š๐‘—๐‘˜

๐‘™๐‘Ÿ๐‘  ๐ด๐‘Ÿ๐‘—๐ด๐‘ ๐‘˜ โ‡’ ๐‘‡๐‘š

๐‘™ =1

2!๐›ฟ๐‘š๐‘—๐‘˜๐‘™๐‘Ÿ๐‘  ๐ด๐‘Ÿ

๐‘—๐ด๐‘ ๐‘˜

Cofactor

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 63

The above result shows that the cofactor transforms the area vector of the parallelogram defined by ๐ฎ ร— ๐ฏ to the parallelogram defined by ๐€๐ฎ ร— ๐€๐ฏ

Cofactor Transformation

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 64

Show that the determinant of a product is the product of the determinants

๐‘ช = ๐‘จ๐‘ฉ โ‡’ ๐ถ๐‘—๐‘– = ๐ด๐‘š

๐‘– ๐ต๐‘—๐‘š

so that the determinant of ๐‘ช in component form is,

๐œ–๐‘–๐‘—๐‘˜๐ถ๐‘–1๐ถ๐‘—2๐ถ๐‘˜3 = ๐œ–๐‘–๐‘—๐‘˜๐ด๐‘™

1๐ต๐‘–๐‘™๐ด๐‘š2 ๐ต๐‘—๐‘š๐ด๐‘›3๐ต๐‘˜๐‘›

= ๐ด๐‘™1๐ด๐‘š2 ๐ด๐‘›3 ๐œ–๐‘–๐‘—๐‘˜๐ต๐‘–

๐‘™๐ต๐‘—๐‘š๐ต๐‘˜๐‘›

= ๐ด๐‘™1๐ด๐‘š2 ๐ด๐‘›3 ๐œ–๐‘™๐‘š๐‘› det ๐‘ฉ

= det ๐‘จ ร— det ๐‘ฉ .

If ๐‘จ is the inverse of ๐‘ฉ, then ๐‘ช becomes the identity matrix. Hence the above also proves that the determinant of an inverse is the inverse of the determinant.

Determinants

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 65

det ๐›ผ๐‘ช = ๐œ–๐‘–๐‘—๐‘˜ ๐›ผ๐ถ๐‘–1 ๐›ผ๐ถ๐‘—

2 ๐›ผ๐ถ๐‘˜3 = ๐›ผ3 det ๐‘ช

For any invertible tensor we show that det ๐‘บC = det ๐‘บ 2

The inverse of tensor ๐‘บ,

๐‘บโˆ’1 = det ๐‘บ โˆ’1 ๐‘บCT

let the scalar ๐›ผ = det ๐‘บ. We can see clearly that, ๐‘บC = ๐›ผ๐‘บโˆ’๐‘‡

Taking the determinant of this equation, we have,

det ๐‘บC = ๐›ผ3 det ๐‘บโˆ’๐‘‡ = ๐›ผ3 det ๐‘บโˆ’1

as the transpose operation has no effect on the value of a determinant. Noting that the determinant of an inverse is the inverse of the determinant, we have,

det ๐‘บC = ๐›ผ3 det ๐‘บโˆ’1 =๐›ผ3

๐›ผ= det ๐‘บ 2

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 66

Show that ๐›ผ๐‘บ C = ๐›ผ2๐‘บC

Ans

๐›ผ๐‘บ C = det ๐›ผ๐‘บ ๐›ผ๐‘บ โˆ’T = ๐›ผ3 det ๐‘บ ๐›ผโˆ’1๐‘บโˆ’T

= ๐›ผ2 det ๐‘บ ๐‘บโˆ’T = ๐›ผ2๐‘บC

Show that ๐‘บโˆ’1 C = det ๐‘บ โˆ’1๐‘บT

Ans. ๐‘บโˆ’1 C = det ๐‘บโˆ’1 ๐‘บโˆ’1 โˆ’๐‘‡ = det ๐‘บ โˆ’1๐‘บT

Cofactor

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 67

(HW Show that the second principal invariant of an invertible tensor is the trace of its cofactor.)

Cofactor

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 68

(d) Show that ๐‘บCโˆ’1= det ๐‘บ โˆ’1๐‘บT

Ans. ๐‘บC = det ๐‘บ ๐‘บโˆ’๐‘‡

Consequently,

๐‘บCโˆ’1= det ๐‘บ โˆ’1 ๐‘บโˆ’๐‘‡ โˆ’1 = det ๐‘บ โˆ’1๐‘บT

(e) Show that ๐‘บCC= det ๐‘บ ๐‘บ

Ans. ๐‘บC = det ๐‘บ ๐‘บโˆ’๐‘‡

So that,

๐‘บCC= det ๐‘บC ๐‘บC

โˆ’๐‘‡= det ๐‘บ 2 ๐‘บC

โˆ’1 ๐‘‡

= det ๐‘บ 2 det ๐‘บ โˆ’1๐‘บT ๐‘‡ = det ๐‘บ 2 det ๐‘บ โˆ’1๐‘บ= det ๐‘บ ๐‘บ

as required.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 69

3. Show that for any invertible tensor ๐‘บ and any vector ๐’–,

๐‘บ๐’– ร— = ๐‘บC ๐’– ร— ๐‘บโˆ’๐Ÿ

where ๐‘บC and ๐‘บโˆ’๐Ÿ are the cofactor and inverse of ๐‘บ respectively.

By definition,

๐‘บC = det ๐‘บ ๐‘บโˆ’T

We are to prove that,

๐‘บ๐’– ร— = ๐‘บC ๐’– ร— ๐‘บโˆ’๐Ÿ = det ๐‘บ ๐‘บโˆ’T ๐’– ร— ๐‘บโˆ’๐Ÿ

or that,

๐‘บT ๐‘บ๐’– ร— = ๐’– ร— det ๐‘บ ๐‘บโˆ’๐Ÿ = ๐’– ร— ๐‘บC๐“

On the RHS, the contravariant ๐‘–๐‘— component of ๐’– ร— is

๐’– ร— ๐‘–๐‘— = ๐œ–๐‘–๐›ผ๐‘—๐‘ข๐›ผ

which is exactly the same as writing, ๐’– ร— = ๐œ–๐‘–๐›ผ๐‘™ ๐‘ข๐›ผ๐ ๐‘–โŠ—๐ ๐‘™ in the invariant form.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 70

Similarly, ๐‘บC. ๐‘—

๐‘˜ .๐ ๐‘˜โŠ—๐ 

๐‘— =1

2๐œ–๐‘˜๐œ†๐œ‚๐œ–๐‘—๐›ฝ๐›พ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘˜โŠ—๐ 

๐‘— so that its transpose ๐‘บCT=

1

2๐œ–๐‘˜๐œ†๐œ‚๐œ–๐‘—๐›ฝ๐›พ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘—โŠ—๐ ๐‘˜. We may therefore write,

๐’– ร— ๐‘บCT=1

2๐œ–๐‘–๐›ผ๐‘™๐‘ข๐›ผ๐œ–

๐‘˜๐œ†๐œ‚๐œ–๐‘—๐›ฝ๐›พ๐‘†๐œ†๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘–โŠ—๐ ๐‘™ โ‹… ๐ 

