solar energy conversion: making a dye-â€sensitized tio2 solar cell

13
Solar Energy Conversion: Making a DyeSensitized TiO 2 Solar Cell For technical assistance please contact a scientist at Caltech at [email protected] High School Lesson Plan 1 Objectives: Students will be able to: Explain how a dyesensitized solar cell (DSSC) works Prepare a DSSC using crushed blackberries, to serve as the source of sensitizer molecules Explain why sensitizer molecules are required for successful operation of the DSSC Explain why high surface area TiO 2 is vital to the successful operation of the DSSC Explain why I /I 3 electrolyte is needed Explain why DSSCs require certain colors of light in order to generate the most power California Content Standards: Physics: Conservation of Energy and Momentum: 2.h. Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs. Waves: 4.e. Students know radio waves, light, and Xrays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approximately 3 x 10 8 m/s (186,000 miles / second). Electric and Magnetic Phenomena: 5.a. Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors. Chemistry: Conservation of Energy and Stoichiometry: 2.a. Students know how to describe chemical reactions by writing balanced equations. Acids and Bases: 5.a. Students know acids are hydrogeniondonating and bases are hydrogenionaccepting substances. Solutions: 6.a. Students know the definitions of solute and solvent. Biology/Life Sciences: Cell biology: 1.f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide. Earth Sciences: Energy in the Earth System: 4.a. Students know the relative amount of incoming solar energy compared with the Earth’s internal energy and the energy used by society. 4.b. Students know the fate of incoming solar radiation in terms of reflections, absorption, and photosynthesis.

Upload: others

Post on 09-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

1  

Objectives:    Students  will  be  able  to:  • Explain  how  a  dye-­‐sensitized  solar  cell  (DSSC)  works  • Prepare  a  DSSC  using  crushed  blackberries,  to  serve  as  the  source  of  sensitizer  molecules  • Explain  why  sensitizer  molecules  are  required  for  successful  operation  of  the  DSSC  • Explain  why  high  surface  area  TiO2  is  vital  to  the  successful  operation  of  the  DSSC  • Explain  why  I-­‐/I3-­‐  electrolyte  is  needed  • Explain  why  DSSCs  require  certain  colors  of  light  in  order  to  generate  the  most  power  

 California  Content  Standards:  Physics:     Conservation  of  Energy  and  Momentum:  

2.h.  Students  know  how  to  solve  problems  involving  conservation  of  energy  in  simple  systems  with  various  sources  of  potential  energy,  such  as  capacitors  and  springs.    

  Waves:  4.e.   Students   know   radio   waves,   light,   and   X-­‐rays   are   different   wavelength   bands   in   the  spectrum   of   electromagnetic   waves   whose   speed   in   a   vacuum   is   approximately   3   x   108   m/s  (186,000  miles  /  second).    

  Electric  and  Magnetic  Phenomena:  5.a.  Students  know  how  to  predict   the  voltage  or  current   in  simple  direct  current   (DC)  electric  circuits  constructed  from  batteries,  wires,  resistors,  and  capacitors.  

 Chemistry:     Conservation  of  Energy  and  Stoichiometry:  

2.a.  Students  know  how  to  describe  chemical  reactions  by  writing  balanced  equations.       Acids  and  Bases:  

5.a.   Students   know   acids   are   hydrogen-­‐ion-­‐donating   and   bases   are   hydrogen-­‐ion-­‐accepting  substances.    

  Solutions:  6.a.  Students  know  the  definitions  of  solute  and  solvent.  

 Biology/Life  Sciences:     Cell  biology:  

1.f.  Students  know  usable  energy  is  captured  from  sunlight  by  chloroplasts  and  is  stored  through  the  synthesis  of  sugar  from  carbon  dioxide.  

 Earth  Sciences:     Energy  in  the  Earth  System:  

4.a.   Students   know   the   relative   amount   of   incoming   solar   energy   compared   with   the   Earth’s  internal  energy  and  the  energy  used  by  society.  4.b.  Students  know  the  fate  of  incoming  solar  radiation  in  terms  of  reflections,  absorption,  and  photosynthesis.  

Page 2: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

2  

  Biogeochemical  Cycles:  7.a.  Students  know  the  carbon  cycle  of  photosynthesis  and  respiration  and  the  nitrogen  cycle.  

