teap xxvi/9 task force report lambert kuijpers bella maranion roberto peixoto tf co-chairs 1

35
TEAP XXVI/9 Task TEAP XXVI/9 Task Force Report Force Report Lambert Kuijpers Lambert Kuijpers Bella Maranion Bella Maranion Roberto Peixoto Roberto Peixoto TF co-chairs TF co-chairs 1

Upload: francis-holland

Post on 25-Dec-2015

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

TEAP XXVI/9 Task Force TEAP XXVI/9 Task Force ReportReport

Lambert KuijpersLambert Kuijpers

Bella MaranionBella Maranion

Roberto PeixotoRoberto Peixoto

TF co-chairsTF co-chairs

1

Page 2: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Decision XXVI/9

a) Update information on alternatives to ozone-depleting substances in various sectors and sub-sectors assessing whether they are:

(i) Commercially available;  (ii) Technically proven;  (iii) Environmentally sound;  (iv) Economically viable and cost effective;  (v) Safe to use in areas with high urban densities considering flammability and toxicity issues, including, where possible, risk characterization;  (vi) Easy to service and maintain;

b) Provide information on energy efficiency levels in the refrigeration and air-conditioning sector referring to high-ambient temperature zones in international standards; 

c) Taking into account the uptake of various existing technologies, revise the scenarios for current and future demand elaborated in the October 2014 final report; 

2

Page 3: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Decision XXVI/9 Task ForceCO-CHAIRSLambert Kuijpers (The Netherlands, RTOC Co-chair)Bella Maranion (USA, TEAP Co-chair) Roberto Peixoto (Brazil, RTOC Co-chair)

MEMBERSDenis Clodic (France, outside expert)Daniel Colbourne (UK, RTOC)Martin Dieryckx (Belgium, RTOC)Rick Duncan (USA, FTOC)Bassam Elassaad (Lebanon, RTOC)Samir Hamed (Jordan, RTOC)Yilhan Karaagac (Turkey, FTOC)

Tingxun Li (China, RTOC)  Richard Lord (USA, outside expert) Carloandrea Malvicino (Italy, RTOC) Keiichi Ohnishi (Japan, CTOC Co-

chair) Alaa A. Olama (Egypt, RTOC) Fabio Polonara (Italy, co-chair

RTOC) Rajan Rajendran (USA, RTOC) Helen Tope (Australia, MTOC Co-

chair) Dan Verdonik (USA, HTOC Co-chair) Samuel Yana-Motta (Peru, outside

expert) Asbjørn Vonsild (Denmark, RTOC) Special thanks to Xueqin Pan on revising the R/AC scenarios

3

Page 4: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Outline

Chapter 1 – ScopeChapter 2 – IntroductionChapter 3 – Update of the status on refrigerantsChapter 4 – Present status of alternatives for ODS in refrigeration, air conditioning and heat pumpsChapter 5 – BAU and MIT scenarios for A5 and non-A5 countriesChapter 6 – Demand, benefits and costsChapter 7 – High ambient temperature conditionsChapter 8 – Information on alternatives to ODS in fire protectionChapter 9 – Information on alternatives to ODS in medical usesChapter 10 – Information on alternatives to ODS in non-medical aerosols

4

Page 5: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Considerations for the report

The XXVI/9 report•builds on previous reports responding to decisions XXIII/9, XXIV/7, and XXV/5 (finalised October 2014)•considers updated information obtained through comments from Parties and reviews information from several additional reports and publications including TOC assessment reports•recognises the limits in data availability for some sectors that currently not allow consideration of BAU and mitigation scenarios•builds on XXV/5 to further investigate the implications of avoiding high-GWP alternatives to ODS

5

Page 6: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Overview

• The report updates information on alternatives as listed in the Decision TF XXV/5 Task Force Report

• It focuses specifically on the R/AC sector, the growing Article 5 equipment base and the resulting refrigerant demand

• It revises scenarios of avoiding high-GWP refrigerants, with new emphasis on the length of manufacturing conversion periods

• It considers all relevant topics related to high-ambient temperature conditions

• It updates information on alternatives in the fire protection, MDIs, other medical, and non-medical aerosols sectors

6

Page 7: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Alternatives in R/AC and HP applicationsIt contains updated information on the options for replacing ODS and high GWP refrigerants, compared to the October 2014 XXV/5 Task Force report: •70 fluids are under consideration in industry test programs or for inclusion in the ASHRAE 34 and ISO 817 standards, with emphasis on special conditions•Testing of unsaturated HFCs (HFOs), and blends containing these compounds is continuing, with emphasis on high ambient temperature conditions