๐‘—โŠ—๐ ๐‘˜

=1

2๐œ–๐‘–๐›ผ๐‘™๐›ฟ๐‘™

๐‘—๐‘ข๐›ผ๐œ–๐‘˜๐œ†๐œ‚๐œ–๐‘—๐›ฝ๐›พ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐‘—๐‘–๐›ผ๐œ–๐‘—๐›ฝ๐›พ๐‘ข๐›ผ๐œ–

๐‘˜๐œ†๐œ‚๐‘†๐œ†๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐‘˜๐œ†๐œ‚ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›พ๐›ผ โˆ’ ๐›ฟ๐›พ

๐‘–๐›ฟ๐›ฝ๐›ผ ๐‘ข๐›ผ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐›พ๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐‘˜๐œ†๐œ‚ ๐‘ข๐›พ๐‘†๐œ†

๐‘–๐‘†๐œ‚๐›พโˆ’ ๐‘ข๐›ฝ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐‘– ๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐‘˜๐œ†๐œ‚ ๐‘ข๐›ฝ๐‘†๐œ†

๐‘–๐‘†๐œ‚๐›ฝโˆ’ ๐‘ข๐›ฝ๐‘†๐œ†

๐›ฝ๐‘†๐œ‚๐‘– ๐ ๐‘–โŠ—๐ ๐‘˜ = ๐œ–

๐‘˜๐œ†๐œ‚๐‘ข๐›ฝ๐‘†๐œ†๐‘–๐‘†๐œ‚๐›ฝ๐ ๐‘–โŠ—๐ ๐‘˜

= ๐œ–๐‘˜๐›ผ๐›ฝ๐‘ข๐‘—๐‘†๐›ผ๐‘– ๐‘†๐›ฝ๐‘—๐ ๐‘–โŠ—๐ ๐‘˜

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 71

We now turn to the LHS;

๐‘บ๐’– ร— = ๐œ–๐‘™๐›ผ๐‘˜ ๐‘บ๐’– ๐›ผ๐ ๐‘™โŠ—๐ ๐‘˜ = ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ ๐‘™โŠ—๐ ๐‘˜

Now, ๐‘บ = ๐‘†.๐›ฝ๐‘–. ๐ ๐‘–โŠ—๐ 

๐›ฝ so that its transpose, ๐‘บT = ๐‘†๐›ฝ๐‘–๐ ๐›ฝโŠ—๐ ๐‘– = ๐‘†๐‘–

๐›ฝ๐ ๐‘–โŠ—๐ ๐›ฝ so that

๐‘บT ๐‘บ๐’– ร— = ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘–๐›ฝ๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐›ฝ โ‹… ๐ ๐‘™โŠ—๐ ๐‘˜

= ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘–๐‘™๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐‘˜

= ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘™๐‘–๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐‘˜

= ๐œ–๐›ผ๐›ฝ๐‘˜๐‘ข๐‘—๐‘†๐›ผ๐‘– ๐‘†๐›ฝ๐‘—๐ ๐‘–โŠ—๐ ๐‘˜ = ๐’– ร— ๐‘บ

C T.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 72

Show that ๐‘บC๐’– ร— = ๐‘บ ๐’– ร— ๐‘บT The LHS in component invariant form can be written as:

๐‘บC๐’– ร— = ๐œ–๐‘–๐‘—๐‘˜ ๐‘บC๐’–๐‘—๐ ๐‘–โŠ—๐ ๐‘˜

where ๐‘บC๐‘—

๐›ฝ=1

2๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘†๐‘๐‘Ž๐‘†๐‘‘๐‘ so that

๐‘บC๐’–๐‘—= ๐‘บC

๐‘—

๐›ฝ๐‘ข๐›ฝ =1

2๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘Ž๐‘†๐‘‘๐‘

Consequently,

๐‘บC๐’– ร— =1

2๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘Ž๐‘†๐‘‘๐‘๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐›ฝ๐‘๐‘‘ ๐›ฟ๐‘Ž

๐‘˜๐›ฟ๐‘๐‘– โˆ’ ๐›ฟ๐‘

๐‘˜๐›ฟ๐‘Ž๐‘– ๐‘ข๐›ฝ๐‘†๐‘

๐‘Ž๐‘†๐‘‘๐‘๐ ๐‘–โŠ—๐ ๐‘˜

=1

2๐œ–๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ ๐‘†๐‘

๐‘˜๐‘†๐‘‘๐‘– โˆ’ ๐‘†๐‘

๐‘–๐‘†๐‘‘๐‘˜ ๐ ๐‘–โŠ—๐ ๐‘˜ = ๐œ–

๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘˜๐‘†๐‘‘๐‘– ๐ ๐‘–โŠ—๐ ๐‘˜

On the RHS, ๐’– ร— ๐‘บT = ๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐›ฝ๐‘†๐›พ๐‘˜๐ ๐›ผโŠ—๐ ๐‘˜. We can therefore write,

๐‘บ ๐’– ร— ๐‘บT = ๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐›ฝ๐‘†๐›ผ๐‘– ๐‘†๐›พ๐‘˜๐ ๐‘–โŠ—๐ ๐‘˜ =

Which on a closer look is exactly the same as the LHS so that,

๐‘บC๐’– ร— = ๐‘บ ๐’– ร— ๐‘บT

as required.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 73

4. Let ๐›€ be skew with axial vector ๐Ž. Given vectors ๐ฎ and ๐ฏ, show that ๐›€๐ฎ ร— ๐›€๐ฏ = ๐ŽโŠ—๐Ž ๐ฎ ร— ๐ฏ and, hence conclude that ๐›€C = ๐ŽโŠ—๐Ž .

๐›€๐ฎ ร— ๐›€๐ฏ = ๐Ž ร— ๐ฎ ร— ๐Ž ร— ๐ฏ = ๐Ž ร— ๐ฎ ร— ๐Ž ร— ๐ฏ

= ๐Žร— ๐ฎ โ‹… ๐ฏ ๐Ž โˆ’ ๐Ž ร— ๐ฎ โ‹… ๐Ž ๐ฏ= ๐Ž โ‹… ๐ฎ ร— ๐ฏ ๐Ž = ๐ŽโŠ—๐Ž ๐ฎ ร— ๐ฏ

But by definition, the cofactor must satisfy, ๐›€๐ฎ ร— ๐›€๐ฏ = ๐›€c ๐ฎ ร— ๐ฏ

which compared with the previous equation yields the desired result that

๐›€C = ๐ŽโŠ—๐Ž .

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 74

5. Show that the cofactor of a tensor can be written as

๐‘บC = ๐‘บ2 โˆ’ ๐ผ1๐‘บ + ๐ผ2๐‘ฐT

even if ๐‘บ is not invertible. ๐ผ1, ๐ผ2 are the first two invariants of ๐‘บ.

Ans.

