switched-currents an analogue technique for digital technology

10
SWITCHED-CURRENTS an analogue technique for digital technology Edited by С Toumazou, ]. B. Hughes & N. C. Battersby Supported by the IEEE Circuits and Systems Society Technical Committee on Analog Signal Processing IEE Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers

Upload: others

Post on 26-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SWITCHED-CURRENTS an analogue technique for digital technology

SWITCHED-CURRENTS an analogue technique for digital technology

Edited by С Toumazou, ] . B. Hughes

& N. C. Battersby

Supported by the IEEE Circuits and Systems Society Technical Committee on Analog Signal Processing

IEE Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers

Page 2: SWITCHED-CURRENTS an analogue technique for digital technology

Table of Contents

1 Introduction 1 C. Toumazou, J. B. Hughes and N. С Battersby

1.1 VLSI Technology 1 1.2 The Analogue Dilemma 1 1.3 Switched-Currents 3 1.4 An Analogue Technique For Digital Technology 3 1.5 Book Style 4 1.6 Conclusion 7 References 8

2 The Evolution of Analogue Sampled-Data Signal Processing 9 N. C. Battersby and C. Toumazou

2.1 Introduction 9 2.2 The Evolution of Analogue Sampled-Data Techniques 9

2.2.1 Early work 10 2.2.2 Bucket brigade devices 10 2.2.3 Charge coupled devices 11 2.2.4 Switched-capacitors 13

2.3 The Role of Analogue Sampled-Data Signal Processing 16 2.4 Processing Trends and their Impact on Analogue Circuits 18 2.5 Current-Mode Analogue Signal Processing 23 2.6 Summary 25 References 25

Basic Cells 3 Switched-Current Architectures and Algorithms 30

J. B. Hughes, N. С Bird and I. C. Macbeth 3.1 Introduction 30 3.2 Switched-Capacitor Background 30

3.2.1 Non-inverting integrator 31 3.2.2 Inverting integrator 32 3.2.3 Inverting amplifier 32 3.2.4 Generalised integrator 33 3.2.5 Subtracting integrator. 34 3.2.6 Switched-capacitorcharacteristics 35

3.3 Switched-Current Systems 35 3.4 Delay Modules 37

3.4.1 Current memory cell 37 3.4.2 Delay cell 38 3.4.3 Delay line 39

3.5 Integrator Modules 39 3.5.1 Non-inverting integrator 39 3.5.2 Non-inverting damped integrator 41 3.5.3 Sensitivity 43 3.5.4 Inverting damped integrator 44 3.5.5 Inverting damped amplifier 45 3.5.6 Generalised integrator 46 3.5.7 Bilinear z-transform integrator 48

Page 3: SWITCHED-CURRENTS an analogue technique for digital technology

xvi Switched-Currents: an analogue technique for digital technology

3.5.8 Comparison with the switched-capacitor integrator 49 3.5.9 Integrator-based biquadratic section 49

3.6 Differentiator Modules 54 3.6.1 Inverting differentiator 54 3.6.2 Generalised inverting differentiator 55 3.6.3 Non-inverting differentiator 57 3.6.4 Generalised non-inverting differentiator 59 3.6.5 Bilinear z-transform differentiator 61 3.6.6 Differentiator-based biquadratic section 62

3.7 Filter Synthesis Example 6th Order Lowpass Filter 64 3.8 Summary 68 References 69

4 Switched-Current Limitations and Non-Ideal Behaviour 71 J. B. Hughes and W. Redman-White

4.1 Introduction 71 4.2 Mismatch Errors 71

4.2.1 Unity gain current memory 71 4.2.2 Non-unity gain current memory 76

4.3 Output-Input Conductance Ratio Errors 77 4.3.1 Memory cell response with conductance ratio errors 78 4.3.2 Integrator response with conductance ratio errors 81 4.3.3 Comparison with switched-capacitor integrator 84 4.3.4 Simulations 85

4.4 Settling Errors 86 4.4.1 Underdamped response 87 4.4.2 Critically damped response 88 4.4.3 Overdamped response 88 4.4.4 Memory cell response with settling errors 90 4.4.5 Integrator response with settling errors 93 4.4.6 Comparison with switched-capacitor integrator 98 4.4.7 Simulations 99