7

Page 8: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Alternatives in R/AC and HP applications (2)In R/AC applications, the main points are:•Domestic refrigeration: 75% of new production is predicted to use HC-600a by 2020•Commercial refrigeration: HCs are being used in condensing units for smaller capacities; supermarket refrigeration systems see strong growth in CO2 (R-744) systems, focusing on energy efficiency improvements, while cost decreases are occurring•Air conditioners: HFC-32 based split systems are being commercialized in Japan and other countries; a wide range of blends containing unsaturated HFCs is also now proposed. HCFC-22 equipment production capacity is being converted to HC-290 in China•MACs: Industry is reporting more testing data on the R-445A blend

8

Page 9: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

BAU and mitigation demand scenariosThe revised R/AC scenarios include the following assumptions and considerations:•An average GWP of 300 for low-GWP refrigerants•Different manufacturing conversion periods of 3 years in non-Article 5, and 6 years in Article 5 countries •Manufacturing conversions to commence:

• All R/AC subsectors in 2020 (MIT-3)• All R/AC subsectors in 2020 except stationary AC

which is assumed to be delayed to 2025 (MIT-4)

•R/AC demand scenarios were cross-checked against current best HFC production data estimates

9

Page 10: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

BAU and mitigation demand scenarios (2)In overall climate impact, the total integrated high GWP HFC demand in Article 5 Parties over the period 2020-2030 has been estimated:

BAU: 17,900 Mt CO2 eq.

MIT-3: 7,100 Mt CO2 eq.; a 60% reduction to BAUMIT-4: 10,700 Mt CO2 eq.; a 40% reduction to BAU

•Delaying and extending the conversion period for the dominant stationary AC sector significantly increases the overall climate impact•By shifting the start of the stationary AC conversion to 2025 as in the MIT-4 scenario in Article 5, there is a substantially increased climate impact extending beyond 2030

10

Page 11: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

R/AC - BAU Non-Article 5 (as of 1990)

11

Page 12: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

R/AC - BAU Article 5 (as of 2010)

12

Page 13: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 and MIT-4 scenarios for Article 5The following slides present results for Article 5 countries only(please not the difference in scale)

13

Page 14: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 total demand Article 5

14

Page 15: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-4 total demand Article 5

15

Page 16: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Impact of length of conversion period

16

Page 17: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Manufacturing conversion cost table (MIT-3)

(From Table 6-14 in the XXVI/9 TF report)

For MIT-3, the total costs for conversion are estimated at US$ 2400 ± 340 million

Subsector Manufacturing conversion (ktonnes)

Costs (US$ million)

Costs (in % of total) (approximate)

Domestic 12.2 86-110 4% Commercial 39.0 156-273 9% Industrial-large size 3.7 15-26 1% Transport 1.3 8-11 <1% Stat. AC (R-410A) 114.0 1254-1482 57% Ibid., (R-407C) 36.5 401-474 18% MAC 34.3 137-343 10% Total 241.0 2400 ± 340 100%

17

Page 18: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Some cost considerations

• For the MIT-3 scenario in Article 5 Parties, the servicing amounts are assumed at 100-200 ktonnes during the period 2020-2030. Assuming that 40-60 ktonnes of HFC consumption can be reduced in the servicing sector, a reduction would imply costs of US$ 40-60 million per triennium (based on experience)

• For the MIT-4 scenario, with stationary AC manufacturing conversion starting in 2025, the conversion cost profile would change substantially:• It results in an additional US$ 350 million on

average per triennium, corresponding to a 30% increase in costs

• Additional costs will occur from the servicing of a larger installed base beyond the year 2030 18

Page 19: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Considerations high ambient temperature conditions (1)• In order to meet energy performance standards, one

has to design avoiding excessively high condensing temperatures, to minimise the critical temperature impact on performance

• Safety issues are to be addressed, if flammability plays a role and higher charge quantities are to be used

• A comparison of the cycle energy efficiency for various condensing temperatures in comparison to both refrigerants HCFC-22 and R-410A is presented in the report

• Additional research and assessment of refrigerants at high ambient temperature conditions is being undertaken:• AHRI initiative AREP-II • US Department of Energy (DoE)• UNEP/UNIDO PRAHA and EGYPRA projects

19

Page 20: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

AREP Phase II low GWP high ambient testing

Product

High ambient

conditions

Current testing status

Baseline refrigerant

ARM-20b

ARM-71a DR-5A HPR-2A L-41-01 L-41-02 N-40c HFC-32

10 kW water chiller 115 F in testing 410A X X X X11.3 EER 10 ton rooftop unit 125 F in testing 410A X X X X14 SEER 3 ton HP 125 F in testing 410A X X X X X13 SEER 3 ton HP

115 F and 125 F in testing 410A X X X

14 SEER 3 ton split HP

115 F and 125 F completed 410A X

Commercial package unit 115 F in testing 410A X X X XSplit ice machine 120 F completed 404a X4 ton packaged rooftop 125 F in testing 410A X X XRooftop packaged unit 125 F in testing 410A X

