semiemperical wave transformation

33
8/22/2019 Semiemperical Wave Transformation http://slidepdf.com/reader/full/semiemperical-wave-transformation 1/33 CoastalEngineering, 16 (1992) 313-345 313 Elsevier Science Publishers B.V., Amsterdam Semi-empirical treatment of wave transformation outside and inside the breaker line K.P. Black and M.A. Rosenberg Victorian Institute of Marine Sciences, 14 Parliament Place, Melbourne 3002, Australia (Received 14 September 1990; accepted after revision 21 March 1991 ) ABSTRACT Black, K.P. and Rosenberg, M.A., 1992. Semi-empirical treatment of wave transformation outside and inside the breaker-line. Coastal Eng., 16:313-345. A semi-empirical method is developed which predicts the wave height shoaling up to the break point on laboratory and natural beaches. Linear shoaling is enhanced with empirical curves for the wave shape, obtained from field measurements of wave height through the break point and the surf zone made on an ocean beach in southern Australia from 1987 to 1989. Wave height shoaling, break- ing and attenuation are unified in a mixed Lagrangian/Eulerian numerical model of random wave height transformation which, with the semi-analytical enhancements, provides improved predictions of the height transformation of individual waves through the surf zone. This is demonstrated for a wide variety of cases from the field and laboratory. INTRODUCTION While numerical beach models have been under development for several years (e.g. Ebersole and Dalrymple, 1979, 1980), there is still a need for fur- ther refinement, or at least, a need for more data for confirmation of the un- derlying assumptions. Existing beach numerical models commonly make a number of simplifying assumptions, due either to the need for speedy simu- lation or a lack of data to justify further complexity. The available data sets containing simultaneous measurements of a num- ber of surf zone parameters are very limited, so a field measurement program was established in 1987, which continued over three successive summers, to measure surf zone characteristics specifically for application to numerical model simulations. This comprehensive 3-year program included numerical measurements of wave characteristics and surf zone velocities, as well as sed- iment transport, offshore and through the break point. In this paper, we ex- amine the wave height propagation: shoaling, breaking and attenuation. The prediction of wave shoaling has been considered by a number of au- thors and it is well recognized that the application of linear theory results in 0378-3839/92/$05.00 © 1992 Elsevier Science Publishers B.V. All rights reserved.

Upload: arkadjyothiprakash

Post on 08-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 1/33

C o a s t a l E n g i n e e r i n g , 16 ( 1 9 9 2 ) 3 1 3 - 3 4 5 3 1 3

E l s e v i e r S c i e n c e P u b l i s h e rs B . V ., A m s t e r d a m

S e m i -e m p i r i c a l tr e a t m e n t o f w a v e t r a n s f o rm a t io n

o u t s i d e a n d i n s i d e t h e b r ea k e r l in e

K .P . B l a c k a n d M . A . R o s e n b e r g

Vic tor ian In s t i tute o f M arin e Sc iences , 14 Parl iam ent Place, Melbou rne 3002, Au stral ia

( R ece iv ed 1 4 Sep tem b er 1 9 9 0 ; accep ted a f t e r r ev i s io n 2 1 Mar ch 1 9 9 1 )

A B S T R A C T

B l a ck , K . P . a n d R o s e n b e r g , M . A . , 1 9 92 . S e m i - e m p i r i c a l t r e a t m e n t o f w a v e t ra n s f o r m a t i o n o u t s i d e

an d in s id e th e b r eak e r - l i n e . Coastal Eng. , 1 6 : 3 1 3 - 3 4 5 .

A s e m i - e m p i r i c a l m e t h o d i s d e v e l o p e d w h i c h p r e d i c t s t h e w a v e h e i g h t s h o a l i n g u p t o t h e b r e a k

p o i n t o n l a b o r a t o r y a n d n a t u r a l b e a c h e s . L i n e a r s h o a l i n g i s e n h a n c e d w i t h e m p i r i c a l c u r v e s f o r t h e

w a v e sh a p e , o b t a i n e d f r o m f i e ld m e a s u r e m e n t s o f w a v e h e ig h t t h r o u g h t h e b r e a k p o i n t a n d t h e s u r f

z o n e m a d e o n a n o c e a n b e a c h i n s o u t h e r n A u s t r a l ia f r o m 1 98 7 t o 1 98 9. W a v e h e ig h t s h o al i ng , b r e a k -

