sliding mode control

56
Sliding Mode Control with Industrial Applications Wu-Chung Su, Ph. D. Department of Electrical Engineering National Chung Hsing University,Taiwan, R. O. C. Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey, U. S. A. PRINCETON/CENTRAL JERSEY SECTION OF IEEE – CIRCUITS AND SYSTEMS 2008/11/17 1 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

Upload: kadagalas

Post on 04-Jul-2015

209 views

Category:

Documents


9 download

TRANSCRIPT

PRINCETON/CENTRAL JERSEY SECTION OF IEEE CIRCUITS AND SYSTEMS

Sliding Mode Control with Industrial ApplicationsWu-Chung Su, Ph. D.Department of Electrical Engineering National Chung Hsing University,Taiwan, R. O. C. Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey, U. S. A.Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

1

PreludeA Control Engineer as an Archer

to drive the state to the target.

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2

The Old Oil-PeddlerOuyang Show(1007~1072A.D.) http://baike.baidu.com/ 2008/11/17

Princeton/Central Jersey Section of IEEE- Circuits and Systems Chapter Meeting

3

Sliding Mode: an illustration

to fill oil into a bottle through a funnel2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 4

A funnel-like domain x1 = x2 System: x2 = 2 x1 3 x2 + u Target: ( x1 , x2 ) = (0, 0)Funnel: x2 = x1 New target: s = x1 + x2 = 02008/11/17

x2

x1 s=05

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

A Physical ExampleCoulomb Frictionm dv = K sgn(v) + f a dt f a : applied force

For example, K = 3, f a = 2 dv = 3 2 < 0 v dt dv v < 0 m = 3 2 > 0 v dt v >0m

http://www.physics4kids.com

sliding mode: v 0 (if f a < K ).Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

6

Contents (1/2)Introduction to Sliding Mode Variable Structure Systems Invariance Condition (Matching Condition)

Variable Structure Systems (VSS) Design Sliding Surface Design Discontinuous Control

Discrete-Time Sliding Mode O(T ) v.s. O(T 2 ) Boundary Layer Switching v.s. Continuous Control2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 7

Contents (2/2)Minimum-Time Torque Control (SRM) Temperature Control (Plastic Extrusion P.) Rod-less Pneumatic Cylinder Servo Wireless Network Power Control Singular Perturbations Distributed Parameter SystemsPrinceton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

8

A funnel-like domain (cont.)disturbance x1 = x2 System: x2 x2 = 2 x1 3 x2 + u + f (t ) Target: ( x1 , x2 ) = (0, 0) Funnel: x2 = x1 New target: s = x1 + x2 = 02008/11/17

x1 s=09

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

Parameter x1 = x2 variations System: x2 = 2 x1 3 x2 + u + (1 x1 + 2 x2 ) x2 Target: ( x1 , x2 ) = (0, 0) Funnel: x2 = x1 New target: s = x1 + x2 = 02008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

A funnel-like domain (cont.)

x1 s=010

Introduction to Sliding mode - Variable Structure Systems x1 = x2 System : x2 = ax2 bu(K. D.Young, 1978)

Switching line : s = cx1 + x2 = 0 (Sliding Surface) x1 , if x1s > 0 (region I) Control : u = x1 , if x1s < 0 (rigion II)2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 11

Introduction to Sliding mode - Variable Structure Systems1 0 Structure I : x = x b a s 2 as + b = 0 : spiral out 0 1 Structure II : x = x b a s 2 as b = 0 : saddle point

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

12

Introduction to Sliding mode - Invariance ConditionQ: Can the control law possibly reject the disturbance out of the system?

