suspension plasma sprayed titanium oxide and hydroxyapatite...

53
Suspension plasma sprayed titanium oxide and hydroxyapatite coatings Atelier « Procédé plasma thermique », Limoges, June 3 - 5 2009 R. Jaworski, Lech Pawlowski, C. Pierlot, S. Kozerski, F. Petit Service of Thermal Spraying at Ecole Nationale Supérieure de Chimie de Lille avenue Mendeleiev F-59652 Villeneuve d’Ascq, France Phone/Fax: (+33) 320 33 61 65 E-mail: [email protected]

Upload: others

Post on 06-Feb-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Suspension plasma sprayed titanium oxide and hydroxyapatite coatings

    Atelier « Procédé plasma thermique », Limoges, June 3 - 5 2009

    R. Jaworski, Lech Pawlowski, C. Pierlot, S. Kozerski, F. Petit

    Service of Thermal Spraying at Ecole NationaleSupérieure de Chimie de Lille

    avenue Mendeleiev

    F-59652 Villeneuve d’Ascq, France

    Phone/Fax: (+33) 320 33 61 65

    E-mail: [email protected]

  • Outline

    1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. 4RIPT

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. 4RIPT

  • Titanium oxide : physical properties and phase diagram

    TiO2 phases: rutile, anatase, brookite

  • Titanium oxide : possible application of thick TiO2 coatings

    • Rutile and anatase are diélectrics of high resistivity, �=109-1013 �.cm• Magnéli phases are semiconductors of a weak résistivity, for

    example TiO1.996 has the resistivity of �=0.464 �.cm • Reduction of TiO2 is associated with a modification of resistivity• Modification of resistivity is useful for:

    • Design of sensors of H2• Design of sensors of O2

    • Anatase is useful in photocatalysis to degrade organic pollutants• Magnéli phases can be used as conducting pathes in electron

    emitters

  • Hydroxyapatite: phase diagram, phases at spraying, properties

    CaO+TTCP

    a’-TCP + TTCP

    a-TCP+ DCP

    a-TCP+ liquid

    a’-TCP+ liquid

    TTCP +liquid

    a’TCP +liquid

    HA + a-TCP

    HA + TTCP

    1360

    1570

    a’-TCP + TTCP

    1200

    1300

    1400

    1500

    1600

    1700

    TP > 3500 K

    TP > 1843 K

    Form ation of liquid phase by incongruent

    m elting(am orphous phase on solidification)

    1843 K >TP > 1823 K

    Solid state

    Solid HA + OA + OHA

    60 50

    HA + �-TCP

    �-TCP+ DCP

    70 %CaO

    CaO+HA

    1000

    1100

    P

    Evaporation of P 2O 5 and

    formation of CaO

    Solid state transformation of HA

    into αααα −−−−ΤΤΤΤCP and TP

    Symbol Name Formula Ca/P

    TTCP Tetra calcium phosphate

    Ca4 P2O9 2

    α-TCP Tricalcium phosphate Ca3(PO4)2 1.5

    HA Hydroxyapatite Ca10(PO4)6(OH)21.67

    Constants for HA ValuesHeat of melting, kJ/mol 15.5Melting point, K 1843Heat of evaporation,kJ/mol

    458.24

    Boiling point, K 3500Molecular mass, kg 1.668x10-24

    Density, kg/m3 3156Thermal expansioncoefficient, 1/K

    13.3x10-6

  • HA for bioactive coatings

    The primary application concerns the coating onto prostheses made of bioinert materials as stainless steel, CoCrMo alloy or TiAlV alloy to insert in: • hip, knee, arm, tooth.

    About 1 million of knee and hip prostheses are implanted yearly.

    Knee

    Great market represents that of bioactive coatings. The coatings, made usually of hydroxyapatite, accelerate implantation of prosthesis in the bone.

    Principal property: dissolution in the body tested often in vitro in body simulated fluids. The rapidity of dissolution depends on the phase:

    ACP>>TTCP>a-TCP>OHAP>�-TCP>>HA

    Hip

  • •ceramics becomes slightly ductile what results from a capacity of sliding of small grains over other.

    • Its optical, catalytic and electric properties are also very different than that of ceramics having micro-

    Ceramics - ductility

    Sliding difficult Sliding easy

    Benefits of small nano/submicron crystal grains

    or millimeter crystal grains morphology.

    •Nanophased metals become stronger, what results from the, well known in metallurgy, Hall-Petch law.

    •This improved strength results from the fact that the nanophased metals are nearly dislocation-free.