i n g a n d a t t e n u a t i o n a r e u n i f i e d in a m i x e d L a g r a n g i a n / E u l e r i a n n u m e r i c a l m o d e l o f r a n d o m w a v e

h e i g h t t r a n s f o r m a t i o n w h i c h , w i t h t h e s e m i - a n a l y t i c a l e n h a n c e m e n t s , p r o v i d e s i m p r o v e d p r e d i c t i o n s

o f t h e h e i g h t t r a n s f o r m a t i o n o f i n d i v i d u a l w a v e s t h r o u g h t h e s u r f z o n e . T h i s i s d e m o n s t r a t e d f o r a

w i d e v a r i e t y o f c a se s f r o m t h e f i e l d a n d l a b o r a to r y .

I N T R O D U C T I O N

W h i le n u m e r i c a l b e a c h m o d e l s h a v e b e e n u n d e r d e v e l o p m e n t fo r se v er al

y e a r s ( e .g . E b e r s o l e a n d D a l r y m p l e , 1 9 7 9 , 1 9 8 0 ) , t h e r e i s s t il l a n e e d f o r f u r -

t h e r r e f i n e m e n t , o r at l ea s t, a n e e d f o r m o r e d a t a f o r c o n f i r m a t i o n o f t h e u n -

d e r ly i n g a s s u m p t i o n s . E x i s ti n g b e a c h n u m e r i c a l m o d e l s c o m m o n l y m a k e a

n u m b e r o f s im p l i f y in g a s s u m p t i o n s , d u e e i th e r t o t h e n e e d f o r s p e ed y s i m u -

l a t io n o r a l a c k o f d a t a t o j u s t i f y f u r t h e r c o m p l e x i t y .

T h e a v a il ab l e d a t a s e ts c o n t a i n i n g s i m u l t a n e o u s m e a s u r e m e n t s o f a n u m -

b e r o f s u r f z o n e p a r a m e t e r s a r e v e r y l im i t e d , s o a fi el d m e a s u r e m e n t p r o g r a m

w a s e s t a b l i s h e d in 1 98 7 , w h i c h c o n t i n u e d o v e r t h r e e s u c ce s s iv e s u m m e r s , t o

m e a s u r e s u r f z o n e c h a r a c t e ri s t ic s s p e c if ic a ll y f o r a p p l i c a t i o n t o n u m e r i c a l

m o d e l s i m u l a t io n s . T h i s c o m p r e h e n s i v e 3 -y ea r p r o g r a m i n c l u d e d n u m e r i c a l

m e a s u r e m e n t s o f w a v e c h a r a c t e r is t i c s a n d s u r f z o n e v e l o ci ti e s, a s w e l l a s s e d -

i m e n t t r a n s p o r t , o f f s h o r e a n d t h r o u g h t h e b r e a k p o i n t . I n t h is p a p e r , w e ex -

a m i n e t h e w a v e h e i g h t p r o p a g a t i o n : s h o a l in g , b r e a k i n g a n d a t t e n u a t i o n .

T h e p r e d i c t i o n o f w a v e s h o a li n g h a s b e e n c o n s i d e r e d b y a n u m b e r o f a u -t h o r s a n d i t is w e ll r e c o g n i z e d t h a t t h e a p p l i c a t i o n o f l in e a r t h e o r y r e su l ts i n

0 3 7 8 - 3 8 3 9 / 9 2 / $ 0 5 . 0 0 © 1 9 92 E l s e v i e r S c i e n c e P u b l i s h e r s B .V . A l l r ig h t s r e s e rv e d .

Page 2: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 2/33

314 K.P. BLACK AND M.A. ROSENBERG

a n u n d e r - e s t i m a t e o f w a v e h e i g h t a t t h e b r e a k p o i n t ( e.g . B r i n k - K j a e r a n d

J o n s s o n , 1 97 3 ). T h i s l e d t o t h e e x a m i n a t i o n o f h i g h e r - o r d e r th e o r ie s , b u t d if -

f ic u lt ie s w e re s t il l e n c o u n t e r e d w i t h t h e i r a p p l i c a t i o n . F o r e x a m p l e , H a r d y

a n d K r a u s ( 1 98 8 ) t e s t e d c n o i d a l t h e o r y i n a s h o a l i n g m o d e l o n l y to f i n d th a t

s o m e s i g n i f i c a n t d e v i a t i o n s b e t w e e n t h e p r e d i c t i o n s a n d m e a s u r e m e n t s s t i l lo c c u r r e d o v e r a t w o - d i m e n s i o n a l e ll ip t ic a l s h oa l . M o r e o v e r , f ul ly n o n l i n e a r

s o l u t i o n s o f t h e d i f f e r e n t i a l w a v e e q u a t i o n s ( e. g. E lg a r a n d G u z a , 1 9 85 ; L i u

e t al ., 1 9 85 ) a r e v e r y d i f f i c u l t t o a p p l y i n n o n s t e a d y , w a v e h e i g h t p r o p a g a -

t i o n , b e a c h m o d e l s .