Low-GWP AREP Phase II High Ambient Test-Matrix proposed

20

Page 21: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Summary table US DoE, EGYPRA, PRAHA programs

Program

2Number of prototypes

Split unit Split unit Split Split Split CentralMicro

ChannelWindow

Mini Split

Ducted Packaged

18 MBH R22 eq.

18 MBH R-410A eq. 12 MBH 18 MBH 24 MBH 120 MBH 120 MBH 18 MBH 24 MBH 36 MBH 90 MBH

9Other

componentsN/A N/A

The project includes other non-testing elements to assess relevant issues of energy effi ciency (EE) standards, technology transfer and economics in addition to special reporting on the potential of District Cooling to reduce the use of high-GWP alternatives

4th quarter of 2015

6Refrigerants

tested

HFC-32, HC-290HFOs (>3 types) eq. to HCFC-22HFOs (> 3 types) eq. to R-410A

HFC-32, HC-290

HFOs (3 Types) eq. to HCFC-22

HFC-32, HC-290

HFOs (2 types) eq. to HCFC-22

HFOs (2 types) eq. to R-410A

7Expected delivery

dates

Preliminary report, July 2015

Final Report October 2015Early 2016

3Number of categories

60 Hz 50Hz 60 Hz

HFOs (3 Types) eq. to R-410A.

US DoE EGYPRA (UNEP, UNIDO) EgyptPRAHA (UNEP,UNIDO)

high-ambient countries

50 Hz

2 commercially available units, soft modified to compare with base refrigerants: HCFC-22 and R-410A

36 prototypes, each specific to one capacity and one refrigerant, compared with the base refrigerants: HCFC-22 and R-410A

HCFC-22 prototypes, each specific capacity and refrigerant built by two OEMs, compared with base refrigerants: HCFC-22 and R-410A

21

Page 22: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Considerations for high ambient temperature conditions (4)• Air conditioners: R-407C, R-410A, HFC-32, HC-290,

HC-1270, R-446A, R-447A, and R-444B are used or being studied. HFOs (HFC-1234yf and HFC-1234ze(E)) have not been seriously considered for AC use because of their low volumetric capacity (bulkier systems at higher anticipated refrigerant cost)

• Chillers: R-447A, R-410A, HFC(HFO)-1234ze(E), R-717, R-718 and HCFC(HFO)-1233zd are used or being studied. R-744 is currently not seen as suitable for high ambient temperatures due to high costs involved

• Commercial Refrigeration: Refrigeration systems at high ambient temperature conditions have the same issues as AC. Methods to improve performance and reliability (e.g. compressor liquid, vapor injection) are becoming common

22

Page 23: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Halon and fire protection• With the exception of civil aviation, for new installations the

halon transition is well underway, but reliance on high GWP HFC solutions remains for the time being

• Proven alternatives to ODS for fire protection are unchanged from those fully described in the 2014 updated HTOC Technical Note 1

• Two chemicals are at an advanced stage of testing and development and may be commercialised as fire extinguishing agents in the future: FK-6-1-14, and 2-BTP

• Other halocarbon agents are in the early stages of testing and development. Due to the lengthy process of testing, approval and market acceptance, it is not anticipated that these agents will have any appreciable impact in the near-term

• For local, non-portable applications, CF3I (iodotrifluoromethane) has re-emerged as an acceptable alternative for halon-1211 and halon-2402 in some installations

23

Page 24: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Medical uses • Metered dose inhalers for asthma/COPD use HFC-134a and

HFC-227ea (approx. 10,000 tonnes/year). • Cumulative HFC emissions between 2014-2025 predicted to be

173 Mt CO2-eq. under a business-as-usual scenario.

• Both HFC MDI and DPI alternatives are available for all key classes of drugs used in the treatment of asthma/COPD.

• Completely avoiding HFC MDIs not yet technically or economically feasible.

• Non-MDI medical aerosols are estimated as 1-2% of total aerosol production. Most use hydrocarbons and dimethyl ether propellants, with less than 10% of these using HFC propellants (<1,000 tonnes). HFCs are used where a non-flammable or safe to inhale propellant is needed, or where emissions of volatile organic compounds (VOCs) are controlled.

• Sterilants: there is almost no use of HFCs, a wide variety of alternatives is available and the impact of avoiding HFCs would be minimal.