    Sliding difficult Sliding easy

    Hardness test

    Moving of dislocations:analogy to a carpet on a floor

    Dislocations

    Easy to pull

    Hard to pull

  • • Possible modification of morphology of individual particles at impact due to the modification of

    Fundamental differences of using small powder particles to spray

    equilibrium between kinetics energy of particle and surface energy keeping liquid together

    • Modification of nucleation condition of liquid particles after impact with a substrate due to the decrease in latent heat of solidification

  • Motivation for the study

    Development of deposition technology for nanometric and submicrometric titanium oxide and hydroxyapatite coatings by plasma spraying in view of:in view of:

    •Reduction of thickness of resulting coating and materials saving

    •Investigation of microstructure expecting useful modifications in comparison with coarse powders sprayed coatings

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Acknowledgments6. 4RIPT

  • Technology of TiO2 fine powder suspensions preparation

    Two aqueous suspensions were prepared for spraying.

    •Suspension A was formulated with the use of rutile manufactured by Tioxide (R-TC90 ofH Ti id ) b ki di ill d

    A

    Huntsman Tioxide) by taking distilled water+4wt.% rutile+0.3wt.% dispersant. The dispersant was an aqueous solution of sodium polyacrylate (Hydropalat N, Congis).

    •A commercial powder Metco 102 was used for suspension B preparation. The powder was ball-milled in ethanol for 8 hours using zirconia balls. Then, the suspension was prepared in the same, as suspension A, way

    3 μm

    2 μm

    B

  • TiO2 fine powder characteristics

    A

    0

    5

    10

    15

    Vol

    ume

    %

    - TiO2 (rutile)

    coun

    ts (a.

    u.)

    Size distribution XRD

    B

    0,1 1 10 1000

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Vol

    ume

    [%]

    Particle size [μm]

    TiO2 Metco 102 3 hours ball-milled 8 hours ball-milled

    0,1 1 10

    Particle size [μm]

    20 30 40 50 60 700

    5

    10

    15

    20

    25

    30

    35

    40

    - TiXO

    2X-1 (Magneli-phases)

    - TiO2 (rutile)

    coun

    ts (a.

    u.)

    2Θ (°)

    20 25 30 35 40 45 50 55 60 65 70 75

    2θ (degree)

  • Technology of HA fine powder suspensions preparation

    •Commercial powder Tomita (Japan) was used for preparation of suspension HA. The powder was ball-milled using moliNEx system (Netsch, Germany) in ethanol for 8 hours using zirconia balls. The suspension was then formulated with 10 wt. % HA and �����

    Two aqueous suspensions were prepared for spraying:

    0.3 wt. % tetra-sodium diposphate. �

    •Home made HA powder was synthesized using calcium nitrate and diamonium phosphate in ammoniacal solution according to the following equation:

    6(NH4)2HPO4 + 10Ca(NO3)2 + 8NH4OH � 6H2O + 20NH4NO3 + Ca10(PO4)6(OH)2Followed by calcination at T = 1000 � C . The powder after calcination was crushedand ball milled. The particles size distribution in ethanol is monomodal and the mean diameter is about 1 μm. The suspension was formulated taking about 20 wt. % of dry powder with distilled water, ethanol or with a mixture of water with 50 wt. % ethanol.

  • HA fine powder characteristics

    5

    10

    15

    20

    Initial Tomita HA

    8 hours ball-milled

    In ethanol0,1 1 10 100

    0

    Particle size [μm]

    Commercial

    20 30 40 50 60 70 80

    2q (degree)

    Ball-milled HA

    Initial HAHA

    HA

    HA

    Ca

    O

    αa

    nd

    βT

    CP

    Inte

    nsi

    ty

    Home made

    In ethanol

  • Types of liquids’ injectors

    Nozzles

    Torch

    Nozzle

    Torch

    d

    D

  • Atomizer pneumatic nozzles including “two-fluids” nozzles (see below)

    Types of liquids’ injectors

    Torch

    Atomizer

    D

    d� Compressed airInjected liquid

  • • Aluminum/stainless steel/TiAl6V plates of size 15x15x3mm were used as the substrates;

    •They were alumina grit blasted;

    •Plasma sprayed using Praxair SG-100 torch on 5-axis ABB IRB-6 industrial robot;

    TiO2, HA, composite coatings constant spray parameters

    trajectory of one torch pass

    •Throughout all the experiments the following parameters were kept constant:

    •composition of plasma working gas: Ar + H2;•flow rates of plasma working gas: qAr= 45 slpmand qH2=5 slpm;•linear torch velocity: v=200 - 500 mm/s;•total number of passes reached with some interruptions for cooling down

  • Parameters are varying often following to design of experiments:

    • Electrical power in kW

    • Plasma working gases (Ar+H2) composition in slpm

    TiO2/HA/composite coatings variable spray parameters

    • Spray distance in cm

    • Suspension feed rate in ml/min

    • Atomizing gaz pressure in bar

    • Type of suspension feeder (pressurized, peristaltic pump)

    • Atomizer (TiO2, composite), atomizer or nozzle injector (HA).