I n t h i s p a p e r , w e p r e s e n t a n e w s e m i - e m p i r i c a l m e t h o d t o p r e d i c t w a v e

h e i g ht sh o a l i n g w h i c h d r a w s o n t h e w o r k o f S v e n d s e n ( 1 9 8 4 ) . S v e n d s e n i n-

t r o d u c e d t h e w a v e s h a p e f a c t o r B 0 t o q u a n t i f y t h e r a t i o o f t i m e s e ri es v a r i a n c e

o v e r t r o u g h - t o -c r e s t w a v e h e i g h t. B o d i m i n i s h e s s h a r p ly a s t h e b r e a k p o i n t i s

a p p r o a c h e d , a s t h e s t e e p l y s h o a li n g w a v e s h a v e a t e n d e n c y t o a c c e n t th e i rh e i g h t fa r m o r e t h a n t h e i r v a r i a n c e. W e t a k e t h i s c o n c e p t a n d u t il is e it o n a

w a v e - b y - w a v e b a s is t o s p e c if y t h e s h o a l i n g o n n a t u r a l a n d l a b o r a t o r y b e a c h e s

r i g h t u p t o t h e b r e a k p o i n t . T h e m e t h o d i s t e s t e d a g a i n s t a w i d e v a r i e t y o f

m e a s u r e m e n t s , i n c l u d i n g s te e p c n o i d a l w a v e s , a n d is f o u n d t o s a t is f a ct o ri ly

p r e d i c t t h e n o n l i n e a r s h o a l i n g u p t o t h e b r e a k p o i n t i n a l l c as es .

T h e s e c o n d f u n d a m e n t a l f a c to r w e c o n s i d e r is t h e w a v e b r e a k i n g c r i te r i o n

a n d , a l t h o u g h c o n s i d e r a b l e r e s e a r c h h a s b e e n u n d e r t a k e n , t h e r e s til l a p p e a r s

t o b e w i d e v a r i a b i l i ty i n t h e d i f f e r e n t a u t h o r s ' s e l e c t i o n o f b r e a k i n g c r i te r i a.

A l t h o u g h m a n y a re v e r y s i m i l a r w h e n r e d u c e d t o t h e i r s h al lo w w a t e r f o r ma n d a s i m i l ar i ty la w w i t h t h e w a v e h e i g h t to w a t e r d e p t h r a t io a p p r o x i m a t e l y

e q u a l to 0 .7 8 is o ft e n i m p o s e d ( N o d a , 1 97 2; Y o u n g a n d L i n , 1 9 8 8 ) , t h e d if -

f e re n c e s i n t h e f o r m u l a e c a n b e h i g h l y i m p o r t a n t w i t h r e s p e c t to t h e l o c a t i o n

o f w a v e b r e a k i n g o n a n a t u r a l b e a c h . B e c a u s e t h e n a t u r e o f b r o k e n a n d u n b r o -

k e n w a v e s a r e c h a r a c t e r is t ic a l l y d if f e r e n t, a n a c c u r a t e p r e d i c t i o n o f b r e a k p o i n t

l o c a t i o n i s c r i ti c a l t o a w a v e - b y - w a v e n u m e r i c a l s o l u t i o n .

T h e t h i r d f a c t o r w e c o n s i d e r i s w a v e h e i g h t a t t e n u a t i o n i n s i d e t h e b r e a k

p o i n t . T h e D a l l y e t a l. ( 1 9 8 4 ) f o r m u l a t i o n , w h i c h a s s u m e s t h a t t h e b r o k e n

w a v e s a s y m p t o t i c a l l y a p p r o a c h a l i m i t in g w a v e p o w e r g o v e r n e d b y t h e w a v e

h e i g h t t o w a t e r d e p t h r a ti o , is e x a m i n e d a n d c o m p a r e d t o t h e p r e d i c t i o n s o f

b o r e t h e o r y ( e . g . B a t t j e s a n d J a n s s e n , 1 9 7 8 ; S t i v e , 1 9 8 4 ) . A f u l l k - e t u r b u -

l e nc e m o d e l , w h i c h h a s b e e n e x a m i n e d b y t h e a u t h o r s , w a s c o n s i d e r e d t o b e

b e y o n d t h e s c o p e o f t h i s p a p e r .