The above equation can be written more explicitly as,

๐‘บC = ๐‘บ2 โˆ’ tr ๐‘บ ๐‘บ +1

2tr2 ๐‘บ โˆ’ tr ๐‘บ2 ๐‘ฐ

T

In the invariant component form, this is easily seen to be,

๐‘บC = ๐‘†๐œ‚ ๐‘– ๐‘†๐‘—๐œ‚โˆ’ ๐‘†๐›ผ๐›ผ๐‘†๐‘—๐‘– +1

2๐‘†๐›ผ๐›ผ๐‘†๐›ฝ๐›ฝโˆ’ ๐‘†๐›ฝ๐›ผ๐‘†๐›ผ๐›ฝ๐›ฟ๐‘—๐‘– ๐ ๐‘—โŠ—๐ ๐‘–

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 75

But we know that the cofactor can be obtained directly from the equation,

๐‘บC =1

2๐œ–๐‘–๐›ฝ๐›พ๐œ–๐‘—๐œ†๐œ‚๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘–โŠ—๐ 

๐‘— =1

2

๐›ฟ๐‘—๐‘– ๐›ฟ๐œ†

๐‘– ๐›ฟ๐œ‚๐‘–

๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ† ๐›ฝ๐›ฟ๐œ‚๐›ฝ

๐›ฟ๐‘—๐›พ๐›ฟ๐œ† ๐›พ๐›ฟ๐œ‚๐›พ

๐‘†๐›ฝ๐œ†๐‘†๐›พ๐œ‚๐ ๐‘–โŠ—๐ 

๐‘—

1

2๐›ฟ๐‘—๐‘– ๐›ฟ๐œ† ๐›ฝ๐›ฟ๐œ‚๐›ฝ

๐›ฟ๐œ† ๐›พ๐›ฟ๐œ‚๐›พ โˆ’ ๐›ฟ๐œ†

๐‘–๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ‚๐›ฝ

๐›ฟ๐‘—๐›พ๐›ฟ๐œ‚๐›พ + ๐›ฟ๐œ‚

๐‘–๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ† ๐›ฝ

๐›ฟ๐‘—๐›พ๐›ฟ๐œ† ๐›พ ๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘–โŠ—๐ 

๐‘—

=1

2๐›ฟ๐‘—๐‘– ๐›ฟ๐œ† ๐›ฝ๐›ฟ๐œ‚๐›พโˆ’ ๐›ฟ๐œ‚๐›ฝ๐›ฟ๐œ† ๐›พโˆ’ ๐›ฟ๐œ† ๐‘– ๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ‚๐›พโˆ’ ๐›ฟ๐œ‚๐›ฝ๐›ฟ๐‘—๐›พ + ๐›ฟ๐œ‚๐‘– ๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ† ๐›พโˆ’ ๐›ฟ๐œ† ๐›ฝ๐›ฟ๐‘—๐›พ๐‘†๐›ฝ๐œ†๐‘†๐›พ๐œ‚๐ ๐‘–โŠ—๐ 

