stability of pah clusters

54
Stability of PAH clusters Sébastien Zamith, Ming-Chao Ji, Jean-Marc L’Hermite, Christine Joblin, Léo Dontot, Mathias Rapacioli and Fernand Spiegelman

Upload: others

Post on 09-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stability of PAH clusters

Stability of PAH clusters

Sébastien Zamith, Ming-Chao Ji, Jean-Marc L’Hermite, Christine Joblin,

Léo Dontot, Mathias Rapacioli and Fernand Spiegelman

Page 2: Stability of PAH clusters

Zhen et al. ApJ 863 128 (2018)

Stability of PAH clusters

PAH clusters as models for carboneous nanograins.

Destruction of such nanograins: route for formation of large complex PAHs?

Delaunay et al, J. Phys. Chem. Lett., 6, 1536-1542 (2015)

Are these PAH clusters stable?

Page 3: Stability of PAH clusters

Stability of PAH clusters

• Cationic pyrene clusters studied using

• Mass spectrometry techniques and

• Phase Space Theory to deduce

• Dissociation energies

n(Py)

1016HC:Pyrene

PAH = polyaromatic hydrocarbons

Page 4: Stability of PAH clusters

• Experimental setup

• Experimental results

• Phase Space Theory

• Dissociation energies

• Conclusion

Outline

Page 5: Stability of PAH clusters

Can also be used to observe the spontaneous thermal evaporation of

mass selected clusters.

Experimental setup

Experimental setup initially designed to perform collisions between

mass selected clusters and atomic or molecular vapor (attachment cross-

section, fragmentation cross-section, nanocalorimetry, …).

Page 6: Stability of PAH clusters

Experimental setup

• Gaz aggregation source

Page 7: Stability of PAH clusters

0 50 100 150 200 250 300 350 400

161.0 161.5 162.0 162.5 163.0 163.50

2000

4000

6000

8000

n=5

n=4

n=3

Time of flight (µs)

n=2

(Py)+

n

-2 uma

-1 uma

+2 uma

Inte

nsity (

arb

. u

.)

Time of flight (µs)

+1 uma

Cluster production

Small pure Pyrene clusters

Page 8: Stability of PAH clusters

Cluster production

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

mass (amu)

0 10 20 30 40

n

Small pure Pyrene clusters

Large pure pyrene clusters

Page 9: Stability of PAH clusters

Small pure Pyrene clusters

Large pure pyrene clusters

Mixed water-pyrene clusters

Cluster production

0 400 800 1200 1600 2000

m/z

(H2O)mH+

(Py)n+

(Py)n(H2O)m+

Page 10: Stability of PAH clusters

Experimental setup

n(Py)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

mass (amu)

0 10 20 30 40

n

• Gaz aggregation source, n = 1-40

Page 11: Stability of PAH clusters

• Thermalization : T = 25-300 K

Experimental setup

Large number of collisions with the helium buffer gaz Canonical distribution of internal energies Ei

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

mass (amu)

0 10 20 30 40

n

Page 12: Stability of PAH clusters

• Transfer to the high vacuum part

Experimental setup

Internal energies Ei, microcanonical evolution 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

mass (amu)

0 10 20 30 40

n

Page 13: Stability of PAH clusters

n

• Mass selection and slowing down

Experimental setup

Internal energies Ei, microcanonical evolution

Page 14: Stability of PAH clusters

Experimental setup

n

Internal energies Ei, microcanonical evolution

• Free flight

Page 15: Stability of PAH clusters

• Products analyzed by TOF mass spectrometry

Experimental setup

156 158 160 162 164 166 168 170

T = 166 K

T = 121 K

ToF (µs)

T = 217 K

156 158 160 162 164 166 168 170

ToF (µs)

156 158 160 162 164 166 168 170

ToF (µs)

Page 16: Stability of PAH clusters

156 158 160 162 164 166 168 170

T = 166 K

T = 121 K

ToF (µs)

T = 217 K

156 158 160 162 164 166 168 170

ToF (µs)

156 158 160 162 164 166 168 170

ToF (µs)

eV22@(Py) : Example 11

Ratio I/I0

I = parent peak intensity I0 = sum of parent + fragment peaks

Experimental results

Evolution of the mass spectra of mass selected clusters with initial temperature. As the temperature is raised, appearance of fragments due to evaporation

Page 17: Stability of PAH clusters

156 158 160 162 164 166 168 170

T = 166 K

T = 121 K

ToF (µs)

T = 217 K

156 158 160 162 164 166 168 170

ToF (µs)

156 158 160 162 164 166 168 170

ToF (µs)

eV22@(Py) : Example 11

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/I 0

T (K)

Experimental results

Evolution of the mass spectra of mass selected clusters with initial temperature. As the temperature is raised, appearance of fragments due to evaporation

I = I0e-W(T)t ?