24

Page 25: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Non-medical aerosols

• In 2010, HFCs used in aerosol production was estimated as 5% of total GWP-weighted HFC consumption (it is the 3rd largest sector, and is totally emissive)

• Of this, consumer and technical aerosols together account for about 3/4 of GWP-weighted HFC consumption, and medical aerosols (including MDIs) for 1/4

• Global production of HFC-containing aerosols is growing very slowly, if at all. While production is likely to increase in Article 5 Parties, it will likely flatten or decline in non-Article 5 Parties

• It is possible to avoid high-GWP propellants/solvents. Low-GWP propellants/solvents and “not-in-kind” options are widely available• There may be significant challenges in adopting low-

GWP options in some markets or for some products• Reformulation would incur costs

25

Page 26: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Considerations for potential updates

• The XXVI/9 report provides some areas Parties may wish to consider in an updated (XXVI/9) report for MOP-27 as mentioned in the Decision

• The request to TEAP and its XXVI/9 Task Force for the update report must take into account the limited time for the Task Force to complete its work between OEWG-36 and the late September deadline for documents for MOP-27

• Areas might include:• Outcomes from high ambient testing programmes• Refinement of HFC phase-out scenarios in the R/AC

sector in Article 5 and non-Article 5 countries• Further quantification of other sector demands, as

far as new information may become available to the TEAP XXVI/9 Task Force

26

Page 27: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Thank you !

27

Page 28: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

Back-up slides

28

Page 29: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

R/AC – Alternatives to ODS and HFCs (1)

GWP 0 <1 <1 1 1 2 1 – 5 4 4 89 120 290 300 460

R-717 HFC-1234yfHFC-

1234ze(E)R-744

HCFC-1233zd(E)

HFC-1336mzz(Z)

HC-290, HC-1270

HC-600a HFC-161 R-444A R-445A “L-40” R-444B R-446A

Domestic refrigeration

F C

Commercial refrigeration

—  Stand alone equipment

L F C C C F F F

—  Condensing units

F L L F F F F

—  Centralised systems

L F C L F F F

Transport refrigeration

F C C F F F

Large size refrigeration

C F C L F F F

Air conds and heat pumps

—  Small self contained

F L C F F F

—  Mini-split (non-ducted)

L C F F L

—  Multi-splitL F L

—  Split (ducted)

F F F F

—  Ducted split comm. & non-split

F L F F

—  Hot water heating HPs

C F F C C C F F F

—  Space heating HPs

C F F L C L F F F

Chillers

—  Positive displacement

C L L C C F F L

—  CentrifugalL L L F L

Mobile air conditioning

—  CarsC F F  F F F

—  Public transport

L F F F

29

Page 30: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

R/AC – Alternatives to ODS and HFCs (2)

GWP 490 550 570 570 677 1300 1300 1370 1600 1820 1900 1900 2100 3900

“DR-5” R-450A R-447A R-513A HFC-32 R-448A R-449A HFC-134a R-407C R-407F R-452A R-410A R-407A R-404A

Domestic refrigeration

F F C

Commercial refrigeration

—  Stand alone equipment

F F F F F L F C F F F F C

—  Condensing units

F F F F F L F C F F F F C

—  Centralised systems

F F F L F L F C F C F C C

Transport refrigeration

F F F F F F F C F F F C F C

Large size refrigeration

F F F F F F F F C C C C C

Air conds and heat pumps

—  Small self contained

F F F F L F F C C F C F F

—  Mini-split (non-ducted)

F F L F C F F F C F C F F

—  Multi-splitF F L F L F F F C F C F F

—  Split (ducted)

F F F F L F F F C F C F F

—  Ducted split comm. & non-split

F F F F L F F C C F C F F

—  Hot water heating HPs

F F F F L F F C C F C F F

—  Space heating HPs

F F F F L F F C C F C F C

Chillers

—  Positive displacement

F L L L L F F C C F C F C

—  CentrifugalC

Mobile air conditioning

—  CarsF F C

—  Public transport

F F C C C

30

Page 31: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 scenario for Article 5

The following three slides present (in kt CO2-eq. only):

•MIT-3 total high GWP HFC demand for R/AC subsectors•MIT-3 new high GWP HFC manufacturing demand for R/AC subsectors •MIT-3 high GWP HFC servicing demand for R/AC subsectors

31

Page 32: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 total demand Article 5

32

Page 33: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 new manufacturing demand Article 5

33

Page 34: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

MIT-3 servicing demand Article 5

34

Page 35: TEAP XXVI/9 Task Force Report Lambert Kuijpers Bella Maranion Roberto Peixoto TF co-chairs 1

HFC demand and costs

• For MIT-3, the HFC consumption estimated for 2020 is the amount in new manufacturing that would require conversion. The conversion has been modelled for different periods between during 6 and 12 years. The length of the conversion period would have major impacts on the servicing amounts

• Estimates for the low GWP conversion in US$ per kg vary from US$ 4-7 for commercial refrigeration field assembly to US$ 11-13 for stationary AC. For new manufacturing conversion costs, 75% is estimated to be for stationary AC, 10% for commercial, industrial and transport refrigeration and 10% for mobile air conditioning

35