Investigation  &  Experimentation:    

1.a.  Students  will  select  and  use  appropriate  tools  and  technology  to  perform  tests,  collect  data,  analyze  relationships,  and  display  data.  1.l.   Students   will   analyze   situations   and   solve   problems   that   require   combining   and   applying  concepts  from  more  than  one  area  of  science.  

   Before  you  begin,  you  may  want  to  watch  the  DSSC  videos  to  prepare  the  lab:  http://www.youtube.com/caltech    and  click  on  “Resources  for  Teachers”  on  the  right.    

Page 3: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

3  

Background:  A   solar   cell   is   a   light   sensitive   material   that   can   collect   solar   energy   and   convert   it   into  electrical/chemical  energy   (see  Physics   lesson).     In   this   lab  you  will   create  a   solar   cell   that  mimics   the  architecture  used  in  natural  photosynthesis.    The  solar  cell  that  you  will  create  will  be  made  of  readily  available   materials:   TiO2   paste   (essentially   white   pigment,   that   absorbs   little   light),   anthocyanin   dye  (from  blackberry  juice),  electrolyte  (I2  –  iodine  and  KI  –  potassium  iodide  solution),  and  conductive  glass  (it  is  transparent,  but  acts  like  a  metal).    A  solar  cell  works  similarly  to  a  leaf  on  a  plant.    The  chlorophyll  dye  (chlorophyll  a)  in  a  leaf  (see  Biology  lesson)  absorbs  solar  energy  and  converts  it  into  chemical  energy  (sugar);  a  solar  cell  takes  solar  energy  and   converts   it   into   electrical   energy,   but   creates   no   net   chemicals   and   thus   is   termed   regenerative.    Leaves  store  net  chemical  energy  and  are  termed  photosynthetic.  

   

               

   

 Blackberries  contain  a  strongly   light-­‐absorbing  dye  molecule  called  anthocyanin,  which  occurs   in  many  types   of   fruits   and   berries.     It   is   the   compound   that   gives   blackberries,   raspberries,   blueberries,   and  pomegranates  their  color.    These  dyes  can  be  extracted  and  used   in  a  dye-­‐sensitized  TiO2  solar  cell   to  absorb  light  and  convert  the  light’s  energy  into  electricity.                                          Brian   O’Regan   and  Michael   Grätzel   at   the   École   Polytechnique   Fédérale   De   Lausanne   in   Switzerland  made  the  first  efficient  DSSC.    The  approach  used  in  DSSCs  has  many  advantages  over  other  solar  energy  conversion   technologies   because   of   its   simple   device   construction   and   inexpensive   TiO2   particles   and  dyes   that   can   be   fine-­‐tuned   to   increase   their   light-­‐absorbing   properties.     Although   there   is   still  much  room   for   improvement,   state-­‐of-­‐the-­‐art   DSSCs   converts   solar   energy   into   electricity   with   efficiencies  over   10%,   rivaling   some   silicon-­‐based   technologies   (commercial   silicon   is   typically   around   10   –   15%).    These  devices  use  specially  prepared  dyes  that  absorb  a  great  deal  more  sunlight  than  the  anthocyanin  dyes  extracted  from  the  blackberries.  

!"#

!"#$%&'(#)!&&#*+,%-%.%&-'/0#1'-!(/'&2#

!"#

!"#

$34&/5,-#

Chlorophyll a

N

N N

N

O

O

HO

O

HO

Mg

Anthocyanin (Blackberry Dye)

