taller de polimeros

29
ADDITION POLYMERS i) Formation of addition polymers Addition polymers are formed from alkenes. Alkenes can be made to join together in the presence of high pressure and a suitable catalyst. The π-bond breaks and the molecules join together. No other product is formed, and so this is known as addition polymerisation. Since the polymers are made from alkenes they are also known as polyalkenes. ethene polyethene The product of this addition process is a very long hydrocarbon chain. Addition polymers can be made from any alkene: Eg propene poly(propene) Eg but-2-ene poly(but-2-ene)

Upload: henry-escorcia-ahumada

Post on 17-Jul-2016

228 views

Category:

Documents


1 download

DESCRIPTION

taller de plasticos y reacciones de polimeros

TRANSCRIPT

Page 1: Taller de Polimeros

ADDITION POLYMERS

i) Formation of addition polymers

Addition polymers are formed from alkenes.

Alkenes can be made to join together in the presence of high pressure and a suitable catalyst. The π-bond breaks and the molecules join together. No other product is formed, and so this is known as addition polymerisation. Since the polymers are made from alkenes they are also known as polyalkenes.

ethene polyethene

The product of this addition process is a very long hydrocarbon chain. Addition polymers can be made from any alkene:

Eg propene poly(propene)

Eg but-2-ene poly(but-2-ene)

Page 2: Taller de Polimeros

Many useful polymers are addition polymers made by this process:

polyethene is used in plastic bags and in crates

polypropene is used in plastic tubing

polychloroethene (polyvinylchloride) is used in waterproof clothing and records

polyphenylethene (polystyrene) is used in packaging

The most favourable conditions for the polymerisation of alkenes can be deduced from Le Chatelier's principle, if two points are noted:- the reaction involves breaking -bonds only, and many -bonds are made. The

reaction is thus exothermic.- The reaction involves a reduction in the total number of moles:

Since the reaction is exothermic, the best yield is obtained at low temperature. Since the number of gas moles decreases, the best yield is obtained at high pressure.

Addition polymerisation reactions are carried out at high pressure in the presence of a suitable catalyst.

Page 3: Taller de Polimeros

ii) Properties of addition polymers

Addition polymers (polyalkenes) are long chain hydrocarbons which are saturated and non-polar. Their structure results in their having a number of characteristic properties:

a) Since the hydrocarbon chains are often very long, the Van der Waal's forces between the chains are often very strong and the polymers have relatively high melting and boiling points. Since the chain length is variable, most polymers contain chains of a variety of different lengths. Thus the Van der Waal's forces are of variable strength and these polymers tend to melt gradually over a range of temperatures rather than sharply at a fixed temperature. As the chains are not rigidly held in place by each other, polymers tend to be reasonably soft.

b) Since the chains are non-polar, addition polymers are insoluble in water. Since the intermolecular forces between the molecules are strong and the chains are often tangled, they are generally insoluble in non-polar solvents as well. In fact the long saturated hydrocarbon chains result in polyalkenes being very unreactive generally, as they cannot react with electrophiles, nucleophiles or undergo addition reactions.

This results in their widespread use as inert materials - they are very useful as insulators, as packaging and in making containers.

However their low reactivity means that they are not easily decomposed in nature and as a result have a very long lifetime. Such substances are said to be non-biodegradable, and constitute an environmental hazard as they are very persistent in nature and thus difficult to dispose of.

c) The density and strength of addition polymers varies widely. They depend to a certain extent on the length of the hydrocarbon chain, but depend much more strongly on the nature and extent of the branching on the chain.

Polymers which have very few branches are very compact and the chains can thus pack together very efficiently:

These polymers tend to have a very high density. Since the chains are closely packed, the Van der Waal's forces between the chains are strong and these polymers tend to be stronger and harder as well.

Page 4: Taller de Polimeros

Polymers which are highly branched cannot pack together as well, and there tend to be large spaces in the structure:

These polymers have a much lower density. Since the chains are not closely packed, the van der Waal's forces between the chains are weaker and these polymers tend to be weaker and softer.

Page 5: Taller de Polimeros

CONDENSATION POLYMERS

i) Polyesters

It has been shown that if a carboxylic acid or acyl chloride is reacted with an alcohol, then an ester is formed and a water molecule is lost.

Eg ethanoyl chloride + ethanol ethyl ethanoate + HCl

Eg benzoic acid + methanol methyl benzoate + H2O

These are examples of condensation reactions – combination of two or more molecules followed by the elimination of a small molecule.

It follows that if a dicarboxylic acid is reacted with a diol, then the -COOH group at each end of the dicarboxylic acid should join to an -OH group, and the -OH group at each end of the diol should join to a -COOH group. It should therefore be possible for all the molecules to link together and form a polymer.

