signal and systems note5

49
6.003: Signals and Systems Laplace Transform February  18, 2010 

Upload: khaya-khoya

Post on 08-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 1/49

6.003:  Signals  and  SystemsLaplace  Transform 

February  18, 2010 

Page 2: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 2/49

�x(t) x(t)

�AX

Concept  Map:  Continuous-Time  SystemsMultiple  representations  of   CT  systems.

+  �  

1 +  � 

 1 2 

X  −

 −

 Block  Diagram 

System  FunctionalY  Y   2A2 

= X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 3: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 3/49

�x(t) x(t)

�AX

Concept  Map:  Continuous-Time  SystemsRelations  among  representations.

+  �  

1 +  � 

 1 2 

X  −

 −

 Block  Diagram 

System  Functional Y  Y   2A2 

= X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 4: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 4/49

�  Concept  Map:  Continuous-Time  Systems

Two  interpretations  of   .  �  X   AX  

+  �  

1 +  � 

 1 2 

X  −  − 

Block  Diagram System  Functional 

Y  Y   2A2 = X   2 + 3A +A2 

�   Impulse  Response x(t)  x(t) 

h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 5: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 5/49

�x(t) x(t)

�AX

Concept  Map:  Continuous-Time  SystemsRelation  between  System  Functional  and  System  Function.

+  �  

1 +  � 

 1 2 

X  −  − 

Block  Diagram System  Functional

Y  Y   2A2 = X   2 + 3A+A2 

Impulse  Response A → 1 

sh(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 6: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 6/49

�x(t) x(t)

�AX

Check  Yourself How  to  determine  impulse  response  from  system  functional?

+  �  

1 +  � 

 1 2 

X  −  − 

Block  Diagram System  Functional

Y  Y   2A2 = X   2 + 3A +A2 

Impulse  Responseh(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 7: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 7/49

       

 

 

 

 

Check  Yourself How  to  determine  impulse  response  from  system  functional? Expand  functional  using  partial  fractions: 

Y   2A2  A2  2A  2AX  

= 2 + 3A+A2

  = (1 + 21

 A)(1 +A) 

= 1 +  12 A

− 1 + A

Recognize  forms  of   terms:  each  corresponds  to  an  exponential. Alternatively,

 expand

 each

 term

 in

 a

 series:

 Y   1 1  1

= 2A  1− 2A+

4A2 − 

8A3 +− · · ·   − 2A  1−A+A2 −A3 +− · · ·  

X  Let  X  = δ(t).  Then 

Y   = 2  1− 1 1  2 −  1  3 +− · · ·   u(t)− 2 1− t + 1  2 −  1  3 +− · · ·   u(2

t +8

t48

t2

t3!

t

= 2  e −t/2 − e −t  u(t) 

Page 8: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 8/49

�x(t) x(t)

�AX

Check  Yourself How  to  determine  impulse  response  from  system  functional? 

Block  Diagram System  Functional 

Y  Y   2A2 = X   2 + 3A +A2 

+  �  

1 +  � 

 1 2 

X  −  − 

series  partial fractions

 Impulse  Response

h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 9: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 9/49

�x(t) x(t)

�AX

Concept  Map:  Continuous-Time  SystemsToday:  new  relations  based  on  Laplace  transform.

+  �  

1 +  � 

 1 2 

X  −  − 

Block  Diagram System  Functional 

Y  Y   2A2 = X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Page 10: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 10/49

  

  

  

Laplace  Transform:  DefinitionLaplace  transform  maps  a  function  of   time  t  to  a  function  of   s.

X (s) =   x(t)e −stdt 

There  are  two  important  variants: Unilateral  (18.03) 

∞ X (s) =   x(t)e −stdt 

0 Bilateral  (6.003) 

∞ X (s) =   x(t)e −stdt 

−∞ Both  share  important  properties  —  will  discuss  differences  later.