W e a r e p r i m a r i l y c o n c e r n e d w i t h a w a v e - b y - w a v e a n a ly s is f o r a p p l i c a t i o n

t o t h e g e n e r a t i o n o f lo w - f r e q u e n c y w a v e s a n d s u r f b e a t. H o w e v e r , t h e r e s u lt s

m a y b e g e n e r a li s e d t o c o n s i d e r a d i s t r i b u t i o n o f w a v e h e i g h t s b y a p p l y i n g

t e c h n i q u e s s u c h as t h o s e s u g g e s te d b y D a l l y a n d D e a n ( 1 9 8 6 ) f o r t h e a t te n -

u a t i o n , a n d t h e m e t h o d s p r e s e n t e d i n t h i s p a p e r f o r t h e s h o a li n g .

Page 3: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 3/33

SEMI-EMPIRICALTREATMENT OF WAVETRANSFORMATION

W A V E H E I G H T D E T E R M I N A T I O N

3 1 5

T w o m a i n c a te g o ri e s o f n u m e r i c a l w a v e h e i g h t m o d e l a r e u t i l is e d o n

b e a c h e s . T h e s e a r e ( i ) d i r e c t w a v e h e i g h t s i m u l a t i o n s ( e. g. N o d a , 1 9 72 ) a n d( i i ) s e a l e v el s i m u l a t i o n s . I n t h e s e c o n d c a te g o r y a r e s o l u t i o n s o f t h e m i l d -

s l o p e e q u a t i o n s ( W a t a n a b e a n d D i b a j n i a , 1 9 8 8 ) a n d t h e B o u s s i n e s q e q u a -

t i o n s ( A b b o t t e t a l., 1 9 83 ) a n d h e i g h t s ar e f o u n d f r o m t h e s i m u l a t e d s e a l e v-

e ls . M a n y o f th e w a v e h e i g h t m o d e l s p r e s e n t e d i n t h e l i t e ra t u r e a r e s t e a d y-

s t a te s o l u t i o n s fo r m o n o c h r o m a t i c w a v e s , o r m o d e l s w h i c h u ti l is e t h e p r o b a -

b i l i ty d e n s i t y f u n c t i o n f o r w a v e h e i g h t s t o c r e a t e a v a r i a b l e - h e i g h t s o l u t i o n .

O n e o f t h e m o t i v a t i o n s f o r o u r s t u d y w a s t o s p e c if y t h e l o w - f r e q u e n c y o sc il -

l a t io n s i n t h e s u r f z o n e , a n d s o a f u ll y u n s t e a d y m o d e l w h i c h a c c o u n t e d f o r

t h e o r d e r o f a r r i v a l o f t h e w a v e s a s w e l l a s th e h e i g h t d i s t r i b u t i o n w a s r e-

q u i r ed . T h u s , w e e x t e n d e d t h e w a v e h e i g h t s i m u l a t i o n o f B l a ck a n d H e a l y

( 1 98 8 ) w h i c h c o n t a i n s t w o d i s t in c t , b u t c o u p l e d m o d e l s . T h e f ir st m o d e l s i m -

u l a t es t h e p r o p a g a t i o n o f w a v e h e i g h t a n d a n g le . T h e r a d i a t i o n s tr es s es a r e

d i r e c t l y o b t a i n e d f r o m t h e s e . I n t h e s e c o n d s t a g e , t h e r a d i a t i o n s t r e s s e s a r e

a p p l i e d a s th e d r i v i n g f o rc e s in a h y d r o d y n a m i c m o d e l t o c a lc u l a te t h e l ow -

f r e q u e n c y s e a le v e ls a n d c u r r e n ts . T h e m o d e l u s e s a t i m e s e ri es o f h e ig h t s a s

t h e i n p u t , a n d t h e r e f o r e a c c o m m o d a t e s t h e v a r i a b il i ty i n w a v e h e i g h t s f o u n d

o n n a t u r a l b e a c h es . A m i x e d L a g r a n g i a n / E u l e r i a n s o l u t io n is p r e s e n t e d w h i c h

h a s a n u m b e r o f a d v a n ta g e s o v e r t h e s t a n d a r d E u l e r i a n s c h e m e s , a l th o u g h a

E u l e r i a n s o l u t i o n w a s u t i li s e d i n a t w o - d i m e n s i o n a l t es t.