0 2 2 1 1 u + 1 f (t ) x = Ax + 2 1 3 0 2 2 = Ax + 1 u1 + 1 u2 + 1 f (t ) 3 2 1 2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 13

Introduction to Sliding mode - Invariance Condition 0 2 Controlsubspace: span 1 , 1 2 1 2 Disturbancesubspace: span 1 3 the disturbance subspace.2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 14

*Thedisturbancecanberejectedbythecontrollawif (andonlyif)the control subspace covers

Introduction to Sliding mode - Invariance ConditionInthisexample,2 0 2 1 = 2 1 + 1 3 2 1 u1 = v1 2 f (t ) u2 = v2 f (t )

.

d (t ) Ifisknown,thenthecontrollaw

Willleadto0 2 0 2 2 0 2 x = Ax + 1 v1 + 1 v2 + ( 2 1 1 ) f (t ) + 1 f (t ) = Ax + 1 1 v 2 1 2 1 3 2 1 2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 15

Introduction to Sliding mode - Invariance Condition(Drazenovic, 1969): The system with disturbance is invariant off (t ) in

x = Ax + Bu + Ef (t )sliding modes0

rank [ B | E ] = rank [ B ] .

iff

In the previous example,0 2 rank 1 1 2 1 2 0 2 1 = rank 1 1 = 2. 2 1 3 2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 16

A funnel-like domain (revisit)disturbance x1 = x2 System: x2 x2 = 2 x1 3 x2 + u + f (t ) Target: ( x1 , x2 ) = (0, 0) Funnel: x2 = x1 New target: s = x1 + x2 = 02008/11/17

x1 s=017

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

Parameter x1 = x2 variations System: x2 = 2 x1 3 x2 + u + (1 x1 + 2 x2 ) x2 Target: ( x1 , x2 ) = (0, 0) Funnel: x2 = x1 New target: s = x1 + x2 = 02008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

A funnel-like domain (revisit)

x1 s=018

VSS Design x1 = x2 System : x2 = ax2 bu(K. D.Young, 1978)

Switching line : s = cx1 + x2 = 0 (Sliding Surface) x1 , if x1s > 0 (region I) Control : u = x1 , if x1s < 0 (rigion II)2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 19

VSS DesignExistence of sliding mode i. Reaching condition (sufficient, global)s < sgn( s), > 0

ii. Sliding condition (sufficient, local)x(0)s 0

lim s < 0, +u+

s 0

lim s > 0

Sliding Surface: s = 0

u

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

20

VSS DesignFinite time reaching: s < sgn( s), > 0Lyapunov functionV = s2 dV = 2 ss = 2 s < 0 dt s( x) 0

Reaching time

T 0 satisfied if f (t ) < f max .2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 23

VSS DesignTwo steps in VSS design1. 2.

x = f ( x, u, t ) s( x ) = 0

Choose sliding surface Design discontinuous control to render sliding mode f ( x, u + , t ) = f + , s > 0 x= f ( x, u , t ) = f , s < 0 2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 24

VSS Design - Sliding Surfacex = A x + B u + D f (t )

Eigenspace Approach v.s. Lyapunov ApproachNonsingular transformation Canonical form x1 A11 x = A 2 21

Stabilizing feedback Lyapunov functionPAs + AsT P = Q x = A x B K x + D f (t )

0( n m )m x1 TB = , Tx = x B2 2A12 x1 0 0 + u + f (t ) A22 x2 B2 D2 I mm ] Tx

Sliding surface

x2 = Kx1 , or s( x ) = [ K

Sliding surface2008/11/17

1 T V ( x ) = x Px 2s ( x ) = BT Px25

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

VSS Design - Discontinuous Controlx = A x + B u + D f (t ) slid in g su rfa ce: s ( x ) = C x = 0 s = C A x + C B u + C D f (t )

Signum function(Single-input case)u = (CB) 1 CAx (CB) 1 ( + d max ) sgn( s )

v.s. Unit Control(Multi-input case)u = (CB) 1 CAx (CB) 1 (d max + ) 2008/11/17

s s26

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

Discrete-Time Sliding ModeContinuous-timex = Ax + Bu + Df (t ) Sliding surface: s (t ) = Cx (t ) = 0

Sampled-dataxk +1 = xk + uk + d k Sliding surface: sk = Cxk = 0AT T 0 ( k +1)T

= e , = e A d B,T

dk =

kT

e A(t ) Df ( )d = e A Df ((k + 1)T )d 02008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 27