OHO

OH

OH

O

OH

Chemical Formula: C15H10O6

Page 4: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

4  

For   this   laboratory,   the   students   will   make   a   DSSC   using   dyes   extracted   from   a   blackberry.     The  blackberry  will  be  crushed,  thus  releasing   its  dyes.    Then,  electrodes  that  contain  a  thin   layer  of  white  TiO2  paste  will  be  soaked  in  the  crushed  blackberries  so  that  the  electrodes  become  colored  and  absorb  visible  light.    The   electrodes   are   made   using   a   paste   of   extremely   small   particles   of   TiO2   (nanoparticles)   that   are  spread  out  in  a  thin  layer  on  transparent  conductive  glass  electrodes.    The  thickness  of  the  TiO2  thin  film  ends  up  being  roughly  the  thickness  of  a  human  hair.    The  particles  provide  a  huge  surface  area  for  the  dye  molecules  to  bind,  and  they  provide  an  electron  pathway  for  the  generated  electrical  current  to  be  collected.    The  dyed  electrode  goes  from  white  to  dark  purple  when  dyed.    A  significant  portion  of  light  is  absorbed  by  the  dye,  even  though  only  a  single  layer  of  dye  molecules  is  attached  to  the  surface.    The  final  steps  include  drying  the  electrode  and  then  assembling  the  device  with  an  additional  electrode  to  form  a  “sandwich”  solar  cell.    The  device  has  two  electrodes,  the  dyed  TiO2  photoelectrode  (left  side  in   the   picture   below   –   F:SnO2   (FTO))   and   a   counter   electrode.     An   electrolyte   solution   is   introduced  between  the  two  electrodes  and  is  composed  of  potassium  iodide  and  iodine/triiodide.    After   a   dye  molecule   absorbs   a   photon   it   takes   less   than   1   picosecond   (10−12   s)   to   split   this   excited  electron  into  an  electron  accommodated  by  TiO2  and  a  positive  vacancy  on  the  dye,  termed  a  dye  cation.    Subsequently,  the  dye  cation  relays  its  positive  charge  to  an  iodide  ion  in  solution  and  restores  the  dye  to   its  original  state.    Current   is  generated  when  the  electrons   in  TiO2  move  through  an  external  circuit  and  recombine  with  the  oxidized  iodide  species  at  the  counter  electrode.    The  picture  below  shows  the  energetics   of   a   finished   blackberry-­‐sensitized   TiO2   solar   cell   and   its   operation   under   sunlight  illumination.    This  process  is  more  specifically  described  by  the  following  equations:       On  the  TiO2  electrode  (anode):   TiO2–Dye  +  photon  →  TiO2–Dye*  →  e-­‐  in  TiO2  and  Dye+;     In  the  electrolyte  solution:   Dye+  +  2  I-­‐  →  {possible  intermediate}  →  Dye  +  I2-­‐;    2  I2-­‐  →  I-­‐  +  I3-­‐;     On  the  graphite-­‐coated  counter  electrode  (cathode):   I3-­‐  +  2  e-­‐  →  3I-­‐;       where  Dye*  is  the  common  notation  used  when  an  electron  has  absorbed  a  photon  

     The   solar   power   conversion   efficiency   of   these   types   of   berry-­‐sensitized   TiO2   DSSCs   can   reach   ~0.7%  with   demonstration   cells   attaining   1   –   2  mA/cm2  of   photocurrent   and   0.5  V  when  using   an  overhead  projector   as   a   simulated   sun   illumination   source.     Students   typically   observe   photovoltages  well   over  400  mV  and  good  photovoltaic  cell  stability.    Attaching  many  cells  electrically   in  series  results   in   larger  voltages  as  they  are  additive;  attaching  them  in  parallel  results  in  larger  photocurrents.    

Page 3 of 4

Applying the film

9. Using a spatula, apply 2-3 drops of the titania paste to the top border of the square of conducting glass. Using a stirring rod, quickly sweep the titania paste from top to bottom, coating the glass square. If the film does not stick, just sweep upwards and back down again.

10. Wait approximately two minutes for the film to dry. Carefully remove the Scotch tape border, paying attention to not splatter any of the wet paste.

11. Carefully place the piece of glass on top of your preheated hotplate. Keep it there for 20 minutes (goto step 12 while you wait), and then turn off the heat so the film can gradually cool.

Preparing the dye

12. While the film is heating/cooling, begin to prepare the dye. Obtain one (1) blackberry and crush it in a beaker using the Teflon spatula. Add 3-4 drops of deionized water and continue to crush the blackberries, obtaining red juice. You can filter this with a Büchner funnel or cheesecloth, but it is not necessary.

13. Remove the cooled piece of glass (your anode) and place enough blackberry dye on the titania film to completely cover it. Keep it there for 10 minutes. In the meantime, prepare the counter electrode (Step 15).

14. After 10 minutes, gently rinse the blackberry dye from the electrode using deionized water followed by isopropanol (this is essential). Gently blot the electrode dry using a Kimwipe.

Preparing the Counter electrode 15. Using a pencil, “color in” the conductive side of the second piece of glass. It will take on a

slight gray color. The graphite will function as a catalyst for the redox electrolyte. Check that this is done on the conductive side!

Assembling the cell

16. Place the titania/dye electrode face up on the lab bench. Place the counter electrode on top of it, offsetting it so that the film is still covered by the counter electrode, but there is about

!” of the glass exposed for connections on both electrodes. See figure 4.