๐‘—

=1

2๐›ฟ๐‘—๐‘– ๐‘†๐›ผ๐›ผ๐‘†๐›ฝ๐›ฝโˆ’ ๐‘†๐œ‚๐œ†๐‘†๐œ† ๐œ‚โˆ’ 2๐‘†๐‘—

๐‘–๐‘†๐›ผ๐›ผ + 2๐‘†๐œ‚

๐‘– ๐‘†๐‘—๐œ‚ ๐ ๐‘–โŠ—๐ 

๐‘—

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 76

Using the above, Show that the cofactor of a vector cross ๐’– ร— is ๐’–โŠ—๐’–

๐’– ร— 2 = ๐œ–๐‘–๐›ผ๐‘—๐‘ข๐›ผ๐ ๐‘–โŠ—๐ ๐‘— ๐œ–๐‘™๐›ฝ๐‘š๐‘ข๐›ฝ๐ ๐‘™โŠ—๐ ๐‘š

= ๐œ–๐‘–๐›ผ๐‘—๐œ–๐‘™๐›ฝ๐‘š๐‘ข๐›ผ๐‘ข๐›ฝ ๐ ๐‘–โŠ—๐ 

๐‘š ๐›ฟ๐‘—๐‘™ = ๐œ–๐‘–๐›ผ๐‘—๐œ–๐‘—๐›ฝ๐‘š๐‘ข๐›ผ๐‘ข

๐›ฝ ๐ ๐‘–โŠ—๐ ๐‘š

= ๐œ–๐‘–๐›ผ๐‘—๐œ–๐›ฝ๐‘š๐‘—๐‘ข๐›ผ๐‘ข๐›ฝ ๐ ๐‘–โŠ—๐ 

๐‘š

= ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐‘š๐›ผ โˆ’ ๐›ฟ๐‘š

๐‘– ๐›ฟ๐›ฝ๐›ผ ๐‘ข๐›ผ๐‘ข

๐›ฝ ๐ ๐‘–โŠ—๐ ๐‘š = ๐‘ข๐‘š๐‘ข

๐‘– โˆ’ ๐›ฟ๐‘š๐‘– ๐‘ข๐›ผ๐‘ข

๐›ผ ๐ ๐‘–โŠ—๐ ๐‘š

= ๐’–โŠ— ๐’– โˆ’ ๐’– โ‹… ๐’– ๐Ÿ

tr ๐’– ร— 2 = ๐’– โ‹… ๐’– โˆ’ 3 ๐’– โ‹… ๐’– = โˆ’ 2 ๐’– โ‹… ๐’–

tr ๐’– ร— = 0

But from previous result,

๐’– ร— C = ๐’– ร— 2 โˆ’ ๐’– ร— tr ๐’– ร— +1

2tr2 ๐’– ร— โˆ’ tr ๐’– ร— 2 ๐Ÿ

T

= ๐’–โŠ—๐’–โˆ’ ๐’– โ‹… ๐’– ๐Ÿ โˆ’ 0 +1

20 + 2 ๐’– โ‹… ๐’– ๐Ÿ

T

= ๐’–โŠ—๐’– โˆ’ ๐’– โ‹… ๐’– ๐Ÿ โˆ’ 0 + ๐’– โ‹… ๐’– ๐Ÿ T = ๐’–โŠ—๐’–

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 77

Show that ๐’–โŠ—๐’– C = ๐Ž

In component form,

๐’–โŠ— ๐’– = ๐‘ข๐‘–๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐‘—

So that

๐’–โŠ— ๐’– 2 = ๐‘ข๐‘–๐‘ข๐‘—๐ ๐‘–โŠ—๐ ๐‘— ๐‘ข๐‘™๐‘ข๐‘š๐ ๐‘™โŠ—๐ 

๐‘š = ๐‘ข๐‘–๐‘ข๐‘—๐‘ข๐‘™๐‘ข๐‘š๐ ๐‘–โŠ—๐ 

๐‘š๐›ฟ๐‘š๐‘—

= ๐‘ข๐‘–๐‘ข๐‘—๐‘ข๐‘—๐‘ข๐‘š๐ ๐‘–โŠ—๐ 

๐‘š = ๐’–โŠ—๐’– ๐’– โ‹… ๐’–

Clearly,

tr ๐’–โŠ— ๐’– = ๐’– โ‹… ๐’–, tr2 ๐’–โŠ—๐’– = ๐’– โ‹… ๐’– 2

and tr ๐’–โŠ— ๐’– 2 = ๐’– โ‹… ๐’– 2 ๐’–โŠ—๐’– C =

๐’–โŠ—๐’– 2 โˆ’ ๐’–โŠ— ๐’– tr ๐’–โŠ— ๐’– +1

2tr2 ๐’–โŠ—๐’– โˆ’ tr ๐’–โŠ— ๐’– 2 ๐Ÿ

T

= ๐’–โŠ—๐’– ๐’– โ‹… ๐’– โˆ’ ๐’–โŠ—๐’– ๐’– โ‹… ๐’– +1

2๐’– โ‹… ๐’– 2 โˆ’ ๐’– โ‹… ๐’– 2 ๐Ÿ

T

= ๐Ž

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 78

Given a Euclidean Vector Space E, a tensor ๐‘ธ is said to be orthogonal if, โˆ€๐’‚, ๐’ƒ โˆˆ E,

๐‘ธ๐’‚ โ‹… ๐‘ธ๐’ƒ = ๐’‚ โ‹… ๐’ƒ Specifically, we can allow ๐’‚ = ๐’ƒ, so that

๐‘ธ๐’‚ โ‹… ๐‘ธ๐’‚ = ๐’‚ โ‹… ๐’‚

Or ๐‘ธ๐’‚ = ๐’‚

In which case the mapping leaves the magnitude unaltered.

Orthogonal Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 79

Let ๐’’ = ๐‘ธ๐’‚ ๐‘ธ๐’‚ โ‹… ๐‘ธ๐’ƒ = ๐’’ โ‹… ๐‘ธ๐’ƒ = ๐’‚ โ‹… ๐’ƒ = ๐’ƒ โ‹… ๐’‚

By definition of the transpose, we have that, ๐’’ โ‹… ๐‘ธ๐’ƒ = ๐’ƒ โ‹… ๐‘ธ๐‘ป๐’’ = ๐’ƒ โ‹… ๐‘ธ๐‘ป๐‘ธ๐’‚ = ๐’ƒ โ‹… ๐’‚

Clearly, ๐‘ธ๐‘ป๐‘ธ = ๐Ÿ

A condition necessary and sufficient for a tensor ๐‘ธ to be orthogonal is that ๐‘ธ be invertible and its inverse equal to its transpose.

Orthogonal Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 80

Upon noting that the determinant of a product is the product of the determinants and that transposition does not alter a determinant, it is easy to conclude that,

det ๐‘ธ๐‘ป๐‘ธ = det ๐‘ธ๐‘ป det ๐‘ธ = det ๐‘ธ 2 = 1

Which clearly shows that det ๐‘ธ = ยฑ1

When the determinant of an orthogonal tensor is strictly positive, it is called โ€œproper orthogonalโ€.

Orthogonal

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 81

A rotation is a proper orthogonal tensor while a reflection is not.

Rotation & Reflection

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 82

Let ๐‘ธ be a rotation. For any pair of vectors ๐ฎ, ๐ฏ show that ๐‘ธ ๐ฎ ร— ๐ฏ = (๐‘ธ๐ฎ) ร— (๐‘ธ๐ฏ)

This question is the same as showing that the cofactor of ๐‘ธ is ๐‘ธ itself. That is that a rotation is self cofactor. We can write that

๐‘ป ๐ฎ ร— ๐ฏ = (๐‘ธ๐ฎ) ร— (๐‘ธ๐ฏ)

where ๐“ = cof ๐‘ธ = det ๐‘ธ ๐‘ธโˆ’T

Now that ๐‘ธ is a rotation, det ๐‘ธ = 1, and ๐‘ธโˆ’T = (๐‘ธโˆ’1)๐‘‡ = (๐‘ธT)๐‘‡ = ๐‘ธ

This implies that ๐‘ป = ๐‘ธ and consequently, ๐‘ธ ๐ฎ ร— ๐ฏ = (๐‘ธ๐ฎ) ร— (๐‘ธ๐ฏ)

Rotation

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 83

For a proper orthogonal tensor Q, show that the eigenvalue equation always yields an eigenvalue of +1. This means that there is always a solution for the equation,

๐‘ธ๐’– = ๐’–

For any invertible tensor, ๐‘บC = det ๐‘บ ๐‘บโˆ’T

For a proper orthogonal tensor ๐‘ธ, det ๐‘ธ = 1. It therefore follows that,

๐‘ธC = det๐‘ธ ๐‘ธโˆ’T = ๐‘ธโˆ’T = ๐‘ธ

It is easily shown that tr๐‘ธC = ๐ผ2(๐‘ธ) (HW Show this Romano 26)

Characteristic equation for ๐‘ธ is, det ๐‘ธ โˆ’ ๐œ†๐Ÿ = ๐œ†3 โˆ’ ๐œ†2๐‘„1 + ๐œ†๐‘„2 โˆ’ ๐‘„3 = 0

Or, ๐œ†3 โˆ’ ๐œ†2๐‘„1 + ๐œ†๐‘„1 โˆ’ 1 = 0

Which is obviously satisfied by ๐œ† = 1.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 84

If for an arbitrary unit vector ๐ž, the tensor, ๐‘ธ ๐œƒ = cos ๐œƒ ๐‘ฐ + (1 โˆ’ cos ๐œฝ )๐ž โŠ—๐ž + sin ๐œƒ (๐ž ร—) where (๐ž ร—) is the skew tensor whose ๐‘–๐‘— component is ๐๐’‹๐’Š๐’Œ๐’†๐’Œ,

show that ๐‘ธ ๐œƒ (๐‘ฐ โˆ’ ๐žโŠ— ๐ž) = cos ๐œƒ (๐‘ฐ โˆ’ ๐žโŠ— ๐ž) + sin ๐œƒ (๐ž ร—).

๐‘ธ ๐œƒ ๐žโŠ— ๐ž = cos ๐œƒ ๐ž โŠ— ๐ž + (1 โˆ’ cos ๐œฝ )๐žโŠ— ๐ž + sin ๐œƒ [๐ž ร— ๐žโŠ— ๐ž ]

The last term vanishes immediately on account of the fact that ๐žโŠ— ๐ž is a symmetric tensor. We therefore have,

๐‘ธ ๐œƒ ๐žโŠ— ๐ž = cos ๐œƒ ๐ž โŠ— ๐ž + (1 โˆ’ cos ๐œฝ )๐ž โŠ— ๐ž = ๐žโŠ— ๐ž

which again mean that ๐‘ธ ๐œƒ so that

๐‘ธ ๐œƒ ๐‘ฐ โˆ’ ๐žโŠ— ๐ž = cos ๐œƒ ๐‘ฐ + 1 โˆ’ cos ๐œฝ ๐ž โŠ— ๐ž + sin ๐œƒ ๐ž ร— โˆ’ ๐žโŠ— ๐ž

= ๐‘os ๐œƒ ๐‘ฐ โˆ’ ๐žโŠ— ๐ž + sin ๐œƒ ๐ž ร— as required.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 85

If for an arbitrary unit vector ๐ž, the tensor, ๐‘ธ ๐œƒ = cos ๐œƒ ๐‘ฐ + (1 โˆ’ cos ๐œฝ )๐ž โŠ—๐ž + sin ๐œƒ (๐ž ร—) where (๐ž ร—) is the skew tensor whose ๐‘–๐‘— component is ๐œ–๐‘—๐‘–๐‘˜๐‘’๐‘˜.