T h e m e t h o d s a n d m o d e l w e r e v a l i d a te d u s i n g a w i d e v ar ie t y o f d a ta . W e

c h o s e m e a s u r e m e n t s f r o m t h e l a b o ra t o r y a n d t h e f ie ld , st e ad y a n d u n s t e a d y

c o n d i t i o n s , t y p i c a l a n d s t e e p ly s h o a li n g w a v e s , a n d o n e - a n d t w o - d i m e n s i o n a l

c a se s ( T a b l e 1 ) . E x a m p l e s w i t h a n d w i t h o u t w a v e / c u r r e n t i n t e r a c t i o n w e r e

a ls o e x a m i n e d i n o n e - d i m e n s i o n a l u n s t e a d y c o n d i t i o n s . T o e n c o m p a s s t h es e

c o m b i n a t i o n s o f ca se s, t h e f ul l t w o - d i m e n s i o n a l t i m e - d e p e n d e n t h e i g h t e q ua -

t i o n i s g i v e n i n c l u d i n g t h e w a v e / c u r r e n t i n t e r a c t io n , a l t h o u g h o n l y th e t e r m s

w h i c h w e r e n e c e s s ar y w e r e i n c l u d e d i n e a ch o f t h e v a l i d a t i o n s i m u l a t i o n s

T A B L E 1

V a l i d a ti o n d a ta a n d m o d e l t y pe . T h e d a t a a r e c a te g o ri se d a s L a b o r a t o r y /F i e l d , P e r i o d i c / R a n d o m a n d

S t e a d y / U n s t e a d y . T h e m o d e l l i n g i s c a t e g o r is e d a s L a g r a n g i a n / E u l e r i a n , o n e - d i m e n s i o n a l / t w o - d i -

m e n s i o n a l a n d W a v e / C u r r e n t i n t e r a c t i o n in c l u d e d o r n o t i n c l u d e d

D a ta L / F P / R S / U L / E 1 /2 W / C

W a t a n a b e L P S L 1 N o

C n o i d a l L P S L 1 N o

A p o l l o B a y F R U L 1 Y e s

E l l i p s o i d L P S E 2 N o

Page 4: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 4/33

3 16 K . P . B L A C K A N D M . A . R O S E N B E R G

( T a b le 1 ) . T h e t i m e - d e p e n d e n t h e i g h t e q u a t i o n i n tw o d i m e n s i o n s ( N o d a e t

a l. , 1 9 7 4 ) , o b t a i n e d b y d i f f e r e n t i a t i n g t h e e n e r g y c o n s e r v a t i o n e q u a t i o n , is :

O H O H o ) O H _ - H a0 t + ( U + c gc os 0 ) ~ x + ( V + c ~s in F o ( l a )

0 y 2

0 0 0 0 0 ~ - ~ + s i n _Oc~ [OU OV'~Q= - c , s in O ~ + c , co s O ~ + c o s O ~ + ~ + ~ ) + X ( l b )

a n d :

~ U ~ U O V O VX = [S xx~ + y x~ + x y~ + y y ~ /E ( l c )

w h e r e t is t im e , H is w a v e h e i g h t, U a n d V a r e x ( o n s h o r e ) a n d y ( l o n g s h o r e )

c o m p o n e n t s o f t h e c u r r e n t v e l o c i t i e s ( F i g . 1 ) , c~ t h e g r o u p s p e e d , 0 t h e w a v ea n g le ( p o s i t iv e a n t i- c l o c k w i s e o f t h e o n s h o r e - d i r e c t e d x a x i s ) , t h e r a d i a t i o n

s t r e s s e s ( S~ x , S x y, S y x, S y y ) a r e d e f i n e d b e l o w , a n d E i s t h e w a v e e n e r g y w h i c h ,

f o r l i n e a r w a v e s , e q u a l s O.125pgHz. Fo i s a c o m b i n e d d i s s ip a t io n t e ~ a c-

c o u n t i n g fo r b e d f r i c ti o n ( F r ) , a n d w a v e b r e a k i n g ( F b ) .