17. Clamp the two electrodes together using two binder clips. They should be placed on the sides adjacent to the electrodes.

18. Add the redox electrolyte by placing 1 drop of the electrolyte solution on one edge of the electrode sandwich. Slowly open and close the binder clips, one at a time, until the brown electrolyte solution is drawn into the sandwich, making the titania film look wet.

19. You now have a working PV cell!

Figure 4. Assembled PV cell with binder clips and electrodes.

Page 5: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

5  

STUDENT  LABORATORY  PROCEDURE  (Day  1)    Materials  and  Supplies:  Per  class  

• 1   bottle   of   Nanoparticle   TiO2   Paste*   (this   contains   a   mix   of   TiO2   nanoparticles,   water,   and  surfactant)  

• 2  Multimeters  with  probes*  • ≥  1  Hot  plate  

 Per  group  of  2  students  

• 2  Transparent  Conductive  Glass  Plates   (FTO  Electrodes)*   (one  electrode   is  2.5  cm   long   x  2  cm  wide  and  the  second  is  2.5  cm  long  x  1  cm  wide)  

• 1  roll  of  3MTM  Scotch®  tape#  • 1  Pipette*  • ≥  1  Paste  spreader  (this  can  be  any  rigid  straight  edge,  i.e.  glass  stirring  rod,  glass  slide,  pipette)  • 1  Tweezer*  or  tong  • 1  Graphite  pencil*  

 *Provided  in  the  Juice  from  Juice  kit  #If  need  be,  fewer  can  be  used  as  groups  can  share    Preparing  TiO2  Electrode  (See  http://www.youtube.com/watch?v=RYO09FdCN5I  for  a  demonstration):    1. Split  the  students  up  into  groups  of  two,  for  up  to  30  students  in  total.    2. Take   the   larger,  2.5   cm  x  2   cm,   conductive  glass  electrode  and  ensure   that   the   conductive   side   is  

facing  up;  do  this  by  using   the  multimeter  probes   to  measure  resistance  across   two  points  on  the  glass   surface.     Share   the   multimeters   between   groups.     Ensure   that   the   multimeter   is   set   to  resistance  mode   (Ω)   on   any   setting.   (Carefully   handle   the   sides   of   the   glass   electrodes   and   avoid  touching   the   faces   of   the   electrodes.)     If   no   resistance   is   measured   turn   the   electrode   over   and  measure  again.    Typical  resistances  should  be  around  10  –  30  ohms.  

 3. Tape   the  electrode  down   to   a   clean,   sturdy   surface   so   that   the   tape  masks  off   ~1.5   cm   (bigger   is  

better)  down  along  the  length  of  the  electrode  (Figure  1a).    This  will  create  a  lane  down  the  center  of  the  electrode  where  the  TiO2  paste  will  be  spread.  

 4. Using   a  pipette,   drip   a   few   (~10  –   20)   drops  of   the   TiO2   solution  halfway  down   the   center   of   the  

plate  and  immediately  squeegee  the  solution  down  and  up  once  with  the  paste  spreader.    The  tape  should  act  a  bumper,  allowing   for  an  even  coating  of   the  center   lane   (Figure  1b,  c).     If  a  TiO2   film  does  not  coat  the  entire  exposed  surface  (Figure  1c),  quickly  drip  a  few  more  drops  of  TiO2  on  the  exposed  areas  and  re-­‐squeegee  the  entire  film.    Allow  the  electrodes  to  dry,  undisturbed,  for  a  few  minutes.    During  this  time,  rinse  the  pipette  with  water  to  remove  the  leftover  TiO2  paste.  

 

Page 6: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

6  

             Figure   1   (a,   b,   c).     Steps   for   depositing   TiO2   paste   and   “doctor   blading.”     The  middle   lane   should   be  almost  as  wide  as  you  can  make  it.    Only  put  paste  near  one  edge  and  pressing  with  little  force,  squeegee  down  and  back  up  each  once;  you  should  not  need  to  repeat  the  process.      4. Remove  the  3MTM  Scotch®  tape  from  the  dried  TiO2  electrode.    Carefully  wipe  any  remaining  white  

paste  off  the  bottom  of  the  glass  using  a  moist  paper  towel.    5. Note  about  hot  plates:  You  can  place  the  electrodes  onto  a  cold  hot  plate  so  the  students  do  not  burn  

their  fingers.    Then  turn  the  hot  plate  on.    It  will  take  extra  time  to  heat  up.    The  teacher  can  monitor  the  hot  plate,  and  turn  it  off  at  the  end  of  the  day.    Then,  the  hot  plate  will  be  cool  to  the  touch  for  the  next  class  with  no  fear  of  students  burning  their  fingers.  