Page 11: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 11/49

    

Laplace  TransformsExample:  Find  the  Laplace  transform  of   x1(t): 

x1(t) x1(t) = e−t  if   t ≥ 0

otherwise

0  t 

s + 1) ∞  ∞   ∞ −(s+1)te 1

X 1(s) =   x1(t)e −stdt =  e −t e −stdt = =−( s + 1

0

0−∞

provided  Re(s + 1) > 0  which  implies  that  Re(s) > −1.

1 ;  Re(s) > −1 

s + 1   −1 

s-plane ROC 

Page 12: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 12/49

Check  Yourself 

0 t 

x2(t) x2(t) =  

 e−t − e−2t  if   t ≥ 0 0  otherwise 

Which  of   the  following  is  the  Laplace  transform  of   x2(t)? 1. X 2(s) =   1 (s+1)(s+2)  ;  Re(s) > −1 2. X 2(s) =   1 

(s+1)(s+2)  ;  Re(s) > −2 3. X 2(s) =   s 

(s+1)(s+2)  ;  Re(s) > −1 

4. X 2(s) =   s (s+1)(s+2)  ;  Re(s) > −2 

5. none  of   the  above 

Page 13: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 13/49

  

     

Check  Yourself ∞ 

X 2(s) =   (e −t − e −2t)e −stdt 0 

∞ ∞=  e −t e −stdt −  e −2t e −stdt

0 0 1  1 (s + 2) − (s + 1)   1= = 

s + 1  − s + 2

= (s + 1)(s + 2)   (s + 1)(s + 2)

These  equations  converge  if   Re(s + 1)  >  0  and  Re(s + 2)  >  0,  thus Re(

s)

> −1

1 (s

 + 1)(s

 + 2)

 ;  Re(s) > −1 −1−2 

s-plane ROC 

Page 14: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 14/49

Check  Yourself 

0 t 

x2(t) x2(t) =  

 e−t − e−2t  if   t ≥ 0 0  otherwise 

Which  of   the  following  is  the  Laplace  transform  of   x2(t)? 1. X 2(s) =   1 (s+1)(s+2)  ;  Re(s) > −1 2. X 2(s) =   1 

(s+1)(s+2)  ;  Re(s) > −2 3. X 2(s) =   s 

(s+1)(s+2)  ;  Re(s) > −1 

4. X 2(s) =   s (s+1)(s+2)  ;  Re(s) > −2 

5. none  of   the  above 

Page 15: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 15/49

    

Regions  of   ConvergenceLeft-sided signals have  left-sided Laplace transforms (bilateral only). Example: 

x3(t)

x3(t) = −e−t  if   t ≤ 00  otherwise

t −1 

0−(s+1)ts + 1)  

 

0∞ 1−eX 3(s) =   x3(t)e −stdt =  −e −t

 e −stdt = =−( s + 1 −∞ −∞ −∞

provided  Re(s + 1) < 0  which  implies  that  Re(s) < −1.

−1      R     O     C

s-plane1 

s + 1  ;  Re(s) < −1

Page 16: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 16/49

Left- and  Right-Sided  ROCsLaplace  transforms  of   left- and  right-sided  exponentials  have  thesame form (except −);  with  left- and right-sided ROCs, respectively.

time  function  Laplace  transform e−tu(t)

1 0  t

s + 1  

−e−tu(−t) 1 

t s + 1  

−1  −1      R     O     C

−1 

s-plane ROC 

s-plane 

Page 17: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 17/49

Left- and  Right-Sided  ROCsLaplace  transforms  of   left- and  right-sided  exponentials  have  thesame form (except −);  with  left- and right-sided ROCs, respectively.

time  function  Laplace  transform e−t

−e−t

u(t) 

0 1 

s + 1  

u(−t) t 

−1 1 

s + 1  

−1 

s-plane ROC 

s-plane 

−1      R     O     C

Page 18: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 18/49

Check  Yourself 

Find  the  Laplace  transform  of   x4(t). 