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. 4RIPT

  • XRD - TiO2 coatings

    •Bruker set up with Cu-K� radiadion, EVA software used to phase analysis, phases from the database JCPDS

    AARR

    AAAcor II

    IC

    ρρ

    ρ

    /8/13

    /8

    +=

    • Anatase content in TiO2 coatings anatase was found following the expression

  • XRD - HAcoatings

    The percentage of the other phases with regard to hydroxyapatite were determined from the reference intensity ratio (RIR), the method described by Prevey.

    • For comparison a method recommended by the French norm was used

  • Microstructure investigations tools

    •SEM (Uni Lille, Uni Wroclaw)

    •Electron microprobe analyses were made with the use of CAMECA SX100 set up and the profiles of Ca and P were made with TAP and PET crystals. Th fil d ith t f 1 (ENSCL)The profiles were made with a step of 1 μm (ENSCL)

    •Micro-Raman spectroscopic investigations The spot of the Raman analysis was equal approximately to 1 �m (Uni Lille).

    •XPS analysis was made using VG ESCALAB model 220 XL set up. The spectrometer was equipped with Mg K� source of energy 1253.6 eV (Uni Lille).

    •TEM study a Hitachi H8100 microscope at 200 kV was used (Uni Chemnitz)

  • Electron emission home made set up (Uni Wroclaw)

    ballastresistor

    vacuum chamber

    high voltagesupply

    VA

    1:10

    00 p

    robe

    sample

    anode

    neonlamp

    vacuum chamber

  • Mechanical properties by scratch test

    Lc

    Pyramid of diamondScratch hardness following to ASTM G171-03 norm

    •The scratch test was realized with a icroCombiTester of CSM Instrumentsequipped with a Rockwell diamond indenter of having a tip radius of 0.2 mm at Belgium Ceramic Research Centrum in Mons

    Lc

    Coating

    Substrate

    2

    8

    d

    LHS cL

    ⋅=

    π

    d

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Acknowledgments6. 4RIPT

  • TiO2 particles morphologies after impact

    Big particles at impact : flower Fine TiO2 particles at impact : pancake

    20 �m

    5 �m5 �m

  • SEM (secondary electrons) investigations: optimization of spray parameters of TiO2

    Torch

    Parameters optimizedP – arc powerVr – torch linear velocityn – number of cyclesD, d – distances

    P = 30 kW, V = 500mm/s n = 30, D^d = 18^14 mm

    d

    DAtomizer

    P = 35 kW, V = 500mm/s n = 30, D^d = 18^14 mm

    P = 35 kW, V = 100mm/s n = 20, D^d = 18^14 mm

    P = 40 kW, V = 125mm/s n = 10, D^d = 18^11 mm

    P = 40 kW, V = 125mm/s n = 10, D^d = 15^11 mm

  • 10 μm10 μm

    SEM and TEM sections of TiO2

    Porous structure

    Fig. 23

    Columnar grain growth

  • Regression analysis of influence of spray parameters on phases content for TiO2

    Variable Spray process parameter Low level

    Central point

    High level

    Xi=-1 Xi=0 Xi=+1

    X1 Suspension feed rate, 20 30 40

    Variables

    ml/min

    X2 Spray distance, cm 8 10 12

    X3 Power input to plasma, kW 38 39 40

    AARR

    AAAcor II

    IC

    ρρ

    ρ

    /8/13

    /8

    +=

    Response Y1: intensity of anatase peaks 21 3.25.12 XY +=

    Anatase content depends mainly on spray distance

  • Distribution of phases in TiO2 coatings

    10 μm

    24000

    26000

    28000

    30000

    32000

    R+A

    R+A(b)

    MicroRaman microscopy

    0 200 400 600 800 1000 12000

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    24000

    Y A

    xis

    Titl

    e

    X Axis Title

    R

    R

    R+A R+A

    A

    (c)

    (a)

  • XPS investigations: qualitative chemical analysis of TiO2

    Element Orbit %atom

    O(O Ti) 1s 34.44

    Element Orbit %atom.