 Using  tweezers  or  tongs,  carefully  place  the  TiO2  electrode  onto  a  hot  plate.    The  electrode  is  ready,  i.e.  fully  sintered,  after   it  darkens   in  color  and  then  turns  bright  white  (~30  min).    Use  tweezers  or  tongs   to   remove   the   electrode   from   the   hot   plate,   handling   it   only   on   the   edges.     Allow   the  electrode  to  cool  for  15  minutes  by  setting  it  on  a  designated  tray.    (Caution:  Cooling  too  quickly  can  cause  the  glass  electrode  to  fracture.)  

 Classroom  management  tip:  Make  a  diagram  of  the  layout  of  students’  electrodes,  and  place  them  on  the  hot  plate  in  that  order.    That  way,  students  will  know  they  are  working  with  the  electrode  they  made.  

 6. Take  the  other  smaller,  2.5  cm  x  1  cm,  piece  of  conductive  glass—this  will  be  the  counter  electrode.    

Use  a  multimeter  to  find  the  conductive  side  (see  step  1).    Use  a  golf  pencil  to  coat  the  entire  surface  with  graphite  (pencil  lead).  

 

Page 7: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

7  

STUDENT  LABORATORY  PROCEDURE  (Day  2)  Materials  and  Supplies:    Per  class        1  bottle  of  I-­‐/I3-­‐  Electrolyte  Solution*        2  Multimeters  with  probes*        4  Alligator  clips*        1  Overhead  projector    For  extension  (optional)        1  Commercial  silicon  solar  cell*        1  roll  of  Black  electrical  tape        2  Multimeters  with  probes*        15  Alligator  clips*        1  Light-­‐emitting  diode  (LED)*        1  Aqueous  KCl  solution*  

Per  group  of  2  students        1  TiO2  electrode  (made  Day  1)        1  Graphite-­‐coated  Counter  electrode  (made  Day  1)        1   Plastic   baggie   or   large   centrifuge   tube   (used   to  

crush  the  berries)#        1  –  2  blackberries#        2  binder  clips*        1  pipette*        1  squirt  bottle  of  isopropanol  (IPA)  or  ethanol#        1  squirt  bottle  of  distilled  water#        1  Tweezer*  or  tong        1  Waste  beaker#  

 *Provided  in  the  Juice  from  Juice  kit  #Fewer  can  be  used  as  groups  can  share    Dyeing  the  TiO2  Electrode  and  Assembling  the  DSSC:    1. Prepare  the  dye  by  thoroughly  crushing  1  –  2  blackberries   in  a  baggie  by  squeezing  the  outside  of  

the  baggie  or  in  a  centrifuge  tube  with  a  straight  utensil.        

2. Take  the  cooled  electrode  and  place  it  into  the  blackberry  solution  in  the  baggie  or  centrifuge  tube  for  ~5  minutes.   (Use  tweezers  or  tongs  to  handle  the  electrode.)    Ensure  that  the  electrode   is   fully  submerged  (add  more  water  if  necessary).    The  white  TiO2  paste  should  turn  purple  throughout  so  there  is  no  white  left.    Continue  with  the  next  step  while  you  wait.  

 3. Using  a  beaker   to  catch  your  waste   fluid,   rinse  the  dyed  TiO2  electrode  with  the  bottle  of  distilled  

water.    Then  thoroughly  rinse  again  with  isopropanol  or  ethanol  into  the  same  waste  beaker.    Allow  the  dyed  electrode  to  dry  for  5  –  10  minutes.  

 4. Assemble   the   dyed   TiO2   electrode   (larger  

dyed  electrode)  with  the  counter  electrode  (the  one  with  graphite)  using  2  binder  clips  to   form   a   sandwich   thin-­‐film   cell.     Follow  the  picture  to  the  right,  and  make  sure  the  graphite   coating   is   touching   the   purple  dyed   TiO2   surface   and   avoid   overlapping  the   bare   glass   electrodes   (the   sides).     The  thinner   graphite-­‐coated   electrode   should  line   up   with   the   TiO2   line   but   is   offset   so  that   an   alligator   clip   can   be   attached   to  each  individual  electrode.      