0  t 

x4(t) x4(t) = e−|t| 

1.  X 4(s) =   2 1−s2  ;  −∞ < Re(s) < ∞ 

2.  X 4(s) =   2 1−s2  ;  −1 < Re(s) < 1 

3.  X 4

(s) =   2 1+s2

  ;  −∞ < Re(s) < ∞ 4.  X 4(s) =   2 

1+s2  ;  −1 < Re(s) < 1 5.  none  of   the  above 

Page 19: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 19/49

 

    

Check  Yourself ∞

X 4(s) =   e−|t|e −stdt−∞  0   ∞

(1−s)tdt += e e−(1+s)tdt−∞  0

0(1 )−  s

∞0

(1−s)te −(1+s)te −(1 + s)

+= −∞

1 1 = +1 − s  1 +  s          

Re(s)<1  Re(s)>−1 1 +  s + 1  − s  2 

= (1 − s)(1 + s) = 1 − s2  ;

 −1

 <

 Re(s)

 <

 1 

The  ROC  is  the  intersection  of   Re(s) < 1  and  Re(s) > −1. 

Page 20: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 20/49

Check  Yourself The  Laplace  transform  of   a  signal  that  is  both-sided  a  vertical  strip.

x4(t) x4(t) = e−|t| 

0  t 

2 X 4(s) = 1− s2 −1 < Re(s) < 1  −1  1 

s-plane ROC 

Ch k Y lf

Page 21: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 21/49

Check  Yourself 

Find  the  Laplace  transform  of   x4(t).  2 

0  t 

x4(t) x4(t) = e−|t| 

1.  X 4(s) =   2 1−s2  ;  −∞ < Re(s) < ∞ 

2.  X 4(s) =   2 1−s2  ;  −1 < Re(s) < 1 

3.  X 4

(s) =   2 1+s2

  ;  −∞ < Re(s) < ∞ 4.  X 4(s) =   2 

1+s2  ;  −1 < Re(s) < 1 5.  none  of   the  above 

Ti D i I t t ti f ROC

Page 22: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 22/49

  Time-Domain  Interpretation  of   ROC

∞ X (s) =   x(t) e −stdt 

−∞  x1(t) t

−1 

x2(t) t

−2  −1 x3(t) 

s-plane 

s-plane 

s-plane t 

−1 x4(t) 

−1 1 s-plane 

−1 

Time Domain Interpretation of ROC

Page 23: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 23/49

  Time-Domain  Interpretation  of   ROC

∞ X (s) =   x(t) e −stdt 

−∞  x1(t) t

−1 x2(t) 

t−2  −1 

x3(t) 

s-plane 

s-plane 

s-plane t 

−1 x4(t) 

s-plane t 

−1 

−1  1 

Time Domain Interpretation of ROC

Page 24: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 24/49

  Time-Domain  Interpretation  of   ROC

∞ X (s) =   x(t) e −stdt 

−∞  x1(t) t

−1 x2(t) 

t−2  −1 

x3(t) 

s-plane 

s-plane 

s-plane t 

−1 x4(t) 

−1 1 s-plane 

−1 

Time Domain Interpretation of ROC

Page 25: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 25/49

  Time-Domain  Interpretation  of   ROC

∞ X (s) =   x(t) e −stdt 

−∞  x1(t) 

t) t

−1 x2(

t−2  −1 

t) 

t) 

(x3

s-plane 

s-plane 

s-plane t

−1 x4(

−1 1 s-plane 

−1 

Check Yourself

Page 26: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 26/49

Check  Yourself 

The  Laplace  transform  2s s2−4  corresponds  to  how  many  of  

the  following  signals? 

1.  e−2tu(t) + e2tu(t) 2.  e−2tu(t)− e2tu(−t) 3.  −e

−2tu(−t) + e

2tu(t) 

4.  −e−2tu(−t)− e2tu(−t) 

Check Yourself

Page 27: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 27/49

Check  Yourself Expand  with  partial  fractions:

2s  1 1s2 − 4 = 

s + 2   + s − 2         

pole  at −2  pole  at  2pole  function  right-sided;  ROC  left-sided  (ROC)−2  e−2t  e−2tu(t);  Re(s) > −2  −e−2tu(−t);  Re(s) < −2