Page 6: Taller de Polimeros

Eg benzene-1,4-dicarboxylic acid and ethan-1,2-diol

benzene-1,4-dicarboxylic acid ethan-1,2-diol

These two compounds can link together to form a polymer, and water is given off:

This polymer can be represented by the following repeating unit:

The overall equation can be represented as:

Page 7: Taller de Polimeros

The monomer units are linked together by the ester group:

Polymers containing this type of linkage are therefore known as polyesters.

The above polymer is known as terylene. It is used in fire-resistant clothing (eg racing drivers)

The same polyester can also be formed by the combination of a diacyl chloride and a diol:

Eg benzene-1,4-diacyl chloride and ethan-1,2-diol

These two monomer units link together to form the same polymer. The only difference is that HCl instead of H2O is given off.

The overall equation can be represented as:

The polymerisation reaction with diacyl chlorides produces a much better yield than the corresponding polymerisation reaction with dicarboxylic acids. This is because acyl chlorides are more reactive than carboxylic acids and also because the HCl produced is gaseous and thus escapes, making the reaction more difficult to reverse.

Thus dicarboxylic acids are generally converted to diacyl chlorides (by addition of PCl5) before a polymerisation is carried out.

Page 8: Taller de Polimeros

Another example of polyester formation is:

Ethanediacyl chloride and propan-1,2-diol

Page 9: Taller de Polimeros

ii) Polyamides

It has been shown that if a carboxylic acid or acyl chloride is reacted with a primary amine, an N-substituted amide is formed:

Eg propanoic acid + ethylamine == N-ethylpropanamide + H2O

Eg ethanoyl chloride + 1-aminopropane N-propylethanamide + HCl

It follows that if a dicarboxylic acid is reacted with a diamine, the -COOH group at each end of the dicarboxylic acid with join to an -NH2 group, and the -NH2 group at each end of the diamine will join to a -COOH group. It should therefore be possible for each of the molecules to join together and form a polymer.

Page 10: Taller de Polimeros

Eg hexanedioic acid + 1,6-diaminohexane

These two compounds can link together to form a polymer, and water is given off.

The polymer can be represented by the following repeating unit:

The overall equation can be represented as:

The monomers are linked together by the amide, or peptide link:

Polymers containing this type of linkage are therefore known as polyamides.

The above polymer is known as nylon 66. It is a man-made fibre used in clothing

Page 11: Taller de Polimeros

The same polyamide can be formed by the combination of the diacyl chloride and the diamine:

These two monomer units link together to form the same polyamide. The only difference is that HCl is given off instead of water.

The overall equation can be represented as:

The polymerisation reaction with diacyl chlorides gives a much better yield than with the corresponding dicarboxylic acid for the same reasons as with the polyesterification reaction. Dicarboxylic acids are therefore converted to the corresponding diacyl chloride (by addition of PCl5) before the polymerisation is carried out.

Another example of polyamide formation is:

Butanedioyl chloride and 1,2 diaminopropane

Page 12: Taller de Polimeros

Polyesters and polyamides are collectively known as condensation polymers because they are the product of condensation reactions.

iii) Properties and uses of condensation polymers

Condensation polymers tend to consist largely of straight chains with few branches. This is because they are formed by reactions with heterolytic mechanisms, which are much less random than homolytic mechanisms. Addition polymers are formed by free radical addition mechanisms which always lead to a variety of products and consequently much more branching.

Since there are few branches in condensation polymers, they are usually linear and can thus pack closely tegether. Condensation polymers are therefore more rigid than addition polymers and have a higher tensile strength.

The strength of the intermolecular forces between the different chains in polyamides is further enhanced by the presence of hydrogen bonding.

Polyamides are therefore generally very strong. In some natural polyamides, such as proteins, intramolecular hydrogen bonding is possible and the molecule curls up to form a helical structure:

Page 13: Taller de Polimeros

Polyamides and polyesters are both used largely in high-strength synthetic fibres.

Polyesters are used as wool and cotton substitutes in clothing (esp jumpers, T-shirts, shirts etc) and also in carpets and rugs. Bullet-proof vests and some flame-retardant clothing are made from polyesters.

Polyamides are more elastic and used in underwear, fishing nets and other synthetic fibres.

Perhaps the most important difference between condensation polymers and addition polymers is that condensation polymers are made up of chains containing polar bonds; i.e. C-N and C-O bonds which link every polymer unit. These polar carbon atoms can be readily attacked by nucleophiles and as a result the polymers can be broken up and the constituent monomers reformed. Condensation polymers are hence biodegradable, and so clearly constitute a smaller environmental hazard than addition polymers, whose chains are made up entirely of non-polar C-C bonds and which are hence non-biodegradable.