 

Page 8: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

8  

5. Using  a  pipette,  fill  the  space  between  the  two  electrodes  with  the  iodide/triiodide  (I-­‐/I3-­‐)  electrolyte  solution.     Allow   the   solution   to   wick   up   between   the   electrodes   by   capillary   action.     Alternate  removing/reattaching  each  binder  clip,  one  at  a   time,   to   facilitate  this  action.    The  space  between  the  glass  electrodes  should  turn  slightly  yellow  and  be  entirely  wetted  by  the  solution.  

 6. To   test   your   solar   cell,   clip   the   positive   terminus   (red)   of   the   multimeter   probe   to   the   graphite  

electrode  and  negative  terminus  (black)  to  the  TiO2  electrode  using  alligator  clips.    

Measure  the  voltage  and  current  obtained  in  room  light,  under  the  overhead  projector  and  outside  in   the   sunshine  with   the   dye-­‐sensitized   electrode   facing   the   light   source.     (What   happens   to   the  parameters   if  you  flip  the  DSSC  over  so  that  the   light   is  going  through  the  counter  electrode  first?)    Record   your   results   in   the   data   table.     To   measure   voltage,   switch   the   indicator   to   DCV   (Direct  Current  Voltage)  (upper  left  on  the  Cen-­‐Tech  Multimeter)  to  the  lowest  setting,  200m.  If  it  reads  a  1,  the  voltage  is  too  large  for  that  setting  and  you  must  switch  to  the  next  level,  2000m,  by  turning  it  clockwise.  Continue  this  process  until  you  observe  a  reading  other  than  1.  

 To  measure  current,  switch  the  indicator  to  DCA  (upper  right  on  the  Cen-­‐Tech  Multimeter)  to  the  lowest  setting,  200µ.  Again,  if  you  see  1  on  the  display,  switch  the  indicator  clockwise  to  the  next  setting  and  repeat  until  a  meaningful  value  is  obtained.  

 Do  not  forget  to  record  the  weather  conditions  (sunny,  cloudy,  etc.).    Calculate  the  power  output  of  your  DSSC  as  the  product  of  the  current  and  voltage  for  each  condition  investigated.    

 

 

Data  Table    (include  units  for  voltage  and  current)        

Room  light   Overhead  projector  light   Outside  light  Weather  conditions:  

   

DSSC  Voltage  

     

DSSC  Current  

     

DSSC  Power  

     

Silicon  Cell  Voltage  

     

Silicon  Cell  Current  

     

Silicon  Cell  Power  

     

Page 9: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

9  

Extensions  and  Wrap-­‐Up  of  Lessons:  Comparison  to  the  Silicon  Solar  Cell:  

 7. Measure   the   exposed   area   of   your   DSSC.     Using   black   electrical   tape,   mask   off   an   area   on   the  

commercial  silicon  solar  cell  that  is  approximately  the  same  area  as  your  DSSC.    

8. Measure   the  voltage  and   current  obtained   for   the   silicon   solar   cell   (see  Physics   lesson)  under   the  light   conditions   used   for   the  DSSC.     For   the  measurement   on   the  overhead  projector,   attach   two  binder  clips  to  the  silicon  cell  in  the  same  way  as  the  DSSC,  so  that  the  silicon  cell  is  parallel  to  the  projector  lens  and  at  a  similar  height  as  the  DSSC.    Record  your  results  in  the  data  table.    Compare  these  results  to  those  you  obtained  for  your  DSSC.    What  happens  when  you  insert  a  colored  filter  between  the  DSSC  and  the  light?    Does  the  same  thing  happen  when  you  use  the  silicon  solar  cell?    Does  the  color  matter?    Why?  

 Using  the  Power  from  the  DSSCs  to  Power  a  Light-­‐Emitting  Diode  (LED):  

 9. Choose   several   DSSCs   with   the   best   performance   and   connect   them   back-­‐to-­‐back   in   series   using  

alligator  clips.    The  connection  between  every  pair  of  cells  must  be  from  a  dyed  TiO2  electrode  on  one  to  a  graphite  counter  electrode  on  the  other.    The  final  ends  of  the  connected  cells  should  be  hooked  up  to  the  LED.    How  many  of  them  are  needed  to  power  the  LED?    Does  it  matter  which  lead  from  the  serially  connected  DSSCs  is  connected  to  which  lead  of  the  LED?    (The  answer  is  yes  so  try  both  combinations.)  