4.5 Charge Injection Errors 99 4.5.1 Switched-capacitor charge injection 100 4.5.2 Current memory charge injection 103 4.5.3 Analysis of charge injection errors 108 4.5.4 Memory cell response with charge injection errors I l l 4.5.5 Integrator frequency response with charge injection errors 113

4.6 Noise Errors 117 4.6.1 Noise analysis of switched-current memory cells 117

4.6.1.1 Simulations 121 4.6.1.2 Correlated double sampling 121 4.6.1.3 Dynamic range 123

4.6.2 Integrator noise analysis 125 4.6.2.1 Simulations 129 4.6.2.2 Dynamic range 130

4.7 Summary 131 References 134

5 Noise in Switched-Current Circuits 136 S. J. Daubert

5.1 Overview 136 5.2 Transistor Noise 137 5.3 Current Mirror Noise 139 5.4 Current Copier Noise 143

5.4.1 Relative importance of switch and transconductor noise in a current copier 144

Page 4: SWITCHED-CURRENTS an analogue technique for digital technology

Contents xvii

5.4.2 Transfer function approach 147 5.5 Conclusion 154 References 154

6 Switched-Current Circuit Design Techniques 156 J. B. Hughes, K. W. Moulding and D. M. Pattullo

6.1 Introduction 156 6.2 Feedback Techniques 156

6.2.1 Op-amp active memory cell 157 6.2.2 Grounded-gate active memory cell 160 6.2.3 Simple cascode memory cell 163 6.2.4 Folded-cascode memory cell 167 6.2.5 Regulated cascode 170 6.2.6 Regulated folded-cascode memory cell 172 6.2.7 Integrators 172 6.3.1 Basic fully-differential current memory cell 174 6.3.2 Folded-cascode fully-differential current memory and integrator 177 6.3.3 Single-ended to fully-differential equivalence 179 6.3.4 Charge injection 181

6.4 Summary 188

7 Class AB Switched-Current Techniques 191 N. C. Battersby and C. Toumazou

7.1 Introduction 191 7.2 Memory Cell 192 7.3 Filter Building Blocks 194

7.3.1 Delay cells 194 7.3.2 Integrator circuits 194 7.3.3 Differentiator circuits 196

7.4 Performance Limitations 197 7.5 Biquadratic Filter Example 200 7.6 Conclusions 202 Acknowledgements 202 References 202

Filters

8 Switched-Current Filters 204 N. C. Battersby and C. Toumazou

8.1 Introduction 204 8.2 Biquadratic Filter Sections 204

8.2.1 Integrator based sections 205 8.2.2 Example: integrated biquadratic filter 207

8.2.3 Differentiator based sections 212 8.3 Ladder Filters 214

8.3.1 Example: integrated elliptic filter 214 8.4 FIR Filters 222 8.5 Wave Active Filters 223 8.6 Transposition of Switched-Capacitor Filters 223 8.7 Switched-Transconductance Filters 223

8.7.1 Switched-transconductance concept 224 8.7.2 Composite elements 226 8.7.3 Filter applications 227

Acknowledgements 230 References 230

Page 5: SWITCHED-CURRENTS an analogue technique for digital technology

xviii Switched-Currents: an analogue technique for digital technology

9 A Switched-Capacitor to Switched-Current Conversion Method 232 G. W. Roberts and A. S. Sedra

9.1 Introduction 232 9.2 The Switched-Current Technique 233 9.3 Comparing the SFGs of SI and SC Integrator Circuits 235 9.4 SI Filter Circuits with Finite Transmission Zeros 241 9.5 SI Filter Circuits using Bilinear Integrators 245 9.6 Conclusions 250 Acknowledgement 251 References 251

10 Switched-Current Video Signal Processing 252 J. B. Hughes and K. W. Moulding

10.1 Introduction 252 10.2 Basic Signal Processing Cells 253

10.2.1 Delay line 253 10.2.2 Integrator and differentiator cells 255 10.2.3 FIR cells 255

10.3 Practical SI Signal Processing Cells 256 10.3.1 Active negative feedback 256 10.3.2 Fully differential circuits 259

10.4 Memory Cell Design 261 10.4.1 Transmission error 261

10.4.1.1 Conductance ratio error 261 10.4.1.2 Charge injection errors 262

10.4.2 Settling behaviour 263 10.4.2.1 Linear settling 263 10.4.2.2 Non-linear settling 265

10.4.3 Signal-to-noise ratio 265 10.5 Video 1С Test Circuit 266

10.5.1 Output waveforms 269 10.5.2 Amplitude responses 269 10.5.4 Harmonic distortion 271 10.5.5 Summary of performance 272