Page 18: Stability of PAH clusters

thermalization

t1 t2 t3 t4

Experimental results

At the thermalizer exit:

- Cluster size distribution

- Canonical distribution of internal energies Ei

After the propagation time t1, the population of size n will have contributions

from the evaporation of larger sizes:

ii EnEn ,,1

Page 19: Stability of PAH clusters

thermalization

t1 t2 t3 t4

Experimental results

At the thermalizer exit:

- Cluster size distribution

- Canonical distribution of internal energies Ei

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Eint

(eV)

After t1, population of size n might no longer be at

temperature T

new, non-canonical, distribution of internal energies

Page 20: Stability of PAH clusters

thermalization

t1 t2 t3 t4

Experimental results

At the thermalizer exit:

- Cluster size distribution

- Canonical distribution of internal energies Ei

Depending on where evaporation takes place, it might not be observed.

Experimental results reproduced by simulating the propagation in the

setup with evaporation probabilities evaluated at each time step

Model for evaporation rates

Page 21: Stability of PAH clusters

Ingredients of the Phase Space Theory:

- initial internal energy of the parent Ei

- density of states of the parent N(E)

- total number of states of the fragments G(E,J)

- conservation of angular momentum

Approximations:

- only vibrational harmonic frequencies considered

- all species considered as spherical tops

- ion-polar interaction between the neutral fragment and the charged cluster

Energy partition among the fragments

Harmonic frequencies and moments of inertia from DFTB calculation (cf Rapacioli

et al.)

PST evaporation rates

)()12(

),(),(

i

f

iENJh

JEGJEW

)1(0

JJBE

DEEE

rot

rotif

Page 22: Stability of PAH clusters

Ingredients of the Phase Space Theory:

- initial internal energy of the parent Ei

- density of states of the parent N(E)

- total number of states of the fragments G(E,J)

- conservation of angular momentum

Approximations:

- only vibrational harmonic frequencies considered

- all species considered as spherical tops

- ion-polar interaction between the neutral fragment and the charged cluster

Energy partition among the fragments

Harmonic frequencies and moments of inertia from DFTB calculation (cf Rapacioli

et al.)

PST evaporation rates

)()12(

),(),(

i

f

iENJh

JEGJEW

)1(0

JJBE

DEEE

rot

rotif

Only one adjustable parameter

Page 23: Stability of PAH clusters

PST evaporation rates

Generate initial population of size n (cascaded evaporations use of

dissociation energies of sizes n+1, n+2, …) (t1)

Calculate clusters trajectories with evaporation probabilities (t2, t3, t4)

Generate TOF mass spectra vs initial temperature

Compare with experiment, adjust dissociation energy

t1 t2 t3 t4

Page 24: Stability of PAH clusters

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 25

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 40

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 35

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 30

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 20

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 19

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 18

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 17

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 16

Page 25: Stability of PAH clusters

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 15

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 14

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 13

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 12

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 11

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 10

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 9

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 8

25 50 75 100 125 150 175 200 225 250 275 3000.75

0.80

0.85

0.90

0.95

1.00

I/Io

T (K)

n = 7

Page 26: Stability of PAH clusters

25 50 75 100 125 150 175 200 225 250 275 3000.95

0.96

0.97

0.98

0.99

1.00

I/Io

T (K)

n = 6

25 50 75 100 125 150 175 200 225 250 275 3000.95

0.96

0.97

0.98

0.99

1.00

I/Io

T (K)

n = 5

25 50 75 100 125 150 175 200 225 250 275 3000.95

0.96

0.97

0.98

0.99

1.00

I/Io

T (K)

n = 4

25 50 75 100 125 150 175 200 225 250 275 3000.95

0.96

0.97

0.98

0.99

1.00

I/Io

T (K)

n = 3

25 50 75 100 125 150 175 200 225 250 275 3000.95

0.96

0.97

0.98

0.99

1.00

I/Io

T (K)

n = 2

Page 27: Stability of PAH clusters

Black squares: values deduced from the reproduction of the

experimental curves using PST

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Dissociation energies

Page 28: Stability of PAH clusters

Black squares: values deduced from the reproduction of the

experimental curves using PST

Only lower limit for n=2

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Dissociation energies

Page 29: Stability of PAH clusters

Black squares: values deduced from the reproduction of the

experimental curves using PST

Only lower limit for n=2

Dissociation energies

Bulk: DHvap ~ 0.93 eV @ 298 K

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Page 30: Stability of PAH clusters