 10. Measure  the  current  and  voltage  of  the  serially  connected  DSSCs.    Based  on  the  current,  how  many  

silicon  solar  cells  would  need  to  be  connected  in  series  to   light  the  LED?    Try   it  out.    Based  on  the  voltage,  how  many  silicon  solar  cells  would  need  to  be  connected  in  series  to  light  the  LED?  

 11. Connect  another  set  of  DSSCs   in  series  and  attach  this  circuit   in  parallel  to  the  original  one.    What  

happens  to  the  current,  voltage,  and  LED  intensity  in  this  case?    

Storing  the  Power  from  the  DSSCs  in  Chemical  Bonds  as  a  Fuel:    12. As  we  all  know,  the  sun  sets  locally  every  night.    Thus,  it  would  be  ideal  if  a  DSSC  could  truly  mimic  

natural   photosynthesis   and   store   the   power   it   generates   into   chemical   bonds   as   a   useful   fuel.    Hydrogen  (H2)   is  a  clean  fuel  that  can  be  burned  just   like  gasoline.    Using  the  DSSCs  and/or  silicon  solar  cell  connected  in  series,  attach  the  final  leads  of  each  to  the  graphite  in  a  golf  pencil.    Here,  the  order  does  not  matter.    Your  instructor  may  have  to  shave  off  some  of  the  excess  wood  around  the  graphite  with  a  blade  so  that  there  is  enough  protruding  for  you  to  connect  the  alligator  clip  leads.  

 13. Immerse   the   graphite   pencils   in   a   small   beaker   of   KCl   solution   (from   the   chemistry   lesson),   and  

illuminate  the  cells  using  the  overhead  projector.    Look  closely  for  bubbles  forming  on  either  of  the  ends  of  graphite  immersed  in  the  solution.    Be  patient;  it  may  take  a  few  minutes.  

 14. If   this   does   not   work,   replace   the   graphite   pencil   that   is   directly   connected   to   the   final   DSSC’s  

graphite  counter  electrode  with  a  small  piece  of  copper  foil.    Immerse  the  foil  and  the  graphite  from  the  other  electrode  into  the  same  solution  and  repeat  the  illumination  experiment.    Again,  look  for  bubbles  on  the  graphite  end  of  the  pencil   immersed  in  the  solution.    Be  patient;   it  may  take  a  few  minutes.    If  this  does  not  work,  try  attaching  more  DSSCs  or  silicon  solar  cells  in  series.  

Page 10: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

10  

Checking  for  Understanding:  Analysis  Questions  to  Ask  Your  Students.    1. Where  does  the  power  come  from  when  we  are  using  the  solar  cell?    (What  causes  the  electrons  in  

the  dye  to  move?)            2. What  side  of  the  glass  electrode  did  you  apply  the  TiO2  layer?  (Conductive  or  nonconductive?)  Why?            3. When  the  dye  loses  an  electron,  is  the  dye  oxidized  or  reduced?          4. Graphite  is  made  up  of  layers  of  carbon.    What  is  our  source  for  graphite  when  we  coat  our  counter-­‐

electrode   with   it?     What   do   you   think   will   happen   to   the   performance   of   the   DSSC   if   it   was  illuminated  through  this  electrode  first?  

         5. The  TiO2  paste  is  white  and  used  in  many  commercial  products:  white  paint,  toothpaste,  powdered  

doughnuts,  etc.    Why  do  we  need  to  use  the  dark-­‐colored  dyes  from  blackberries  to  make  our  solar  cell  work?    (Hint:  Think  about  how  light  is  reflected  or  absorbed.)  

       6. A  leaf  and  a  solar  cell  both  convert  solar  energy  into  another  type  of  energy.  What  type  does  a  solar  

cell  make,  and  what  type  does  a  leaf  make?            7. The  TiO2  paste  which  is  used  for  this  lab  to  create  thin-­‐film  dye-­‐sensitized  solar  cells  is  made  up  of  

tiny  (nanometer  sized  –  25  nm)  TiO2  particles.    One  nanometer  (nm)  is  one-­‐billionth  of  a  meter,  or  0.00000001m;  what  is  this  number  in  scientific  notation?  

   

Page 11: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

11  

8. Why  is  it  important  to  use  nanometer-­‐sized  particles  for  the  film?    Use  the  words  “surface  area”  in  your  explanation  and  include  an  illustration.  