10.6 Discussion and Conclusions 272 10.7 References 273 Appendix 10 A 274 Appendix 10B 275 Appendix 10C 277

11 Switched-Current Wave Analogue Filters 279 A. Rueda, A. Yufera and J. L. Huertas

11.1 Introduction and Motivations 279 11.2 Wave Filters 281

11.2.1 General principles 281 11.2.2 Wave filter synthesis procedure 284 11.2.3 Scaling techniques 287

11.3 Switched-Current Wave Filter Design 287 11.3.1 Basic building blocks 288 11.3.2 Limitations and non-idealities of the building blocks 291

11.4 Programmable Band-pass Filter Structures 295 11.4.1 Filter synthesis 295 11.4.2 Programmable filter implementation 296

11.5 Design Examples 297 11.6 Conclusions 302 References 302

Page 6: SWITCHED-CURRENTS an analogue technique for digital technology

Contents xix

i

Data Converters

12 Algorithmic and Pipelined A/D Converters 304 D. Nairn

12.1 Introduction 304 12.2 Architectures For Switched-Current ADCs 305

12.2.1 Algorithmic ADCs 305 12.2.2 Pipelined ADCs 307 12.2.3 Summary 308

12.3 Building Blocks 308 12.3.1 Current-samplers 308 12.3.2 Current divide-by-two 312 12.3.3 Current comparators 313 12.3.4 Switches in switched-current circuits 314 12.3.5 Summary 316

12.4 Converter Implementation and Examples 316 12.4.1 Algorithmic ADCs 316 12.4.2 Pipelined ADCs 319

12.5 Limitations 319 12.5.1 Systematic errors 319 12.5.2 Random errors 320

12.6 Conclusions 320 References 321

13 High Resolution Algorithmic A/D Converters based on Dynamic Current Memories 323

P. Deval 13.1 Introduction 323 13.2 CMOS dynamic current memory 323 13.3 Conversion algorithm with reduced dynamic range of the memorised currents 325 13.4 Conversion error 327 13.5 Design of dynamic current memories for use in cyclic ADCs 328

13.5.1 Equivalent time constant of the memory 328 13.5.2 Charge injection error 330 13.5.3 Sampled noise 334 13.5.4 Leakage currents 335 13.5.5 Output conductance 336 13.5.6 Current comparison 340 13.5.7 Comparator offset compensation 341 13.5.8 Clipping the comparator's input voltage 342 13.5.9 Controlling the "on" conductance of the sampling switch 343 13.5.10 Input multiplexer 343

13.6 Technology scaling 344 13.7 Pipelined converter 344 13.8 Experimental results and measurements 345 13.9 Summary 347 Acknowledgements 347 References 348

14 Building Blocks for Switched-Current Sigma-Delta Converters 350 G. W. Roberts and P. J. Crawley

14.1 Introduction 350 14.2 Sigma-Delta A/D Conversion 351 14.3 The SI Circuit Technique 354 14.4 Additional Current-Mode Circuits 363

Page 7: SWITCHED-CURRENTS an analogue technique for digital technology

xx Switched-Currents: an analogue technique for digital technology

14.5 SI DISDM Design 365 14.5.1 The current mirror design approach 365 14.5.2 The component-invariant design approach 376

14.6 Conclusions 379 Acknowledgements 379 References 380

15 Continuous Calibration D/A Conversion 381 W. Groeneveld, H. Schouwenaars, C. Bastiaansen and H. Termeer

15.1 Accuracy of Audio D/A Converters 381 15.1.1 Introduction 381 15.1.2 Linearity considerations 381 15.1.3 Basic calibration principle 382 15.1.4 Imperfections 383 15.1.5 Numerical example 385 15.1.6 Improved calibration technique 386 15.1.7 Continuous current calibration 388

15.2 16-bit Audio D/A Converter Architecture 388 15.2.1 Block diagram 388 15.2.2 Calibration circuitry and current cell 389 15.2.3 Measurement results 390