Show for an arbitrary vector ๐ฎ that ๐ฏ = ๐‘ธ ๐œƒ ๐ฎ has the same magnitude as ๐ฎ.

Given an arbitrary vector ๐ฎ, compute the vector ๐ฏ = ๐‘ธ ๐œƒ ๐ฎ. Clearly, ๐ฏ = cos ๐œƒ ๐ฎ + 1 โˆ’ cos ๐œฝ ๐ฎ โ‹… ๐ž ๐ž + sin ๐œƒ ๐ž ร— ๐ฎ

The square of the magnitude of ๐ฏ is

๐ฏ โ‹… ๐ฏ = ๐ฏ ๐Ÿ = cos2๐œƒ ๐ฎ โ‹… ๐ฎ + 1 โˆ’ cos ๐œฝ ๐Ÿ ๐ฎ โ‹… ๐ฎ ๐Ÿ + sin2 ๐œƒ ๐ž ร— ๐ฎ 2

+ 2 cos ๐œฝ 1 โˆ’ cos ๐œฝ ๐ฎ โ‹… ๐ž ๐Ÿ

= cos2๐œƒ ๐ฎ โ‹… ๐ฎ + 1 โˆ’ cos ๐œฝ ๐ฎ โ‹… ๐ž ๐Ÿ 1 โˆ’ cos ๐œฝ + ๐Ÿ cos ๐œฝ+ sin2 ๐œƒ ๐ž ร— ๐ฎ 2

= cos2๐œƒ ๐ฎ โ‹… ๐ฎ + 1 โˆ’ cos ๐œฝ ๐ฎ โ‹… ๐ž ๐Ÿ 1 + cos ๐œฝ + sin2 ๐œƒ ๐ž ร— ๐ฎ 2

= cos2๐œƒ ๐ฎ โ‹… ๐ฎ + 1 โˆ’ cos2 ๐œฝ ๐ฎ โ‹… ๐ž ๐Ÿ + sin2 ๐œƒ ๐ž ร— ๐ฎ 2

= cos2๐œƒ ๐ฎ โ‹… ๐ฎ + sin2 ๐œƒ ๐ฎ โ‹… ๐ž ๐Ÿ + ๐ž ร— ๐ฎ 2

= cos2๐œƒ ๐ฎ โ‹… ๐ฎ + sin2 ๐œƒ ๐ฎ โ‹… ๐ฎ = ๐ฎ โ‹… ๐ฎ.

The operation of the tensor ๐‘ธ ๐œƒ on ๐ฎ is independent of ๐œƒ and does not change the magnitude. Furthermore, it is also easy to show that the projection ๐ฎ โ‹… ๐ž of an arbitrary vector on ๐ž as well as that of its image ๐ฏ โ‹… ๐ž are the same. The axis of rotation is therefore in the direction of ๐ž.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 86

If for an arbitrary unit vector ๐ž, the tensor, ๐‘ธ ๐œƒ = cos ๐œƒ ๐‘ฐ + (1 โˆ’ cos ๐œฝ )๐žโŠ— ๐ž +sin ๐œƒ (๐ž ร—) where (๐ž ร—) is the skew tensor whose ๐‘–๐‘— component is ๐๐’‹๐’Š๐’Œ๐’†๐’Œ. Show for an arbitrary 0 โ‰ค ๐›ผ, ๐›ฝ โ‰ค 2๐œ‹, that ๐‘ธ ๐›ผ + ๐›ฝ = ๐‘ธ ๐›ผ ๐‘ธ ๐›ฝ .

It is convenient to write ๐‘ธ ๐›ผ and ๐‘ธ ๐›ฝ in terms of their components: The ij component of

๐‘ธ ๐›ผ ๐‘–๐‘— = (cos๐›ผ)๐›ฟ๐‘–๐‘— + 1 โˆ’ cos๐›ผ ๐‘’๐‘–๐‘’๐‘— โˆ’ (sin ๐›ผ) ๐œ–๐‘–๐‘—๐‘˜๐‘’๐‘˜

Consequently, we can write,

๐‘ธ ๐›ผ ๐‘ธ ๐›ฝ ๐‘–๐‘— = ๐‘ธ ๐›ผ ๐’Š๐’Œ ๐‘ธ ๐›ฝ ๐‘˜๐‘— =

= (cos๐›ผ)๐›ฟ๐‘–๐‘˜ + 1 โˆ’ cos๐›ผ ๐‘’๐‘–๐‘’๐‘˜ โˆ’ (sin ๐›ผ) ๐œ–๐‘–๐‘˜๐‘™๐‘’๐‘™ (cos๐›ฝ)๐›ฟ๐‘˜๐‘—+ 1 โˆ’ cos๐›ฝ ๐‘’๐‘˜๐‘’๐‘— โˆ’ (sin๐›ฝ) ๐œ–๐‘˜๐‘—๐‘š๐‘’๐‘š = (cos๐›ผ cos๐›ฝ) ๐›ฟ๐‘–๐‘˜๐›ฟ๐‘˜๐‘— + cos๐›ผ(1 โˆ’ cos๐›ฝ)๐›ฟ๐‘–๐‘˜๐‘’๐‘˜๐‘’๐‘— โˆ’ cos๐›ผ sin ๐›ฝ ๐œ–๐‘˜๐‘—๐‘š๐‘’๐‘š๐›ฟ๐‘–๐‘˜

+ cos๐›ฝ(1 โˆ’ cos๐›ผ)๐›ฟ๐‘˜๐‘—๐‘’๐‘–๐‘’๐‘˜ + 1 โˆ’ cos๐›ผ 1 โˆ’ cos๐›ฝ ๐‘’๐‘–๐‘’๐‘˜๐‘’๐‘˜๐‘’๐‘—โˆ’ 1 โˆ’ cos๐›ผ ๐‘’๐‘–๐‘’๐‘˜ (sin ๐›ฝ) ๐œ–๐‘˜๐‘—๐‘š๐‘’๐‘š โˆ’ (sin๐›ผ cos๐›ฝ) ๐œ–๐‘–๐‘˜๐‘™๐‘’๐‘™๐›ฟ๐‘˜๐‘—โˆ’ (sin๐›ผ) 1 โˆ’ cos๐›ฝ ๐‘’๐‘˜๐‘’๐‘— ๐œ–๐‘–๐‘˜๐‘™๐‘’๐‘™ + (sin๐›ผ sin ๐›ฝ) ๐œ–๐‘–๐‘˜๐‘™๐œ–๐‘˜๐‘—๐‘š๐‘’๐‘™๐‘’๐‘š = (cos๐›ผ cos๐›ฝ) ๐›ฟ๐‘–๐‘— + cos๐›ผ(1 โˆ’ cos๐›ฝ)๐‘’๐‘–๐‘’๐‘— โˆ’ cos๐›ผ sin ๐›ฝ ๐œ–๐‘–๐‘—๐‘š๐‘’๐‘š