                 9. Draw   in   the   direction   in   which   the   electrons   move   through   the   dye-­‐sensitized   solar   cell   in   the  

potential  energy  diagram  below.    The  photo-­‐excitation  yellow  arrow   is   included   (light  exciting   the  dye).  

   

     An   additional   suggestion:   ask   your   students   to   draw   a   picture   of   the   electrodes   and   explain   what  happened  during  each  step   in   the  process   in   their  own  words.    What  happened  when  the  LED  was   lit?    What  happened  when  the  H2  fuel  was  produced?    

Page 12: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

12  

Inquiry  Extensions:    The   solar   cells   that   have   been   constructed   require   a   dye   (the   anthocyanin   dye   from   the   blackberry  juice),   TiO2   nanoparticles   (white   paste),   and   electrolyte   (I2   and   KI,   iodine   and   potassium   iodide)   to  function.    What  are   the  effects  of   removing  one  or  more  of   these   components   from   the   cell?  Explain  why  each  component  is  crucial  for  the  operation  of  a  dye-­‐sensitized  solar  cell.  

-­‐ The  electrolyte  (I2  iodine  and  KI  potassium  iodide)  -­‐ TiO2  nanoparticles  -­‐ Anthocyanin  dye  (from  the  blackberry  juice)  

 The  anthocyanin  dye  from  the  blackberry  juice  absorbs  green  light.    What  would  happen  if  you  filter  the  light   that   the   solar   cell   is  exposed   to  using  a  green   filter?    Red   filter?    Blue   filter?    Compare   this  with  what  happens  when  you  do  the  same  thing  for  the  silicon  solar  cell?    What   is   the   effect   of   using   dyes   from   other   fruits/vegetables,   i.e.   raspberries,   pomegranates,  strawberries,  beets,  or  the  chlorophyll  obtained  in  the  chemistry  laboratory?    Note  the  color  of  the  dyed  electrode  and  the  solar  cell  performance   (current  and  voltage  obtained).    What  are   the  active  dyes   in  these  fruits/vegetables?    Explain  the  similarities  (via  electronic  flux  arrows)  between  the  two  energy  level  diagrams  shown  below  with  the  galvanic  cell  on  the  left  (from  the  chemistry  lesson)  and  the  dye-­‐sensitized  solar  cell  diagram  on  the  right.    What  does  the  large,  dark-­‐blue  double  arrow  represent  in  each  diagram?    How  is  it  created  in  each  cell?      

 

Page 13: Solar Energy Conversion: Making a Dye-â€Sensitized TiO2 Solar Cell

Solar  Energy  Conversion:  Making  a  Dye-­‐Sensitized  TiO2  Solar  Cell      

For  technical  assistance  please  contact  a  scientist  at  Caltech  at  [email protected]  High  School  Lesson  Plan  

13  

References  

Cherapy,  N.J.,  Smestad,  G.P.,  Grätzel,  M.  &  Zhang,  J.Z.   (1997).  "Ultrafast  Electron  Injection:   Implication  for  a  Photoelectrochemical  Cell  Utilizing  an  Anthocyanin  Dye-­‐Sensitized  TiO2  Nanocrystalline  Electrode,"  Journal  of  Physical  Chemistry  B,  Vol.  101,  No.  45,  Pgs.  9342  –  9351,  Nov.  6,  1997.  

Smestad,  G.P.  (2009).  "Optics  of  Solar  Cells,"  93rd  Annual  Meeting,  Frontiers  in  Optics  (FiO)  2009/Laser  Science   (LS),   25th   Conference,   Optics   for   Renewable   Energy,   Optical   Soc.   of   America,   San   Jose,   CA,  October  11  –  15,  2009.  

Smestad,  G.P.   (1998).  "Education  and  solar  conversion:  Demonstrating  electron  transfer",  Solar  Energy  Materials  and  Solar  Cells,  Vol.  55,  Pgs.  157  –  178,  1998.  

Smestad,  G.P.  &  Grätzel,  M.   (1998).   "Demonstrating  Electron  Transfer  and  Nanotechnology:  A  Natural  Dye-­‐Sensitized   Nanocrystalline   Energy   Converter,"   Journal   of   Chemical   Education,   Vol.   75,   Pgs.   752   –  756,  June  1998.  

Sol   Ideas   Technology   Development   (2009).   Components   of   the   Solar   Cell   Procedure.     Retrieved   from  http://www.solideas.com/solrcell/kitcomp.html.