2  e2t  e2tu(t);  Re(s) > 2  −e2tu(−t);  Re(s) < 2

1.  e−2tu(t) +  e2tu(t)  Re(s) > −2 ∩ Re(s) > 2  Re(s) > 22.  e−2tu(t) − e2tu(−t)  Re(s) > −2 ∩ Re(s) < 2  −2 < Re(s) < 23.  −e−2tu(−t)+e2tu(t)  Re(s) < −2 ∩ Re(s) > 2  none 4.  −e−2tu(−t) − e2tu(−t)  Re(s) < −2 ∩ Re(s) < 2  Re(s) < −2 

Check Yourself

Page 28: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 28/49

Check  Yourself 

The  Laplace  transform  2s s2−4  corresponds  to  how  many  of  

the  following  signals?  3 

1.  e−2tu(t) + e2tu(t) 2.  e−2tu(t)− e2tu(−t) 3.  −e

−2t

u(−t) + e2t

u(t) 4.  −e−2tu(−t)− e2tu(−t) 

Solving Differential Equations with Laplace Transforms

Page 29: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 29/49

Solving  Differential  Equations  with  Laplace  TransformsSolve  the  following  differential  equation: 

y(t) + y(t) = δ(t) Take  the  Laplace  transform  of   this  equation. 

L{y(t) + y(t)} = L{δ(t)} The Laplace transform of  a sum is the sum of  the Laplace transforms (prove  this  as  an  exercise). 

L{y(t)}+ L{y(t)} = L{δ(t)} What’s  the  Laplace  transform  of   a  derivative? 

Laplace transform of a derivative

Page 30: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 30/49

  

     

     

  

Laplace  transform  of   a  derivativeAssume  that  X (s)  is  the  Laplace  transform  of   x(t):

∞ 

X (s) =   x(t)e −stdt −∞ 

Find  the  Laplace  transform  of   y(t) =  x(t). ∞ ∞ 

Y  (s) =   y(t)e −stdt =  x(t) e −st dt−∞  −∞      

v  u ∞     ∞ 

= x(t) e −st   −  x(t)(−se −st)dt         −∞    

v u  −∞ v u 

The 

first 

term 

must 

be 

zero 

since 

X (s) 

converged. 

Thus

∞ Y  (s) = s x(t)e −stdt = sX (s) 

−∞ 

Solving  Differential  Equations  with  Laplace  Transforms

Page 31: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 31/49

So v g e e t a quat o s w t ap ace a s o s

Back  to  the  previous  problem: L{y(t)}+ L{y(t)} = L{δ(t)} 

Let  Y  (s)  represent  the  Laplace  transform  of   y(t). Then  sY  (s)  is  the  Laplace  transform  of   y(t). 

sY  (s) + Y  (s) = L{δ(t)} What’s  the  Laplace  transform  of   the  impulse  function? 

Laplace  transform  of   the  impulse  function

Page 32: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 32/49

 

  

   

p p

Let  x(t) = δ(t).∞ 

X (s) = δ(t)e −stdt −∞ 

∞ =

 δ(t) e

 −st t=0 dt 

−∞ ∞ 

=  δ(t) 1  dt −∞ 

= 1  Sifting  property:  δ(t)  sifts  out  the  value  of   e−st  at  t = 0.

Solving  Differential  Equations  with  Laplace  Transforms

Page 33: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 33/49

g q p

Back  to  the  previous  problem: sY  (s) + Y  (s) = L{δ(t)} = 1  

This  is  a  simple  algebraic  expression.  Solve  for  Y  (s): 1 

Y  (s) =  s + 1  We’ve  seen  this  Laplace  transform  previously. 

y(t) = e −t u(t) Notice that we solved the differential equation y(t)+y(t) = δ(t) without computing  homogeneous  and  particular  solutions. 

Solving  Differential  Equations  with  Laplace  Transforms

Page 34: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 34/49

Back  to  the  previous  problem: sY  (s) + Y  (s) = L{δ(t)} = 1  

This  is  a  simple  algebraic  expression.  Solve  for  Y  (s): 1 

Y  (s) =

 s + 1  

We’ve  seen  this  Laplace  transform  previously. y(t) = e −t u(t)  (why  not  y(t) = −e−tu(−t) ?) 