+ cos๐›ฝ(1 โˆ’ cos๐›ผ)๐‘’๐‘–๐‘’๐‘— + 1 โˆ’ cos๐›ผ 1 โˆ’ cos๐›ฝ ๐‘’๐‘–๐‘’๐‘— โˆ’ (sin๐›ผ cos๐›ฝ) ๐œ–๐‘–๐‘—๐‘™๐‘’๐‘™+ (sin๐›ผ sin๐›ฝ) ๐›ฟ๐‘™๐‘—๐›ฟ๐‘–๐‘š โˆ’ ๐›ฟ๐‘™๐‘š๐›ฟ๐‘—๐‘– ๐‘’๐‘™๐‘’๐‘š = (cos๐›ผ cos๐›ฝ โˆ’ sin ๐›ผ sin ๐›ฝ) ๐›ฟ๐‘–๐‘— + 1 โˆ’ ( cos ฮฑcos๐›ฝ โˆ’ sin ๐›ผ sin ๐›ฝ) ๐‘’๐‘–๐‘’๐‘—

โˆ’ cos๐›ผ sin ๐›ฝ โˆ’ sin ๐›ผ cos๐›ฝ ๐œ–๐‘–๐‘—๐‘š๐‘’๐‘š = ๐‘ธ ๐›ผ + ๐›ฝ ๐‘–๐‘—

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 87

Use the results of 52 and 55 above to show that the tensor ๐‘ธ ๐œƒ = cos ๐œƒ ๐‘ฐ + (1 โˆ’cos ๐œฝ )๐ž โŠ— ๐ž + sin ๐œƒ (๐ž ร—) is periodic with a period of 2๐œ‹.

From 55 we can write that ๐‘ธ ๐›ผ + 2๐œ‹ = ๐‘ธ ๐›ผ ๐‘ธ 2๐œ‹ . But from 52, ๐‘ธ 0 = ๐‘ธ 2๐œ‹ = ๐‘ฐ. We therefore have that,

๐‘ธ ๐›ผ + 2๐œ‹ = ๐‘ธ ๐›ผ ๐‘ธ 2๐œ‹ = ๐‘ธ ๐›ผ

which completes the proof. The above results show that ๐‘ธ ๐›ผ is a rotation along the unit vector ๐ž through an angle ๐›ผ.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 88

Define Lin+as the set of all tensors with a positive determinant. Show that Lin+is invariant under G where is the proper orthogonal group of all rotations, in the sense that for any tensor ๐€ โˆˆ Lin+ ๐ โˆˆ G โ‡’ ๐๐€๐T โˆˆ Lin+ .(G285)

Since we are given that ๐€ โˆˆ Lin+, the determinant of ๐€ is positive. Consider

det ๐๐€๐T . We observe the fact that the determinant of a product of tensors is

the product of their determinants (proved above). We see clearly that,

det ๐๐€๐T = det ๐ ร— det ๐€ ร— det ๐T . Since ๐ is a rotation, det ๐ =

det ๐T = 1. Consequently we see that,

det ๐๐€๐T = det ๐ ร— det ๐€ ร— det ๐T

= det ๐๐€๐T

= 1 ร— det ๐€ ร— 1 = det ๐€

Hence the determinant of ๐๐€๐T is also positive and therefore ๐๐€๐T โˆˆ Lin+ .

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 89

Define Sym as the set of all symmetric tensors. Show that Sym is invariant under G where is the proper orthogonal group of all rotations, in the sense that for any tensor A โˆˆ Sym every ๐ โˆˆ ๐บ โ‡’ ๐๐€๐T โˆˆ Sym. (G285)

Since we are given that A โˆˆ Sym, we inspect the tensor ๐๐€๐T. Its transpose is,

๐๐€๐TT= ๐T

T๐€๐T = ๐๐€๐T. So that ๐๐€๐T is symmetric and therefore

๐๐€๐T โˆˆ Sym. so that the transformation is invariant.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 90

Central to the usefulness of tensors in Continuum Mechanics is the Eigenvalue Problem and its consequences.

โ€ข These issues lead to the mathematical representation of such physical properties as Principal stresses, Principal strains, Principal stretches, Principal planes, Natural frequencies, Normal modes, Characteristic values, resonance, equivalent stresses, theories of yielding, failure analyses, Von Mises stresses, etc.

โ€ข As we can see, these seeming unrelated issues are all centered around the eigenvalue problem of tensors. Symmetry groups, and many other constructs that simplify analyses cannot be understood outside a thorough understanding of the eigenvalue problem.

โ€ข At this stage of our study of Tensor Algebra, we shall go through a simplified study of the eigenvalue problem. This study will reward any diligent effort. The converse is also true. A superficial understanding of the Eigenvalue problem will cost you dearly.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 91

Recall that a tensor ๐‘ป is a linear transformation for ๐’– โˆˆ V

๐‘ป: V โ†’ V

states that โˆƒ ๐’˜ โˆˆ V such that, ๐‘ป๐’– โ‰ก ๐‘ป ๐’– = ๐’˜

Generally, ๐’– and its image, ๐’˜ are independent vectors for an arbitrary tensor ๐‘ป. The eigenvalue problem considers the special case when there is a linear dependence between ๐’– and ๐’˜.

The Eigenvalue Problem

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 92

Here the image ๐’˜ = ๐œ†๐’– where ๐œ† โˆˆ R ๐‘ป๐’– = ๐œ†๐’–

The vector ๐’–, if it can be found, that satisfies the above equation, is called an eigenvector while the scalar ๐œ† is its corresponding eigenvalue.

The eigenvalue problem examines the existence of the eigenvalue and the corresponding eigenvector as well as their consequences.