15.3 Calibrated Noise Shaping D/A Converter 393 15.3.1 Introduction 393 15.3.2 General design considerations 394 15.3.3 Converter architecture considerations 396 15.3.4 D/A converter block diagram 397 15.3.5 Reference current adjustment 398 15.3.6 Digital continuous calibration 399 15.3.7 Bi-directional calibrating current cell 399 15.3.8 Measurement results 400

15.4 Conclusions 402 Acknowledgements 402 References 403

Other Applications 16 Dynamic Current Mirrors 404

G. Wegmann 16.1 Introduction 404 16.2 Current Copiers 405

16.2.1 Principle of current copier and dynamic current mirrors 405 16.2.2 Principal accuracy limitations 406 16.2.3 Cascoded structure 408 16.2.4 Current copier with reduced transconductance gmmA 409 16.2.5 Dynamic current mirror structures 410

16.2.6 Multiple dynamic current mirrors (1:1) 412 16.2.7 Dividing current mirror: principle of the division by

2 ( I o u t = T ) 4 W

16.3 Accuracy Limitations 417 16.3.1 Influence of drain voltage variations 417

16.3.1.1 Output conductance gds 417 16.3.1.2 Capacitive divider Cgd - С 418 16.3.1.3 Direct charge flow path 419

16.3.2 Leakage currents 419 16.3.3 Charge injection by analogue switches 421

Page 8: SWITCHED-CURRENTS an analogue technique for digital technology

Contents xxi

16.3.3.1 Interfering parameters 421 16.3.3.2 Strategies 422 16.3.3.3 Reduction of the turn-on voltage of the sampling switch 423 16.3.3.4 Two-phase feedback 425

16.4 Noise Analysis 426 16.4.1 Noise sources 426 16.4.2 Analysis of direct noise sources 427 16.4.3 Description of sampling and autozeroing effects 428 16.4.4 Analysis of sampling and autozeroing

transfer functions 431 16.4.5 Calculation of sample-and-hold component AVh(f) 433 16.4.6 Calculation of the direct component AVD(f) 433 16.4.7 Autozero transfer function 433 16.4.8 Voltage noise spectral power density Sy(f) 435 16.4.9 Analysis of aliasing effects using the equivalent noise bandwidth technique 436

16.4.9.1 White noise in first and second-order low-pass filters 436 16.4.9.2 White noise aliasing effect in a current copier. 437 16.4.9.3 1/f noise in first and second-order low-pass filter 438 16.4.9.4 1/f aliasing effect in a current copier 439

16.4.10 Noise spectral power density Sy{f) 440 16.4.10.1 White noise due to main transistor Tm 440 16.4.10.2 Noise spectral power density Sy^f) in the baseband 441

16.5 Dynamic Behaviour 442 16.5.1 Critical switching configurations 442

16.5.1.1 Influence of clock delay 442 16.5.1.2 Influence on the output current - AC and DC 444

16.5.2 Speed-accuracy trade-off 445 16.5.2.1 Settling time constant 445 16.5.2.2 Speed-accuracy trade-off 445

16.6 Measurements 446 16.6.1 AC measurements 447

16.6.1.1 Variations of input voltage Vin(t) and output current IQ ut(t) 447

16.6.2 DC measurements 448 16.6.2.1 Multiplying mirror of ratio 1 448 16.6.2.2 Basic cell with a reduced transconductance gmraA 450 16.6.2.3 Influence of the clock frequency 451

16.6.3 Noise measurements 452 16.7 Conclusion 453 References 453 Appendix 16A 456 Appendix 16B 458

17 Switched-Current Cellular Neural Networks for Image Processing 459

A. Rodriguez-Vazquez, S. Espejo, J. Huertas and R. Dominguez-C astro 17.1 Introduction 459 17.2 The DT-CNN Model 461

17.2.1 Network architecture and dynamics 461 17.2.2 Network processing and operating modes 463

17.3 Basic Building Blocks for SI DTCNNs 466 17.3.1 Cell operators 466 17.3.2 Current-mode replication and scaling 467

.'