T h e d i s p e r s i o n r e l a t io n f o r l in e a r w a v e s i n s te a d y f lo w c o n d i t i o n s ( N o d a

e t a l . , 1 9 7 4 ) i s :

a + U k c o s 0 + V k s in 0 - ~ = 0 ( 2 a )

w h e r e :

a = ( g k t an h ( kd ) ) 1 /2 ( 2 b )

e

s h o r e l i n e

)

X

F i g . 1 . D e f i n i t i o n f o r w a v e m o d e l l i n g .

~-

Page 5: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 5/33

SEMI-EMPIRICAL TREATME NT OF WAVE TRANSFORMATIO N 317

w h e r e k is t h e w a v e n u m b e r ( k = 2 n / L , L t h e w a v e l e n g t h ) , co t h e a b s o l u t e

r a d i a n f r e q u e n c y (co = 2 z r /T , T t h e w a v e p e r i o d ) , tr is th e r e l a ti v e r a d i a n f re -

q u e n c y , g th e g r a v i t a t io n a l a c c e l e r a t i o n a n d d t h e t o ta l w a t e r d e p t h . A n i t e r-

a t iv e N e w t o n - R a p h s o n t e c h n i q u e i s e m p l o y e d to f i n d k , k n o w i n g t h e r a d i a n

f r e q u e n c y a n d U a n d 1~. T h e f u ll e q u a t i o n s f o r w a v e n u m b e r c o m p o n e n t s i na n u n s t e a d y f lo w a r e p r e s e n t e d b y s e v e r a l a u t h o r s ( e. g . Y a m a g u c h i , 1 98 8 ) .

T h e a p p l i e d b e d f r ic t io n a l r es i st a n ce t e r m i n th e w a v e h e i g h t m o d e l h a s

b e e n u t i li s ed in a n u m b e r o f n u m e r i c a l s i m u l a t io n s ( e.g . T h o r n t o n a n d G u z a ,

1 9 83 ; D a l l y a n d D e a n , 1 9 85 ; B l a c k a n d H e a l y , 1 9 8 8 ) a n d is ( a f t e r s o m e al-

g e b r a ic m a n i p u l a t i o n ) :

3 ~ ~ / s i n l ~ k d ) J ( 3 )

T h e w a v e h e i g h t lo ss d u e to b e d f r ic t io n d e p e n d s o n t h e m a x i m u m w a v e o r -

b i t a l v e l o c i ty in t h i s f o r m u l a t i o n . T h e c o e f f i c ie n t C r ( d e f i n e d i n t h e r e l a t io n -

sh ip zip = CfU~, w h e r e z is th e b e d s h e a r s tr es s a n d U b is th e m a x i m u m b e d

o r b i ta l v e l o c it y ) h a s th e s a m e d e f i n i t io n a s t h a t u s e d b y T h o r n t o n a n d G u z a

( 1 9 8 3 ) b u t is h a l f t h e m a g n i t u d e o f t h e c o e f f ic i e n t f u t i l i s e d b y D a l l y a n d

D e a n ( 19 85 ) . W a v e / c u r r e n t i n t e r a c t i o n m a y b e p a r a m e t e r i s e d b y a n a p p r o -

p r i a t e s e l e c t io n o f t h e c o e f f i c i e n t Cf, i f w a v e o r b i t a l m o t i o n is m u c h l a rg e r

t h a n t h e l o w - f r e q u e n c y c u r r e n t s ( e .g . B l a c k a n d M c S h a n e , 1 9 9 0 ) .

T h e r a d i a t io n s tr es s c o n c e p t w a s i n t r o d u c e d b y L o n g u e t - H i g g in s a n d S te w -

a r t ( 1 9 6 4 ) , w h o s h o w e d t h a t p r o g r e ss iv e w a v e s e n t e ri n g s h al lo w w a t e r in -d u c e a f lu x o f m o m e n t u m s h o r e w a r d s . F o r p u r e l y p r o g r es s iv e w a v e s ap -

p r o a c h i n g a b e a c h a t a n a n g l e 0 t h e r a d i a t i o n s tr e ss e s a re :

Sxx = E ( 1 . 5 n - 0 . 5 ) + 0 . 5 E - n c o s 2 0 ( 4 )

Syy = E ( 1 . 5 n - 0 . 5 ) - 0 . 5 E . n c os 20

Sxy =S~,~ = E . n s i n 0 c os 0 ( 5 )

n = c g / c = 0 . 5 ( 1 + 2 k d / s in h ( 2 k d ) )

a n d c is t h e p h a s e s p e ed . T h e h e i g h t m o d e l w a s c o u p l e d w i t h a h y d r o d y n a m i c

m o d e l ( B l a c k a n d H e a l y , 1 9 88 ) w i t h t h e r a d i a t i o n s tr e ss b e i n g t h e p r i n c i p l e

d r i v i n g f o rc e .