Discrete-Time Sliding Mode = e A d B, d k = e A Df ((k + 1)T )d T

xk +1 = xk + uk + d kT 0

Issues on disturbance rejection: 1. Matching condition fails d k range() However, d k = f (kT ) + O(T 2 ) 2. Non-causal disturbances However, d k = d k 1 + O(T 2 )d k 1 = xk xk 1 uk 1

0

Ultimate achievable accuracy:O(T 2 )2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 28

Discrete-Time Sliding ModeQuasi-sliding mode sk = O(T ), s (t ) = O(T )Discontinuous control

sk = 0, s (t ) = O(T 2 ) Discrete-time sliding modeContinuous control

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

29

Discrete-Time Sliding ModeUkins discrete-time equivalent control (Continuous control law)sk +1 = C xk + C uk + Cd k = 0eq k 1

u = (C ) C (xk + d k )

Discrete-time O(T 2 ) sliding mode control (Modification of ukeq )uk = (C ) 1 C (xk + d k 1 ) sk +1 = C ( d k d k 1 ) = O (T 2 )2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 30

Contents (1/2)Introduction to Sliding Mode Variable Structure Systems Invariance Condition (Matching Condition)

Variable Structure Systems (VSS) Design Sliding Surface Design Discontinuous Control

Discrete-Time Sliding Mode O(T ) v.s. O(T 2 ) Boundary Layer Switching v.s. Continuous Control2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 31

Contents (2/2)Minimum-Time Torque Control (SRM) Temperature Control (Plastic Extrusion P.) Rod-less Pneumatic Cylinder Servo Wireless Network Power Control Singular Perturbations Distributed Parameter SystemsPrinceton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

32

Switched Reluctance Motors

Rotor2008/11/17

StatorPrinceton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 33

Switched Reluctance MotorsA A1 2 3 4 6 5

4-phase, 8/6-pole SRM2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 34

Switched Reluctance Motors Stator Rotor

reluctance force

Magnetic flux

Reluctance force

L ( )

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

35

Switched Reluctance MotorsR aL

(m H ) La 30

Lb

Lc

Ld

a'

10 7 .5 1 5 2 2 .5 3 0 3 7 .5 4 5 5 2 .5 6 0 (D eg ree)

V j = L j ( )

di j dt

+

dL j ( ) dt2

i j + R j i j , j = A, B, C , D

1 dL j ( ) 2 Torque i : T j = ij 2 d2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 36

Minimum-Time Torque ControlVdc Q1 Sensor 1 A C B Sensor 2 D Q3

System dynamics: di = A( , )i + B ( )V (t ) dtSliding surface: s = i ir = 0Minimum-Time VSC: Vdc , if i (t ) > ir V (t ) = Vdc , if i (t ) < irV* = K i (t 0 ) ir

Q2

Q4

Drive Circuit

CPLD XC9536

Drive

encoder current sensor

V * = Ki (t 0 )

i

Control System Setup2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

37

Minimum-Time Torque Control

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

38

Temperature Control - A Plastic Extrusion Process

System setup: ITRI (Industrial Technology Research Institute), Taiwan, R.O.C.Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

39

Temperature Control - A Plastic Extrusion ProcessDynamics of Channel temperature:dy hA hA 1 y+ y + w = dt cV cV cV

Rate of change of energy input:

a + ( w, u , t ), u 0 dw = a ( w, u , t ) = dt a ( w, u , t ), u < 0

Single-channel dynamics:

y = my + v a ( w, u , t ) v= + cV2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 40

Temperature Control - A Plastic Extrusion ProcessSingle-channel dynamics:

y = my + v

a ( w, u, t ) v= + cVSliding surface (PI control):v = K P e K I e or V ( s ) = ( K P + KI )( ydesired ( s ) Y ( s )) s

Output feedback sliding mode controls = e + ( K P + m)e + K I e sk a1sk 1 + b0 ek + b1ek 12008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 41

Temperature Control - A Plastic Extrusion Process heat, sk < 0 Switching control law: uk = water, sk > 0