Eigenvalue Problem

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 93

In order to obtain such solutions, it is useful to write out this equation in its component form:

๐‘‡๐‘—๐‘–๐‘ข๐‘—๐ ๐‘– = ๐œ†๐‘ข

๐‘–๐ ๐‘–

so that,

๐‘‡๐‘—๐‘– โˆ’ ๐œ†๐›ฟ๐‘—

๐‘– ๐‘ข๐‘—๐ ๐‘– = ๐จ

the zero vector. Each component must vanish identically so that we can write

๐‘‡๐‘—๐‘– โˆ’ ๐œ†๐›ฟ๐‘—

๐‘– ๐‘ข๐‘— = 0

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 94

From the fundamental law of algebra, the above equations can only be possible for arbitrary values of ๐‘ข๐‘— if the determinant,

๐‘‡๐‘—๐‘– โˆ’ ๐œ†๐›ฟ๐‘—

๐‘–

Vanishes identically. Which, when written out in full, yields,

๐‘‡11 โˆ’ ๐œ† ๐‘‡2

1 ๐‘‡31

๐‘‡12 ๐‘‡2

2 โˆ’ ๐œ† ๐‘‡32

๐‘‡13 ๐‘‡2

3 ๐‘‡33 โˆ’ ๐œ†

= 0

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 95

Expanding, we have,

โˆ’๐‘‡31๐‘‡22๐‘‡13 + ๐‘‡2

1๐‘‡32๐‘‡13 + ๐‘‡3

1๐‘‡12๐‘‡23 โˆ’ ๐‘‡1

1๐‘‡32๐‘‡23 โˆ’ ๐‘‡2

1๐‘‡12๐‘‡33

+ ๐‘‡11๐‘‡22๐‘‡33 + ๐‘‡2

1๐‘‡12๐œ† โˆ’ ๐‘‡1

1๐‘‡22๐œ† + ๐‘‡3

1๐‘‡13๐œ† + ๐‘‡3

2๐‘‡23๐œ†

โˆ’ ๐‘‡11๐‘‡33๐œ† โˆ’ ๐‘‡2

2๐‘‡33๐œ† + ๐‘‡1

1๐œ†2 + ๐‘‡22๐œ†2 + ๐‘‡3

3๐œ†2 โˆ’ ๐œ†3

= 0

= โˆ’๐‘‡31๐‘‡22๐‘‡13 + ๐‘‡2

1๐‘‡32๐‘‡13 + ๐‘‡3

1๐‘‡12๐‘‡23 โˆ’ ๐‘‡1

1๐‘‡32๐‘‡23 โˆ’ ๐‘‡2

1๐‘‡12๐‘‡33

+ ๐‘‡11๐‘‡22๐‘‡33

+ (๐‘‡21๐‘‡12 โˆ’ ๐‘‡1

1๐‘‡22 + ๐‘‡3

1๐‘‡13 + ๐‘‡3

2๐‘‡23 โˆ’ ๐‘‡1

1๐‘‡33

โˆ’ ๐‘‡22๐‘‡33)๐œ† + ๐‘‡1

1 + ๐‘‡22 + ๐‘‡3

3 ๐œ†2 โˆ’ ๐œ†3 = 0

or ๐œ†3 โˆ’ ๐ผ1๐œ†

2 + ๐ผ2๐œ† โˆ’ ๐ผ3 = 0

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 96

This is the characteristic equation for the tensor ๐‘ป. From here we are able, in the best cases, to find the three eigenvalues. Each of these can be used in to obtain the corresponding eigenvector.

The above coefficients are the same invariants we have seen earlier!

Principal Invariants Again

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 97

A tensor ๐‘ป is Positive Definite if for all ๐’– โˆˆ V , ๐’– โ‹… ๐‘ป๐’– > 0

It is easy to show that the eigenvalues of a symmetric, positive definite tensor are all greater than zero. (HW: Show this, and its converse that if the eigenvalues are greater than zero, the tensor is symmetric and positive definite. Hint, use the spectral decomposition.)

Positive Definite Tensors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 98

We now state without proof (See Dill for proof) the important Caley-Hamilton theorem: Every tensor satisfies its own characteristic equation. That is, the characteristic equation not only applies to the eigenvalues but must be satisfied by the tensor ๐“ itself. This means,

๐“3 โˆ’ ๐ผ1๐“2 + ๐ผ2๐“ โˆ’ ๐ผ3๐Ÿ = ๐‘ถ

is also valid.

This fact is used in continuum mechanics to obtain the spectral decomposition of important material and spatial tensors.

Cayley- Hamilton Theorem

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 99

It is easy to show that when the tensor is symmetric, its three eigenvalues are all real. When they are distinct, corresponding eigenvectors are orthogonal. It is therefore possible to create a basis for the tensor with an orthonormal system based on the normalized eigenvectors. This leads to what is called a spectral decomposition of a symmetric tensor in terms of a coordinate system formed by its eigenvectors:

๐“ = ๐œ†๐‘–

3

๐‘–=1

๐ง๐‘–โจ‚๐ง๐‘–

Where ๐ง๐‘– is the normalized eigenvector corresponding to the eigenvalue ๐œ†๐‘–.

Spectral Decomposition

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 100

The above spectral decomposition is a special case where the eigenbasis forms an Orthonormal Basis. Clearly, all symmetric tensors are diagonalizable.

Multiplicity of roots, when it occurs robs this representation of its uniqueness because two or more coefficients of the eigenbasis are now the same.

The uniqueness is recoverable by the ingenious device of eigenprojection.

Multiplicity of Roots

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 101

Case 1: All Roots equal.

The three orthonormal eigenvectors in an ONB obviously constitutes an Identity tensor ๐Ÿ. The unique spectral representation therefore becomes

๐“ = ๐œ†๐‘–

3

๐‘–=1

๐ง๐‘–โจ‚๐ง๐‘– = ๐œ† ๐ง๐‘–โจ‚๐ง๐‘–

3

๐‘–=1

since ๐œ†1 = ๐œ†2 = ๐œ†3 = ๐œ† in this case.

Eigenprojectors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 102

Case 2: Two Roots equal: ๐œ†1unique while ๐œ†2 = ๐œ†3

In this case, ๐“ = ๐œ†1๐ง1โจ‚๐ง1 + ๐œ†2 ๐Ÿ โˆ’ ๐ง1โจ‚๐ง1

since ๐œ†2 = ๐œ†3 in this case.

The eigenspace of the tensor is made up of the projectors: ๐‘ท1 = ๐ง1โจ‚๐ง1

and ๐‘ท2 = ๐Ÿ โˆ’ ๐ง2โจ‚๐ง2

Eigenprojectors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 103

The eigen projectors in all cases are based on the normalized eigenvectors of the tensor. They constitute the eigenspace even in the case of repeated roots. They can be easily shown to be:

1. Idempotent: ๐‘ท๐‘– ๐‘ท๐‘– = ๐‘ท๐‘– (no sums)

2. Orthogonal: ๐‘ท๐‘– ๐‘ท๐‘— = ๐‘ถ (the anihilator)

3. Complete: ๐‘ท๐‘– = ๐Ÿ๐‘›๐‘–=1 (the identity)

Eigenprojectors

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 104

For symmetric tensors (with real eigenvalues and consequently, a defined spectral form in all cases), the tensor equivalent of real functions can easily be defined:

Trancendental as well as other functions of tensors are defined by the following maps:

๐‘ญ:Sym โ†’ Sym

Maps a symmetric tensor into a symmetric tensor. The latter is the spectral form such that,

๐‘ญ ๐‘ป โ‰ก ๐‘“(๐œ†๐‘–)๐ง๐‘–โจ‚๐ง๐‘–

3

๐‘–=1

Tensor Functions

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 105

Where ๐‘“(๐œ†๐‘–) is the relevant real function of the ith eigenvalue of the tensor ๐‘ป.

Whenever the tensor is symmetric, for any map, ๐‘“:R โ†’R, โˆƒ ๐‘ญ:Sym โ†’ Sym

As defined above. The tensor function is defined uniquely through its spectral representation.