MIXED LAGRANGIAN AND EULERIAN MODEL

E v e n w i t h t h i r d - o r d e r a c c u r a t e d e r i v a t i v e s , h e i g h t d i s s i p a t i o n e r r o r s w e r e

s i g n i f ic a n t w h e n s o l v in g t h e h e i g h t p r o p a g a t i o n E q . 1 o n a n E u l e r i a n f in i t e

d i f f e r e nc e g r i d , pa r t i c u l a r l y on a c oa r s e g r i d o f m a ny c e ll s. M or e o ve r , t he s ha r ph e i g h t d i s c o n t i n u i t y at t h e b r e a k e r z o n e r e q u i r e d s p e c ia l t r e a t m e n t - - a t l ea s t

Page 6: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 6/33

318 K.P. BLACKAND M.A. ROSENBERG

a t h ir d - o r d e r a c c u r a t e d e r iv a t i v e a p p r o x i m a t i o n w a s n e e d e d t o m i n i m i s e t h e

z i g -z a gg i ng o r i n s t a b i l i t y i n t he s o l u t i on ( B l a c k a n d H e a l y , 1988 ) .

L a g r a n g i a n m e t h o d s e l i m i n a t e th e s e p r o b l e m s , a n d a r e a n a t u r a l s e l ec ti o n

f o r s h al lo w b e a c h m o d e l li n g , a s w e r e t h e r a y t r a c k in g p r o c e d u r e s o f M u n k a n d

A r t h u r ( 1 9 52 ) . In p a r t i c u l a r , i n d i v i d u a l w a v e s n e e d t o b e t r a c k e d i n s p a c e tok n o w i f t h e y h a v e b r o k e n f u r t h e r o f fs h o re . T h e s im p l e s t m e t h o d o f a c h i e v i n g

t h i s is t o a s s i gn a t r ue o r f a l s e f la g t o i n d i c a t o r " pa r t i c l e s " r e p r e s e n t i n g e a c h

w a v e e n t e r i n g t h e o f f s h o r e b o u n d a r y . T h e f l a g c a r r i e d b y t h e p a r t i c l e t h e n

m o v e s s h o r e w a r d s a l o n g t h e w a v e c h a r a c t e r i s ti c a t w a v e g r o u p s p e e d s , a n d i ts

c o n d i t i o n ( b r o k e n o r n o t ) is u p d a t e d a s it p r o g r es s es . A n a t u r a l e x t e n s i o n o f

t h i s m e t h o d u t i li s e s a s e c o n d i n d i c a t o r c o n t a i n i n g t h e w a v e h e i g h t , w h i c h a ls o

m o v e s s h o r e w a r d s a t p h a s e v e l o c i ti e s.

B y i n c o r p o r a t i n g th e s e p r in c i p l es , a m i x e d L a g r a n g i a n / E u l e r i a n s c h e m e w a s

d e v e l o p e d . T h e h e i g h t t r a n s f o r m a t i o n w a s t r e a te d u s i n g a L a g r a n g ia n s c h e m e ,w h i le t h e m o r e s m o o t h l y v a r y i n g v e l o c i ti e s a n d a n g le s w e r e t r e a t e d o n a E u -

l e r ia n f i n it e d i f f e r e n c e g r id . T h i s s c h e m e a v e r t e d t h e n e e d f o r a n y f i n i te d i f-

f e r e n c e a p p r o x i m a t i o n s f o r t h e h e i g h t . T h e s o l u t i o n w a s e x a c t i n t h e s e n s e

t h a t t h e i n d i c a t o r p a r t i c l e s h a d k n o w n p o s i t i o n s , h e i g h t s a n d h i s t o r i e s , a n d

n u m e r i c a l d i ss i p a ti o n o f h e ig h t o n t h e E u l e r i an g r i d w a s e l i m i n a t e d .

L a g r a n g ia n s c h e m e

I n o n e d i m e n s i o n , t h e p a r t ic l e p o s i t io n w a s u p d a t e d a t e a c h t im e s te p :

X 2 = X 1 --~ ( U - ~ C gC O S O)At ( 6 )

w he r e X 1 i s t he i n i t i a l pos i t i on , X 2 i s t he f i na l pos i t i on , a f t e r t i m e s t e p z l t .