The break-up of these polymers is carried out in aqueous solution and can be classed as hydrolysis reactions:

Polyesters are best hydrolysed in strongly alkaline conditions, in which they undergo saponification:

Polyamides are best hydrolysed in strongly acidic conditions:

The biodegradability of condensation polymers may compromise their effectiveness, since physical and chemical durability is one of the reasons for their widespread use. A balance must be struck between practical durability and long-term biodegradability.

Page 14: Taller de Polimeros

DISPOSAL AND RECYCLING OF POLYMERS

The disposal of non-biodegradable polymers is a significant problem. There are three options:- burying in landfill sites

This is widespread in all developed countries but is a completely unsustainable practice, as each landfill site will eventually fill up. Landfill sites are also unsightly and unhygienic.

- burningThis is also common, but burning polymers releases greenhouses gases such as carbon dioxide and can also release toxic gases, depending on exactly what polymer is being burned

- recyclingThis is environmentally preferable to burying or burning, but it is not easy. Different plastics need to be collected, separated and cleaned. They then need to be melted down before being recast into the new item. Often this process can cost more than it costs to manufacture the plastic from crude oil.Some plastics cannot be melted – they burn or harden instead of melting. It is even more difficult to recycle these plastics as they can only be used in the same shape in which they were originally cast.

The above problems mean that the continued manufacture of non-biodegradable polymers is a cause for environmental concern.

Biodegradable polymers decompose naturally, so burying them is slightly less environmentally unsustainable as they will eventually break down.They can be recycled, broken down into their original components and reused, but they still need to be collected, separated and cleaned.

Page 15: Taller de Polimeros

SUMMARY OF POLYMER FORMATION AND HYDROLYSIS REACTIONS

Type of reaction Mechanism

1. Addition polymerisation (alkenes polyalkenes)

conditions: high temperature, Ziegle-Natte catalystequation:

2. Condensation polymerisation

a) polyestersdicarboxylic acid + diol polyesterconditions: H2SO4, heat under refluxequation:

ordiacyl chloride + diol polyesterconditions: room temperatureequation:

b) polyamidesdicarboxylic acid + diamine polyamideconditions: warm, refluxequation:

ordiacyl chloride + diamine polyamideconditions: room temperatureequation:

Free radical addition(not required)

Nucleophilic addition-elimination (not required)

Page 16: Taller de Polimeros

3. Hydrolysis of condensation polymers

a) polyestersreagents: NaOH(aq)conditions: heatequation:

b) polyamidesreagents: HCl(aq)conditions: heatequation:

n/a

n/a

MECANISMOS DE POLIMERIZACIÓN

Mecanismos Básicos1. Polimerización de Cadena, Secuencial o por Adición de MonómeroEl monómero ingresa uno tras otro (y muy rápidamente) en las cadenas crecientes (de concentración muy baja):

Según la naturaleza química del centro activo, las polimerizaciones de crecimiento de cadena se clasifican en:

radicalarias aniónicas catiónicas

Page 17: Taller de Polimeros

2. Polimerización por Pasos, Aleatoria o por Adición de PolímeroReaccionan entre sí dos moléculas cualesquiera. Las cadenas crecen muy lentamente:

Según se pierda o no una molécula de bajo M con cada paso de la propagación, las polimerizaciones por pasos se clasifican en:

Policondensaciones Poliadiciones

OBTENCIÓN DE POLÍMEROS LINEALES

Principales Mecanismos Mínimos de Polimerización

CRECIMIENTO de CADENA(Polim. Secuenciales o por Acoplamiento de Monómero)

CREC. por PASOS(Polim. Aleatorias o por Acoplamiento de Polímero)Monómero P1 = AB o mezclaequimolar de AA + BB

Radicalarias Aniónicas “Vivientes”Iniciación

(A lo largo de la reacción)

(Al comienzo de la reacción)

Propagación(r, s) = (1, 2, ...∞)

Caso ideal: ki = kpTerminación(r, s) = (1, 2, ...∞)

Se elimina la etapa de terminación empleando reactivos de alta pureza, y eliminando “venenos” como el agua y los ácidos.

Son también “vivientes”, en el sentido que todas las cadenas mantienen siempre la posibilidad de crecer.

Se desprecian las reacciones de transferencia de cadena.El polímero acumulado muerto Pr es un inerte que no reacciona.

Se desprecian las reacciones de transferencia de cadena.

Se desprecian las reaccionesintramoleculares y secundarias

Page 18: Taller de Polimeros

Polimerizaciones Radicalarias: Principales Polímeros Vinílicos

Polimerizaciones Radicalarias: Mecanismo de Reacción

IniciaciónHay una producción continua de radicales primarios del iniciador.