Tensor functions

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 106

Show that the principal invariants of a tensor ๐‘บ satisfy

๐‘ฐ๐’Œ ๐‘ธ๐‘บ๐‘ธT = ๐ผ๐‘˜ ๐‘บ , ๐‘˜ = 1,2, or 3 Rotations and orthogonal

transformations do not change the Invariants

๐ผ1 ๐‘ธ๐‘บ๐‘ธT = tr ๐‘ธ๐‘บ๐‘ธT = tr ๐‘ธT๐‘ธ๐‘บ = tr ๐‘บ = ๐ผ1(๐‘บ)

๐ผ2 ๐‘ธ๐‘บ๐‘ธT =1

2tr2 ๐‘ธ๐‘บ๐‘ธT โˆ’ tr ๐‘ธ๐‘บ๐‘ธT๐‘ธ๐‘บ๐‘ธT

=1

2I12 ๐‘บ โˆ’ tr ๐‘ธ๐‘บ๐Ÿ๐‘ธT

=1

2I12 ๐‘บ โˆ’ tr ๐‘ธT๐‘ธ๐‘บ๐Ÿ

=1

2I12(๐‘บ) โˆ’ tr ๐‘บ๐Ÿ = ๐ผ2(๐‘บ)

๐ผ3 ๐‘ธ๐‘บ๐‘ธT = det ๐‘ธ๐‘บ๐‘ธT

= det ๐‘ธT๐‘ธ๐‘บ = det ๐‘บ = ๐ผ3 ๐‘บ

Hence ๐ผ๐‘˜ ๐‘ธ๐‘บ๐‘ธT = ๐ผ๐‘˜ ๐‘บ , ๐‘˜ = 1,2, or 3

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 107

Show that, for any tensor ๐‘บ, tr ๐‘บ2 = ๐ผ12(๐‘บ) โˆ’ 2๐ผ2 ๐‘บ and

tr ๐‘บ3 = ๐ผ13 ๐‘บ โˆ’ 3๐ผ1๐ผ2 ๐‘บ + 3๐ผ3 ๐‘บ

๐ผ2 ๐‘บ =1

2tr2 ๐‘บ โˆ’ tr ๐‘บ2

=1

2๐ผ12(๐‘บ) โˆ’ tr ๐‘บ2

So that, tr ๐‘บ2 = ๐ผ1

2(๐‘บ) โˆ’ 2๐ผ2 ๐‘บ

By the Cayley-Hamilton theorem, ๐‘บ3 โˆ’ ๐ผ1๐‘บ

2 + ๐ผ2๐‘บ โˆ’ ๐ผ3๐Ÿ = ๐ŸŽ

Taking a trace of the above equation, we can write that, tr ๐‘บ3 โˆ’ ๐ผ1๐‘บ

2 + ๐ผ2๐‘บ โˆ’ ๐ผ3๐Ÿ = tr(๐‘บ3) โˆ’ ๐ผ1tr ๐‘บ

2 + ๐ผ2tr ๐‘บ โˆ’ 3๐ผ3 = 0

so that, tr ๐‘บ3 = ๐ผ1 ๐‘บ tr ๐‘บ

2 โˆ’ ๐ผ2 ๐‘บ tr ๐‘บ + 3๐ผ3 ๐‘บ

= ๐ผ1 ๐‘บ ๐ผ12 ๐‘บ โˆ’ 2๐ผ2 ๐‘บ โˆ’ ๐ผ1 ๐‘บ ๐ผ2 ๐‘บ + 3๐ผ3 ๐‘บ

= ๐ผ13 ๐‘บ โˆ’ 3๐ผ1๐ผ2 ๐‘บ + 3๐ผ3 ๐‘บ

As required.

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 108

Suppose that ๐‘ผ and ๐‘ช are symmetric, positive-definite tensors with ๐‘ผ2 = ๐‘ช, write the invariants of C in terms of U

๐ผ1 ๐‘ช = tr ๐‘ผ2 = ๐ผ1

2(๐‘ผ) โˆ’ 2๐ผ2 ๐‘ผ

By the Cayley-Hamilton theorem, ๐‘ผ3 โˆ’ ๐ผ1๐‘ผ

2 + ๐ผ2๐‘ผ โˆ’ ๐ผ3๐‘ฐ = ๐ŸŽ

which contracted with ๐‘ผ gives, ๐‘ผ4 โˆ’ ๐ผ1๐‘ผ

3 + ๐ผ2๐‘ผ2 โˆ’ ๐ผ3๐‘ผ = ๐ŸŽ

so that, ๐‘ผ4 = ๐ผ1๐‘ผ

3 โˆ’ ๐ผ2๐‘ผ2 + ๐ผ3๐‘ผ

and tr ๐‘ผ4 = ๐ผ1tr ๐‘ผ

3 โˆ’ ๐ผ2tr ๐‘ผ2 + ๐ผ3tr ๐‘ผ

= ๐ผ1 ๐‘ผ ๐ผ13 ๐‘ผ โˆ’ 3๐ผ1 ๐‘ผ ๐ผ2 ๐‘ผ + 3๐ผ3 ๐‘ผ

โˆ’ ๐ผ2 ๐‘ผ ๐ผ12 ๐‘ผ โˆ’ 2๐ผ2 ๐‘ผ + ๐ผ1 ๐‘ผ ๐ผ3 ๐‘ผ

= ๐ผ14 ๐‘ผ โˆ’ 4๐ผ1

2 ๐‘ผ ๐ผ2 ๐‘ผ + 4๐ผ1 ๐‘ผ ๐ผ3 ๐‘ผ + 2๐ผ22 ๐‘ผ

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 109

But,

๐ผ2 ๐‘ช =1

2๐ผ12 ๐‘ช โˆ’ tr ๐‘ช2 =

1

2๐ผ12 ๐‘ผ2 โˆ’ tr ๐‘ผ4

=1

2tr2 ๐‘ผ2 โˆ’ tr ๐‘ผ4

=1

2๐ผ12 ๐‘ผ โˆ’ 2๐ผ2 ๐‘ผ

2โˆ’ tr ๐‘ผ4

=1

2 ๐ผ14 ๐‘ผ โˆ’ 4๐ผ1

2 ๐‘ผ ๐ผ2 ๐‘ผ + 4๐ผ22 ๐‘ผ

โˆ’ ๐ผ14 ๐‘ผ โˆ’ 4๐ผ1

2 ๐‘ผ ๐ผ2 ๐‘ผ + 4๐ผ1 ๐‘ผ ๐ผ3 ๐‘ผ + 2๐ผ22 ๐‘ผ

The boxed items cancel out so that, ๐ผ2 ๐‘ช = ๐ผ2

2 ๐‘ผ โˆ’ 2๐ผ1 ๐‘ผ ๐ผ3 ๐‘ผ

as required. ๐ผ3 ๐‘ช = det ๐‘ช = det ๐‘ผ

2 = det ๐‘ผ 2 = ๐ผ32 ๐‘ผ

[email protected] 12/30/2012 Department of Systems Engineering, University of Lagos 110