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Black squares: values deduced from the reproduction of the

experimental curves using PST

Only lower limit for n=2

Dissociation energies

Bulk: DHvap ~ 0.93 eV @ 298 K

Neutral like evolution

Page 31: Stability of PAH clusters

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Black squares: values deduced from the reproduction of the

experimental curves using PST

Only lower limit for n=2

Dissociation energies

Neutral like evolution

Dilution of

charge resonance stabilization

as size increases

Bulk: DHvap ~ 0.93 eV @ 298 K

Page 32: Stability of PAH clusters

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Black squares: values deduced from the reproduction of the

experimental curves using PST

Only lower limit for n=2

Red triangles: DFTB calculation (cf Rapacioli et al.)

Dissociation energies

Neutral like evolution

Dilution of

charge resonance stabilization

as size increases

Bulk: DHvap ~ 0.93 eV @ 298 K

Page 33: Stability of PAH clusters

• We have observed the thermal evaporation of pyrene clusters, n=2-40

• Experimental results successfully reproduced using PST

• Dissociation energies deduced, in good agreement with theory and bulk value

Conclusion

Page 34: Stability of PAH clusters

• Apart from the dissociation energy, no free parameters for the PST.

Too good to be true?

• At least, effective evaporation rates are obtained

Conclusion

Page 35: Stability of PAH clusters

0 1 2 3 4 5 6 70

20

40

60

80

100

Cro

ss s

ection

2)

Ecm

(eV)

(Py)+

2 - 1 Py

Conclusion

• Preliminary data on CID cross-section measurements: dissociation energies compare well with evaporation data.

Page 36: Stability of PAH clusters

Laser vaporization cluster source

Molecular aggregation source

Quadrupole Trap T ~4 - 300 K

ICR cell ~10 K, ~10-11 mbar

(PAH)n+

(H2O)mH+

Mixed PAH-H2O

aggregates

PIRENEA 2 Setup

Page 37: Stability of PAH clusters
Page 38: Stability of PAH clusters

thermalization

t1 t2 t3 t4

Experimental results

For a size n @ 22 eV, we have: t1 = D/v0 = 20 µs @ 200 K

t2 = 24n µs

t3 = 25 n µs

t4 = 25 n µs

D = distance between the exit of the thermalizer and the first Wiley-McLaren = 8 cm

v0 = thermal velocity of helium

Similar time spent in the different parts of the setup

Similar evaporation probability at each experimental stage

Page 39: Stability of PAH clusters

0 200 400 600 800 1000 1200 1400

(H2O)

n(Py)

+

2

(H2O)

nPy

+

masse (uma)

Py+

(H2O)

nH

+ Small pure Pyrene clusters.

Large pure pyrene clusters

Mixed water-pyrene clusters

Cluster production

Page 40: Stability of PAH clusters

The version of PST used here contains the constraint that total angular momentum is conserved, and that in the reverse process the associating product must overcome the maximum of the centrifugal barrier which defines the position of the transition state (loose transition state). The interaction between the products is represented by an effective central potential of the form:

PST evaporation rates

r

L

r

CrVeff

2)(

22

4

4

Page 41: Stability of PAH clusters

Ingredients of the Phase Space Theory:

- initial internal energy of the parent Ei

- density of states of the parent N(E)

- total number of states of the fragments G(E,J)

- conservation of angular momentum

PST evaporation rates

rrelv

f

relrxrrelvfv

rrelvrrelv dEdEdEJEG

JEENEEEENENdEdEdEEEEP

),(

),,()()(),,(

21

From the PST we also get the probability of energy partition among the

fragments:

)()12(

),(),(

i

f

iENJh

JEGJEW

)1(0

JJBE

DEEE

rot

rotif

Page 42: Stability of PAH clusters

Black squares: values deduced from the reproduction of the

experimental curves using PST

Red triangles: DFTB calculation (cf Rapacioli et al.)