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

42

Rod-less Pneumatic Cylinder Servo

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

43

Rod-less Pneumatic Cylinder ServoEquation of motion: M LY = uY c sgn Y + AT P Pressure dynamics: P = 1 ( P , P2 , Y , X ) X + 2 ( P , P2 , Y , Y , X ) 1 1

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

44

Rod-less Pneumatic Cylinder ServoSliding surface: M 1 = P L Yd + k1 (Yd Y ) + k2 (Yd Y ) + uY + c sgn Y A AT T

Variable Structure Control: X = X v sgn( )

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

45

Wireless Network Power Control

Zoran Gajic, Plenary Lecture 2007 CACS International Automatic Control Conference National Chung Hsing University, Taichung, Taiwan, November 9-11, 20072008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 46

,

Wireless Network Power ControlSignal-to-interference ratio (SIR) for the ith usergii (t ) pi (t ) gii (t ) pi (t ) i (t ) = = , i = 1, 2, I i (t ) gij (t ) p j (t ) + i (t )j i

, N.

Control objective: i (t ) i

tar

Logarithmic scale representation

i = gii + pi I i ( pi )

System dynamics:

pi (t ) = ui (t ), i = 1, 2,

N47

i (t ) = pi (t ) + fi (t )2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

Wireless Network Power ControlSliding surface si (t ) = i (t ) Discrete-time representationtar i

=0

si (k + 1) = si (k ) + Tui (k ) + d (k ) + v(k )

Discrete-time SMC (continuous) Stability analysis 1 si (k + 1) u (k + 1) = 1 i Tz 1 det 1 T

1 1 ui (k ) = si (k ) (d (k 1) + v(k 1)) T TT si (k ) 1 1 (d (k ) + v(k )) 1 ui (k ) 2 T Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 48

T = z2 = 0 z + 1 2008/11/17

Contents (2/2)Minimum-Time Torque Control (SRM) Temperature Control (Plastic Extrusion P.) Rod-less Pneumatic Cylinder Servo Wireless Network Power Control Singular Perturbations Distributed Parameter SystemsPrinceton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

49

Extended Research ProblemsSingular Perturbationsx(0)

u+

uSingularly Perturbed Systems Quasi-steady state (slow mode) Fast mode Continuous control Infinite-time reaching (boundary layer)

Sliding Surface: s = 0VSS Sliding mode Reaching phase Discontinuous control Finite-time reaching

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

50

Extended Research ProblemsDistributed Parameter SystemsHeat Conduction System : U t ( x, t ) = U xx ( x, t ) + U ( x, t ) Boundary conditions U (0, t ) = 0 U (l , t ) = Q(t ) + f (t )x=0x=l

Kernel function k ( x, y )

wt = wxx cwU ( x, t )

w( x, t )

w(0, t ) = 0 w(l , t ) = Q(t ) + f w (t )Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 51

2008/11/17

Extended Research ProblemsDistributed Parameter SystemsSliding surface: S (t ) = x (l , t ) = 0Kernel function : k ( x, y ) = y I1x=0

x=l

(

( x2 y 2 ) ( x2 y 2 )

)

wt = wxx cwU ( x, t )

w( x, t )

w(0, t ) = 0 w(l , t ) = Q(t ) + f w (t )Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

52

Extended Research ProblemsDistributed Parameter SystemsSliding surface: S (t ) = wx (l , t ) = 0S (t ) = U x (l , t ) k (l , l )U (l , t ) k x (l , y )U ( y, t ) dy0 l

Sliding Mode Control:Q(t ) = K m sgn( S ( ))d0

t

2008/11/17

Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

53

ConclusionsMerits of VSS Robustness (against disturbances and system parameter variations) Reduced-order system design Simple control structure Fits switching power electronics controlPrinceton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

2008/11/17

54

ConclusionsChattering Reduction (Elimination) Discrete-Time Sliding Mode Filtering methods

Interesting Problems Output feedback Singular Perturbations Infinite-dimensional systems Systems with delays (e.g. wireless network)2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 55

Thank You!

http://www.chneic.sh.cn/2008/11/17 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 56