Page 19: Taller de Polimeros

• Propagación

• Terminación

POLIMERIZACIONES POR PASOS

Principales Reacciones de Propagación

Page 20: Taller de Polimeros

Principales Polímeros Lineales obtenidos por Pasos

Principales Diferencias entre los Mecanismos Básicos

Page 21: Taller de Polimeros

PESO MOLECULAR PROMEDIO

La variable que define fundamentalmente las propiedades físicas y Químicas de un polímero es su peso molecular. Sin embargo, una característica de estos materiales es que el peso molecular queda determinado por Circunstancias aleatorias que dependen de una gran cantidad de variables.El resultado es la obtención de un producto final formado por macromoléculas De distinta longitud. Existe, por lo tanto, una distribución estadística de pesos Moleculares más o menos estrecha que depende de los métodos de Síntesis. A los polímeros que presentan dicha distribución de pesos Moleculares se les denomina poli dispersos. Solamente las Macromoléculas biológicas como proteínas y ácidos nucleicos sintetizadas De manera específica por organismos vivos son mono dispersas ya que presentan un peso molecular definido.Una caracterización completa del polímero requiere conocer exactamente La distribución de pesos moleculares en la muestra. Las técnicas Utilizadas para conocerla son el fraccionamiento y la Cromatografía de exclusión por tamaños (sec), también Llamada cromatografía por permeación de gel (gpc). A partir de ellas se pueden hallar curvas de distribución de pesos moleculares como la representada en la figura l.

Sin embargo, en muchos casos, es suficiente con recurrir a otras técnicas experimentales que nos permiten conocer un valor promedio del peso molecular del polímero que será diferente según el método de análisis empleado.Así, hay métodos experimentales que miden el número de moléculas de una masa determinada. De esta manera, se obtiene el PESO MOLECULAR PROMEDIO EN NÚMERO (M") que corresponde a los valores obtenidos por ebulloscopía, crioscopía y

Page 22: Taller de Polimeros

osmometría. Todas estas técnicas se realizan con disoluciones diluidas y los resultados corresponden al número de moléculas disueltas en la unidad de volumen de disolución. La expresión de Mn viene dada por:

Donde Ni es el número de especies de peso molecular Mi.

En los métodos usuales de fraccionamiento de un polímero se calcula el peso de cada fracción, por lo que es conveniente expresar el peso molecular M en función de las fracciones en peso roí' Esto se puede realizar teniendo en cuenta que Wi=Ni.Mi, siendo Wi es el peso de las moléculas que tienen el peso molecular Mi

Otros métodos experimentales dan una media ponderada de las fracciones en peso de las moléculas de un determinado tamaño, es decir, el PESO MOLECULAR PROMEDIO EN PESO (M) que corresponde a los valores obtenidos por viscosimetría de disoluciones diluidas y medidas de dispersión de la luz. La expresión de Mw tiene dada por:

Si llevamos los valores de Mn y Mw sobre la curva de distribución de pesos moleculares (figura 1) se comprueba que, para los polímeros típicos, Mn queda cerca del máximo de distribución ponderal. En cuanto a Mw, como las moléculas pesadas se ven favorecidas a la hora de promediar, resulta igual o mayor que M". Mw es muy sensible a la presencia de especies de alto peso molecular. Por su parte M" está influido por las cadenas poliméricas de menor peso molecular. Así, si se mezclan masas poliméricas iguales de pesos molecular M=l0.OOO y M=lOO.OOO, los pesos moleculares promedio serán Mn=18.200 y Mw=55.000. Si se mezclan números iguales de moléculas de ambos pesos moleculares, los valores serán M"=55.000 y Mw=92.000.

La relaciónip=Mw /M n

se llama ÍNDICE DE HETEROGENEIDAD o DE POLIDISPERSIDAD y se utiliza para medir la amplitud de la distribución de pesos moleculares. Valores del índice de polidispersidad próximos a la unidad representan una gran homogeneidad de pesos

Page 23: Taller de Polimeros

moleculares, por lo que la campana de distribución será estrecha. Si los valores son mucho mayores de la unidad, hay una gran dispersión de pesos moleculares y la campana de distribución será abierta.Generalmente, los polímeros con índice de poli-dispersidad próximo a la unidad presentan mejores propiedades que aquéllos que poseen un índice mucho mayor que la unidad. En una misma distribución, las especies de bajo peso molecular pueden actuar como plastificantes ablandando el material y no contribuir en absoluto a la resistencia mecánica del polímero. Por su parte, las especies de alto peso molecular elevan la viscosidad del polímero en estado fundido y, de esta manera, aumentan las dificultades en los procesos de conformado. Por estos motivos se debe poner especial atención en la caracterización de la distribución de pesos moleculares de un polímero.