    Initial fine powder Coating

    O(O-Ti) 1s 34.44

    O(O-Al, OH) 1s 13.64

    O(O²) 1s 4.92

    Ti 2p 15.3

    C 1s 12.2

    Al 2p 10.2

    Na 1s 7.1

    Si 2p 2.3

    O(O-Ti) 1s 21.81

    O(O-Al, OH) 1s 28.54

    O(O²) 1s 3.74

    Ti 2p 5.71

    C 1s 23.38

    Al 2p 16.82

    Conclusion: processing (suspension preparation/spraying) introduces Na and Si impurities

  • A few passes of HA suspension plasma sprayed over substrate (nozzle injector)

    Big rests of liquid droplet Fine sintered particles

    Zoom

  • Deduction of suspensions droplets behavior in plasma jet

    Evaporation of liquid Sintering of some fine solids

    Melting offine solidsand

    Evaporationfrom melt

    ImpactAerodynamic breadown

    agglomerates

  • XRD investigations of HA coatings : phases analysis (atomizer injector)

  • Variable Spray processparameter

    Low levelXi=-1

    Central pointXi=0

    High levelXi=+1

    X1 Power input to plasma, kW

    35 37.5 40

    X2 Atomizing gas 0.4 0.5 0.6

    Regression analysis of influence of spray parameters on phases content for HA (atomizer injector)

    2 g gpressure, bar

    X3 Spray distance, cm

    8 10 12

    X4 Suspension flow rate, mL/min

    20 30 40

    Statistical analysis shows that only

    β-TCP depends on spray parameters

    Y=59.5+13X1-13 X1 X4 X1=1 and X4=-1 results in more β-TCP

    Response Y: intensity of phases of HA decomposition

    peaks :TTCP, α,β-TCP, CaO

  • SEM (B.S.E.) and electron microprobe analysis of HA coatings (nozzle injector)

    �������

    ���� �

    ����

    1 2

    1.4

    1.6

    1.8

    2

    2.2

    Ca/

    P

    HA

    TTCP

    TCP

    Profile 1Two zones microstructure

    �������

    �����

    1

    1.2

    0 10 20 30 40 50 60 70

    Length of profle, μm

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    0 20 40 60

    Profile 2TTCP

    HA

    TCP

  • Initial fine powder

    Sample Peak %atom Ca/P ratio

    Initial HAp powder

    O 1s 54.6 1.38

    Sample Peak %atom Ca/P ratio

    D1

    O 1s 50.9

    Ca 2p 19 7 1 33

    XPS investigations: qualitative chemical analysis of HA (atomizer injector)

    Coating

    Ca 2p 22.0

    P 2p 15.9

    C 1s 7.5

    8h ball-milled HAp

    O 1s 52.1

    Ca 2p 20.9 1.37

    P 2p 15.2

    C 1s 11.8

    Ca 2p 19.7 1.33

    P 2p 14.8

    C 1s 12.5

    Na 2p 2.1

    D2

    O 1s 52.9

    Ca 2p 20.5 1.35

    P 2p 15.2

    C 1s 9.2

    Na 2p 2.2

    Conclusion : processing (suspension preparation/spraying) introduces Na impurities

  • SEM/EMPA investigations: chemical gradient coatings Ti/TiO2/HA

    EMPA (wavelength dispersion spectroscopy)

    Ti P Ca

    SEM (secondary electrons)

  • Electron emission from TiO2 coatings (atomizer injector)

    UAC = 1200 V UAC = 2000 V

    UAC =3000 V UAC = 4000 V

  • Mechansm of electron emission from TiO2 coatings

    Model of emissi

    Conducting path(Magnéli phases)

    Equipotentials

    weakly conducting medium (rutile and anatase)

    rutile anatase Magneli phases

  • Possible application of suspension sprayed TiO2 coatings : electron emitters

    kr

    h

    EE

    ~

    0

    β

    β ⋅=vacuum

    insulator ���

    ���

    �=

    EB

    EAJ

    2

    32

    expφ

    φ

    Forbes model of electron emissions

    SPS coating ~ 2-10 �m

    Conducting grains and substrates

    Electric field is amplified on surface irregularities (left), surface inclusions (middle) or below surface inclusions

    (right).