Page 9: SWITCHED-CURRENTS an analogue technique for digital technology

xxii Switched-Currents: an analogue technique for digital technology

17.3.3 Cell non-linearity 468 17.3.4 Delay block 470 17.3.5 Current mode CNN conceptual cell schematics 471

17.4 CMOS Current-Mode CNN Design Issues 472 17.4.1 CMOS mirror circuits

static non-idealities and sizing equations 472 17.4.2 CMOS current mode dynamic operators non-idealities 477 17.4.3 Programmability issues for current-mode blocks 477 17.4.4 Bias current selection

area, power and reliability 479 17.5 Input-Output Strategies 480 17.6 Discussion and Perspectives. 482 References 483

Analysis, Simulation and Test

18 Test for Switched-Current Circuits 487 P. Wrighton, G. Taylor, I. Bell and C. Toumazou

18.1 Introduction 487 18.2 Basic concepts for the test of SI cells 488

18.2.1 Injection and simulation of faults in SI cells 489 18.2.2 Fault detection and detectability measures 490

18.3 Test vector analysis 493 18.3.1 Effect of test stimulus period 494 18.3.2 Different profile test stimuli 496

18.3.2.1 Overall coverage 496 18.3.2.2 Transistor level analysis 497 18.3.2.3 Individual faults groups and failure modes 499

18.4 Built In Self Test for SI cells 501 18.4.1 Functional inversion test circuit 502

18.4.1.1 Fault coverage 505 18.5 Conclusions and future work 506 Acknowledgements 507 References 507

19 Analysis of Switched-Current Filters 508 A. C. M. de Queiroz

19.1 Introduction 508 19.2 Frequency-Domain Nodal Analysis of Switched-Current Filters 509 19.3 Refinements to the Basic Algorithm 512 19.4 Voltage Sources in Nodal Analysis 513 19.5 Interpolation of z-transforms 514 19.6 Time-Domain Analysis 517 19.7 Sensitivity Analysis 518 19.8 Conclusions 525 References 526

20 Non-linear Behaviour of Switched-Current Memory Circuits 528 G. W. Roberts and P. J. Crawley

20.1 Introduction 528 20.2 Basic Memory Cell Operation 529 20.3 Small-Signal Behaviour of the Memory Cell 532 20.4 Large-Signal Behaviour of the Memory Cell 536

20.4.1 A total harmonic distortion bound 539 20.4.2 Comparing THD bound with simulation results 543 20.4.3 Experimental confirmation of the THD bound 545

Page 10: SWITCHED-CURRENTS an analogue technique for digital technology

Contents xxiii

20.5 Conclusions 545 Acknowledgement 546 References 546

Future Directions

21 GaAs MESFET Switched-Current Circuits 548 C. Toumazou and N. C. Battersby

21.1 Introduction 548 21.2 GaAs Versus Silicon Technology For Analogue Design 548 21.3 MESFET Modelling 550 21.4 GaAs MESFET Current-Mirror Techniques 553

21.4.1 Cross-coupled MESFET pair 553 21.4.2 Linear current-mirror 554 21.4.3 Cascoding 556

21.6 Towards GaAs MESFET Switched-Current Techniques 559 21.6.1 Basic memory cell 560 21.6.2 Linear non-inverting memory cell 561 21.6.3 Fully differential, linear transconductance GaAs switched-currentcell 563 21.6.4 Generalised integrator 564 21.6.5 Performance limitations 565

21.7 Circuit techniques for enhanced performance 567 21.7.1 Dummy switch compensation 567 21.7.2 Cascoded memory cells 568

21.8 Simulation results 569 21.8.1 Fully cascoded memory cell 570 21.8.2 Damped integrator 572 21.8.3 Biquadratic filter example 573

21.9 Discussion and Conclusion 574 Acknowledgements 575 References 575

^ 2 2 Switched-Currents: State-of-the-Art and Future Directions 577 C. Toumazou, N. C. Battersby and J. B. Hughes

22.1 Introduction 577 22.2 Switched-currents: an analogue technique for digital technology 577

22.3 Future Research Directions 584 22.4 Towards total memory cell error cancellation schemes 584

22.4.1 Algorithmic memory cell 585 22.4.2 S2I memory cell 586 22.3.3 Noise performance 588 22.3.4 Towards low power. 588 22.3.5 Tuning schemes 588 22.3.6 Filter building blocks 589 22.3.7 Data converters 589 22.3.8 GaAs technology 589 22.3.9 CAD, simulation and test 589

22.4 Conclusions 590 References 590

Index .. 591