Notice that we solved the differential equation y(t)+y(t) = δ(t) without computing  homogeneous  and  particular  solutions. 

Solving  Differential  Equations  with  Laplace  Transforms

Page 35: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 35/49

Summary  of   method.Start  with  differential  equation:

y(t) + y(t) = δ(t) Take

 the

 Laplace

 transform

 of 

 this

 equation:

 sY  (s) + Y  (s) = 1  

Solve  for  Y  (s): 1 Y  (s) =  

s + 1  Take  inverse  Laplace  transform  (by  recognizing  form  of   transform):

y(t) = e −t u(t) 

Solving  Differential  Equations  with  Laplace  Transforms

Page 36: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 36/49

Recognizing  the  form  ...Is there a more systematic way to take an inverse Laplace transform?Yes  ...  and  no.Formally,

1     σ+ j∞x(t) =   X (s)e stds

2πj  σ− j∞but  this  integral  is  not  generally  easy  to  compute.This  equation  can  be  useful  to  prove  theorems.We  will  find  better  ways  (e.g.,  partial  fractions)  to  compute  inversetransforms  for  common  systems.

Solving  Differential  Equations  with  Laplace  Transforms

Page 37: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 37/49

Example  2: y(t) + 3y(t) + 2y(t) = δ(t) 

Laplace  transform: s 2

Y  (s) + 3sY 

 (s) + 2Y 

 (s) = 1

 Solve: 

1  1 1 Y  (s) =  

(s + 1)(s + 2)  = s + 1  − 

s + 2  Inverse  Laplace  transform: 

y(t) = 

e −t − e −2t  u(t) 

These  forward  and  inverse  Laplace  transforms  are  easy  if  •  differential  equation  is  linear  with  constant  coefficients,  and •  the  input  signal  is  an  impulse  function. 

Properties  of   Laplace  Transforms

Page 38: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 38/49

The  use  of   Laplace  Transforms  to  solve  differential  equations  de

pends  on  several  important  properties. Property  x(t)  X (s)  ROC Linearity

 ax1(t) + bx2(t)

 aX 1(s) + bX 2(s)

 ⊃

 (R1 ∩ 

R2) 

Delay  by  T x(t − T  )  X (s)e −sT   R dX (s)

Multiply  by  t  tx(t)  − ds  R 

Multiply  by  e−αt  x(t)e −αt  X (s + α)  shift  R  by −α Differentiate  in  t  dx(t) 

dt  sX (s)  ⊃ R Integrate  in  t     t 

x(τ ) dτ  −∞ 

X (s) s  ⊃  R ∩  Re(s) > 0

 

   ∞ 

Convolve  in  t  x1(τ )x2(t − τ  ) dτ  −∞ 

X 1(s)X 2(s)  ⊃ (R1 ∩ R2) 

Concept  Map:  Continuous-Time  Systems

Page 39: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 39/49

�x(t) x(t)

� AX

Where  does  Laplace  transform  fit  in?

+ �  

1 + 

�  

1 2 

X  −  − 

Block  Diagram System  Functional 

Y  Y   2A2 =

 X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 

X (s)=

2s2 + 3s + 1  

Concept  Map:  Continuous-Time  Systems

Page 40: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 40/49

Where  does  Laplace  transform  fit  in? 1.  Link  from  differential  equation  and  system  function:

Start  with  differential  equation: 2y(t) + 3y(t) + y(t) = 2x(t) 

Take  the  Laplace  transform  of   a  each  term: 2s 2Y  (s) + 3sY  (s) + Y  (s) = 2X (s) 

Solve  for  system  function: Y  (s) 2 X (s) = 2s2 + 3s + 1  

Concept  Map:  Continuous-Time  Systems

Page 41: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 41/49

�x(t) x(t)

� AX

Where  does  Laplace  transform  fit  in?