Bulk: DH0vap ~ 0.93 eV @ 298 K

0 5 10 15 20 25 30 35 40 45 500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D

n (

eV)

Size n

Dissociation energies

Neutral like evolution

Dilution of

charge resonance stabilization

as size increases

Bulk: DH0vap ~ 0.93 eV @ 298 K

Page 43: Stability of PAH clusters

25303540

0.000

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.0

2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

i, o

rig

ina

l si

ze n

+i

Cluster size n

T = 250 K

Initial size contributions

Page 44: Stability of PAH clusters

Simulated TOF mass spectra

156 158 160 162 164 166 168 170

TOF (µs)

Page 45: Stability of PAH clusters

Monte Carlo integration

P(E,T) = probability to have an internal energy E in the parent

cluster.

Number occupation ni of each vibration randomly picked up so that

on average we have:

i Tk

i

B

i

e

E

1

P(J,T) = probability to have the total angular momentum J in the parent

cluster.

Tk

BJ

B

BeJTk

BJP

2

24)(

High temperature or low B limit used

To compare with the experiment we need to integrate over distributions:

J

dETJPTEP ),(),(

Page 46: Stability of PAH clusters

Vibrational harmonic frequencies

Vibrational harmonic frequencies calculated for neutral pyrene and

cationic clusters of sizes 1, 2, 3 and 4.

To extrapolate for larger sizes n:

Intramolecular frequencies = cation + (n-1) neutrals

Intermolecular frequencies = linear interpolation between 13 cm-1

and the lowest cationic frequency.

harmonic frequencies from DFTB for the tetramer

-10 0 10 20 30 40 50 60 70 80

0

500

1000

1500

2000

2500

3000

frequency (

cm

-1)

mode

Page 47: Stability of PAH clusters

Using these, the heat capacity of bulk pyrene can be reproduced:

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 3000

5

10

15

20

25

30

C (

kB/m

ole

cu

le)

T (K)

Bulk (Exp)

Py+

500:

frequency factor = 0.96

frequency factor = 1.00

Vibrational harmonic frequencies

Page 48: Stability of PAH clusters

Moments of inertia and rotational constants

For the PST calculation the rotational constant B is needed. I

B2

2

The moment of inertia are taken as the geometrical average of the 3

main moments: 3321 IIII

Squares: DFTB calculation

Line : 3/5

1)()( nPyIPyI n

0 5 10 15 20 25 30 35 40

0

10000

20000

30000

40000

mom

ent in

ert

ie (

um

a.Å

2)

n5/3

G

Linear Fit G

Equation y = a + b*x

Weight No Weighting

Residual Sum of Squares

841076.94201

Pearson's r 0.9992

Adj. R-Squar 0.99807

Value Standard Err

GIntercept -386.6998 264.06523

Slope 1035.0141 18.5796

Page 49: Stability of PAH clusters

If clusters evaporate after the second Wiley

McLaren acceleration and before the reflectron (t4),

they end up in the “secondary” fragment peak.

If they evaporate after the reflectron they can not be

distinguished from the parent peak.

156 158 160 162 164 166 168 170

T = 166 K

T = 121 K

ToF (µs)

T = 217 K

156 158 160 162 164 166 168 170

ToF (µs)

156 158 160 162 164 166 168 170

ToF (µs)

Page 50: Stability of PAH clusters

Clusters production

Clusters are produced in a gas aggregation source. Ionization by either : - a discharge electrode, I 100µA, V 1 kV - an electron gun, I = 2.5 A, V = -100 V

Page 51: Stability of PAH clusters

Experimental results

0 1 2 3 4 5 6 70

20

40

60

80

100

Cro

ss s

ection (

Å2)

Ecm

(eV)

(Py)+

2 - 1 Py

Page 52: Stability of PAH clusters

Experimental results

0 1 2 3 4 5 6 70

20

40

60

80

100

Cro

ss s

ection (

Å2)

Ecm

(eV)

Tth = 25K, Ar

(Py)+

3 - 1 Py

(Py)+

3 - 2 Py

Page 53: Stability of PAH clusters

Experimental results

0 1 2 3 4 5 6 70

50

100

(Py+

4) - 1 Py

(Py)+

4 - 2 Py

(Py)+

4 - 3 Py

Cro

ss s

ection (

Å2)

Ecm

(eV)

Page 54: Stability of PAH clusters

Blue stars: theory

Red squares: values deduced from the reproduction of the

experimental curves using PST (CID).

0 1 2 3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1.0

1.1

Dn (

eV

)

Taille