    SPS coating

    APS coating

    Substrate

    ~ 50 �m 2 10 �m

    ����������������������� ������� ������������������ ��

    ���������������

    �������� ���������������

  • Variable, Spray process parameter Low level Central point High level

    Xi=-1 Xi=0 Xi=+1

    X1 Pressure in atomizer of suspension, bar 0.4 0.5 0.6

    X2 Suspension feed rate, ml/min 20 30 40

    Regression analysis of influence of spray parameters on breakdown voltage, Y1, and loss factor, Y2, of HA coatings (atomizer injector)

    2 p

    X3 Spray distance, cm 8 10 12

    X4 Power input to plasma, kW 35 37.5 40

    Breakdown voltage

    431 1.526.75412 XXY +−=

    Loss factor

    41412 2.0262.0258.0411.0 XXXXY +−−=

  • on

    dep

    th, μ

    m

    co

    effi

    cien

    t

    mal

    forc

    e, N

    fri

    ctio

    n, N Critical load, N

    Mechanical properties thin of suspension sprayed TiO2 coating by scratch test

    Pen

    etra

    tio

    Fri

    ctio

    n

    No

    rm

    Fo

    rce

    of

    Load, N

    Scratch length, mm

  • Regression analysis of influence of spray parameters on critical load, Y1, of TiO2 coating (atomizer injector)

    Variable Spray process parameter Low level Central point High level

    X 1 X 0 X 1Xi=-1 Xi=0 Xi=+1X1 Suspension feed rate, ml/min 20 30 40X2 Spray distance, cm 8 10 12X3 Power input to plasma, kW 38 39 40

    Y1=12.5-1.5 X2

  • Scratch test results of suspension plasma sprayed HA coating (nozzle injector)

    •Lc=10.5 1.2 N for coating on Al substrate 2.5

    3

    Pa

    • Lc=12.3 0.6 N for the Ti substrate

    0

    0.5

    1

    1.5

    2

    0 2 4 6 8 10

    Scra

    tch

    hard

    ness

    , GP

    Applied load, N

    Ti Al

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. 4RIPT

  • • Suspension plasma sprayed TiO2 coatings:

    � Crystallization partly as anatase useful feature for photocatalysis

    � Possible application as electron emitters

    Conclusions

    � Possible application as electron emitters

    • Suspension plasma sprayed HA coatings:

    � Similar crystalization phases to coarse powder sprayed coatings

    � Two zones microstructure to be further tested

    • Development of adhesion test method for intermediate thickness suspension thermal sprayed coatings (normalization)

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. 4RIPT

  • 1. Introduction2. Technology of suspension thermal

    spraying3. Methods of coatings g

    characterizations4. Properties of coatings related to

    spray parameters5. Conclusions6. Bibliography ENSCL7. Acknowledgments8. 4RIPT

  • ����������������������������������������

    �������� ��������� �� ��� ������ ������� ������� ���� ������������ ����� ����������

    � ������ �� �������

    ������� ��� �

    ����� ��� ������������� �������� �� ����������� ��������� ������ ���� ������ � ���� ���

    ��

    ������ ����� �������������

    ������������� ��������������� ������� ������� ��� � ����� ����� �� �

    ������ ���� ��� �� �����

    !������� ��� ��������� �������� ��� ����� ��������� �������� �������� �������� ���"����� ��������

    #����#����

    $$���� %&�'%&�'

    ((���� )*'))*')

    �����+�������������,������������

    -������.����������� ��������/

    ,�,�

    ����/00���-�����1

    �����-���0

    2���

    +,, 3 4�5�������������64768�9�

    �������:���;�

    ����������������������������������������������

    ���������

    ��������������������������������������

    ������������������������������������

    ������������������������������������

    ,�����������������������������������������������������

    !����������������!�����������������"�"