+ �  

1 + 

�  

1 2 X  

−  − Block  Diagram 

System  FunctionalY  Y   2A2 

= X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

Differential  Equation  System  Function 2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 X (s)

=2s2 + 3s + 1  

Concept  Map:  Continuous-Time  Systems

Page 42: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 42/49

This  same  development  shows  an  even  more  important  relation.2.  Link  between  system  function  and  impulse  response: 

Differential  equation: 2y(t) + 3y(t) + y(t) = 2x(t) 

System  function: H (s) =  Y  (s) =  2 

X (s) 2s2 + 3s + 1  

If   x(t) = δ(t)  then  y(t)  is  the  impulse  response  h(t). If   X (s) = 1  then  Y  (s) = H (s). System  function  is  Laplace  transform  of   the  impulse  response!

Concept  Map:  Continuous-Time  Systems

Page 43: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 43/49

�x(t) x(t)

�AX

Where  does  Laplace  transform  fit  in?

+ �  

1 + 

�  

1 2 X  

−  − Block  Diagram 

System  FunctionalY  Y   2A2 

= X   2 + 3A +A2 

Impulse  Response h(t) = 2(e−t/2 − e−t) u(t) 

LDifferential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 X (s)

=2s2 + 3s + 1  

Concept  Map:  Continuous-Time  Systems

Page 44: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 44/49

�x(t) x(t)

�AX

Where  does  Laplace  transform  fit  in?  many  more  connectionsBlock  Diagram 

System  Functional Y  Y   2A2 

= X   2 + 3A +A2 

Impulse  Responseh(t) = 2(e−t/2 − e−t) u(t) 

+ �  

1 + 

�  

1 2 X  

−  − 

Differential  Equation  System  Function2y(t) + 3y(t) + y(t) = 2x(t)  Y  (s) 2 X (s)

=2s2 + 3s + 1  

Initial  Value  Theorem

Page 45: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 45/49

If   x(t) = 0  for  t <  0  and  x(t)  contains  no  impulses  or  higher-order singularities  at  t = 0  then 

x(0+) =  lim  sX (s) . s→∞ 

Initial  Value  Theorem

Page 46: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 46/49

  

  

If   x(t) = 0  for  t <  0  and  x(t)  contains  no  impulses  or  higher-order singularities  at  t = 0  then 

x(0+) =  lim  sX (s) . s→∞ 

∞ ∞ Consider

 lim

 sX (s)

 =

 lim

 s x(t)e

 −st

dt =

 lim

 x(t)

 se

 −st

dt. 

s→∞  s→∞  −∞  s→∞  0 As  s →∞  the  function  e−st  shrinks  towards  0. 

−ste 

t s = 1  

s = 5  s = 25  

Area under e−st  is  1 →  area under  se−st  is 1  →  lim  se −st  = δ(t) ! 

s  s→∞  

  ∞  

∞ lim  sX (s) =  lim  x(t)se −stdt →  x(t)δ(t)dt = x(0+) s→∞

 s→∞

 0 0 

(the 0+  arises because the  limit  is from the right side.) 

Final  Value  Theorem

Page 47: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 47/49

If   x(t) = 0  for  t <  0  and  x(t)  has  a  finite  limit  as  t →∞  x(∞) =  lim sX (s) . 

s→0 

Final  Value  Theorem

Page 48: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 48/49

    

If   x(t) = 0  for  t <  0  and  x(t)  has  a  finite  limit  as  t →∞  x(∞) =  lim sX (s) . 

s→0 ∞ ∞ 

Consider  lim sX (s) =  lim s x(t)e −stdt =  lim  x(t) se −stdt. s→0  s→0  −∞  s→0  0 

As  s → 0  the  function  e−st  flattens  out.  But  again,  the  area  under se−st  is  always  1. 

−stex(∞) t 

s = 1  s = 5  

s = 25  

As  s → 0,  area  under  se−st  monotonically  shifts  to  higher  values  of   t −st(e.g.,  the  average  value  of   se  is  1 

s  which  grows  as  s → 0). In  the  limit,  lim sX (s) → x(∞) . 

s→0 

MIT OpenCourseWarehttp://ocw.mit.edu

Page 49: Signal and Systems Note5

8/7/2019 Signal and Systems Note5

http://slidepdf.com/reader/full/signal-and-systems-note5 49/49

p

6.003 Signals and Systems

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.