    #�� �+�#���)��'�� �?((� (*8�((�7��76#�����.�."�@��

    1��������

    ���" ��##� � �=!'�� �?((� *$A�($�$7�B(���"�������@�����

    �&��=��&��=�*884*884**�� ���$���$����C������C������

    ��������������

    '����������

    ����������������D����E����)���������'����������������� ����%�����>���

    ����������

    ������� /� ���F 0�-���F��������� / -���F 0�����F ������������ /��!-��F 0�"���F#$��"����� / ����F

    ��

    ������������������

  • %�.�������������%�.�������������&���'�����&���'�����������

    �� ���+�� ���+

    ������� ������ �����

    +

    ����� � ���� � �� �������� ��� ����

    ���� � �������

    ������� �� ������ �� ��� �

    ��� �

    ����� �/

    (�) �� ��"�� ��� �������� ��

    ��������������������������

    *�+#���,�� ��#�

    �-�C����������#���������=�������-�D�������#�)�����.�-�G�E������������/

    ,H+I%�%���� %�����%��������J�'���������-�)����0����0�����/

    !++,H+�����- ��#�

    �-�)��')�D2%��>%)�77(B-�0��������#�)�����-�D�������#������-��0�����/

    I+1���2�- ��#�

    �-�&�������#��2���#�������'�����������#������������������������������&035�-�D�������#�)���������4������/

    H��,+%%�2�*�- ��#�

    �-�D����K�5������2��5������.�DL2'�-�%���D�������#�5�������4������/

    ���������,����������������,�������*2�,�+ M���- ��#/ D��/ �# 9���������-

    0����/

    ,H�,� 1�- ��#/ D��/ �# ����- 0����/

    I+1�� 2�- ��#/ D��/ �# )�������- 4�����/

    I+�#�,+%N M�,�- ��#/ D��/ �# 5�������-)���/

    #+%1�� ������� )��E����:&�,E��� �� ���,�- ������

    � ##+I# !�- $�!� "������ D�%� �!'�������,�- (������

    -*+&��'< M�- $�!� .����� D�%� �!'�������,�- $������

  • ��������������������

    !�H���!��+���!�H���!��+���

    ���

    ���1 ��� �/��

    � ������ ������� ��������� ���� ���������� ��� � ������� �� ������

    ����

    �� � �������� � ��"� �����

    ������ ��� ������ ��� ����� ��� ���.�

    �#�+�� �

    �� � �N��

    '��� ������ C�� 2�� 2��

    ����� >���

    ���� >���

    �! '���

    "�#�$%���$

    &''����

    ���/� �������� � �(������� )(��� (�)����� ��� )������� *+���)��������� )������� *,�)����� )������

    ,��� �� �����/&!������� ��� $-��' ��� ���� �$' �����������$����$� �� ��� ��$#����. '�� �����$��'������ /�� !� ��!����' $ ���'��� ��������� �������� �=�������� '�� �������$� ���� ������ �� ��� ��$������� ��� �� ��$������ �����$# �$������ ����� ���� $����$#�����$����$ �� � ��$������$�

    #�����'�� $�� %&�' �$� (�� )*') ��� �� ���� ��#�����

    $ ��� "�$����$�� "�$��� �2�""� �� ���

    !��� ��� ��� ���� ����� � !����� ��������� ���� � ��Q� ��� � ����.��

    ������� ��� �� �� ������ �� ��� �� ����� � �������� �� �� ������������������� �������� ��� �� ���� ��������.�" � ���� �������� �� � � + ����������� � ���� �� ������ �������

    ����� �� ������� �������� ��� ������������������� � ������� ��� +������ ��� ���

    �����

    ��� � ��"� �� ������. � ������

    � ��� �����!�� ������� �

    ���������� ��������� ���� � ��������� ������

    ������ ���� ��"� �� �

    ���� � ������ ���������� ������� �� ��� ����� � �������

    ������� � ��� ������� � ������� ��������������� .�" �� ��� �����

    ��� "##$ ������ �

    ���� ��� % & ��� &�&

    ������� �� ��� ��� ���� �� ���� �������� ��� ����� � ��� ������� �� ����������. ���������� �� ������� ������� ����������� ���� � ������ ��� �����

    � ��� �����"� ���� ��� �Q����� ����������� ��� ���� ��� ��� �� ��� ���� �������� � ���������� ����� � �������� �� � � � �� � �� �� �

    ''���� ����(�)����(�)���� �"������#�##���"������#�##��11 "##$"##$

    I����������������I����������������

    ���� "���

    "��$���

    '��� *�+�

    =���

    ������ ��" �� � ��� ���.��� ��/,��� ��$������$������ �����$����$=+����$&$��$��$ �� ��-� ����

    ��� ��� � ����� �/

    #�� ��.�."���� .������� ���/������ �� ,����� �� #����

    0R������ ,1 2 0����� 3

    4$ 344 5��������� �6+

    ! ,���� 1 !+.,�

    ���� �7)) )"#�))�3-�34 !��� �7)) )"#�))�3-�34

    =��� 8 #�����.�."�@��

    1��������

    $ ��� "�$����$�� "�$��� �2�""� �� ���D$������ �� )��$�� �$� '���$���#� �� 9����D)'9��

    �������$ �� �������$�� �$� ��#������$

    � ���������� )-)-�� "##$"##$

    ���������� ,�������/�+�#���