A d v e c t i o n e r r o r s i n t r o d u c e d b y t h is f ir s t- o r d e r s c h e m e c a n b e r e d u c e d w i t h

h i g h e r o r d e r a c c u r a te a d v e c t i o n m e t h o d s ( e.g . B l a c k a n d G a y , 1 9 9 0 ) . H o w -

e v e r , c o n s i d e r a t i o n o f e rr o r s r e l a t e d to u n c e r t a i n t i e s i n t h e g r o u p s p e e d i n t h e

s u r f z o n e ( T h o r n t o n a n d G u z a , 1 9 83 ) s u g g e s t ed t h a t h i g h e r - o r d e r s o l u t io n s

m a y n o t b e w a r r a n t ed .

J o n s s o n ( 1 9 9 0 , e q . 6 0 ) p r e s e n t e d t h e e q u a t i o n f o r w a v e h e i g h t t r a n s fo r -m a t i o n ( f o r in i t i a l h e i g h t H i ) i n a c u r r e n t a l o n g a w a v e r a y w h i c h is:

H / H i = K c K s K ra K f ( 7 a )

w he r e K c is t he D op p l e r c oe f f i c i e n t , K s i s t he s h oa l i ng c oe f f i c i e n t , K ra i s t he

r e f r a c t i o n c o e f f i c i e n t a n d K f is t h e f r i c ti o n c o e f f i c ie n t . I n o n e d i m e n s i o n

K ra = 1 , a n d w e t r e a t f r i c t i on s e pa r a t e l y , s o t he e qu a t i o n r e du c e s to :

H 2 = H I" ( a 2/ a~ )1 /2 . ( Cgal Cga2 1/2 (7b)

w he r e a bs o l u t e g r o up s pe e ds C gal a n d Cga2 a n d t he r e l a t i ve f r e que nc i e s a~ a nd(72 a t t he i n i t i a l a nd f i na l pa r t i c l e pos i t i ons a t e a c h t i m e s t e p w e r e f oun d b y

Page 7: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 7/33

SEMI-EMPIRICAL TREATMENT OF WAVE TRANSFORMATION 319

i n t e r p o l a t i o n o f v a lu e s p r e v i o u s l y s t o r e d a t th e c e l l m i d - p o i n t s o n t h e E u l e r-

i a n g r i d .

( T h e r e i s a n a l t e r n a t i v e t o t h is f o r m o r e c o m p l e x s i t u a ti o n s . S t ri c tl y , t h e

p a r t ic l e s o n l y i n d i c a t e t h e r a y p a t h a n d c a r r y a h e i g h t . E n o u g h i n f o r m a t i o n is

s t o r e d o n t h e t w o - d i m e n s i o n a l E u l e r i a n g r i d t o m a k e i t p o s si b le t o s o l v e f o rt h e r e f r a c t i o n c o e f f i c ie n t b y g r o u p i n g a ll t e r m s n o t d e p e n d e n t o n H ( i. e . n o n -

a d v e c t i o n t e r m s ) i n e q . 1 a n d i n t e r p o l a t i n g t h e r e su l t at t h e p a r ti c l e p o s i t io n .

T h i s i n t e r p o l a t e d v a l u e c a n t h e n b e u s e d t o u p d a t e t h e h e i g h t . W h i l e t h i s p r i n -

c ip l e w a s a p p l i e d i n t h e t w o - d i m e n s i o n a l L a g r a n g i a n / E u l e r i a n m o d e l , th e r e -

s u i ts a r e n o t d i s c us s e d i n t h i s pa pe r , s e e be l ow . )

T h e h e i g h t f o u n d w i t h e q . 7 w a s s u b s e q u e n t l y a d j u s t e d f o r b e d f r i c ti o n a n d

b r e a k i n g . F r o m e q s. 1 a n d 3 , t h e h e i g h t a d j u s t m e n t d u e to f r i c ti o n i n a m o d e l

t i m e s t e p A t w a s A H = FfAt. T h e a d j u s t m e n t d u e t o b r e a k i n g i s d e s c r i b e d la t er

( e q . 2 5 ) . T o i n t r o d u c e t h e r a d i a t i o n s tr es se s i n to t h e c o u p l e d h y d r o d y n a m i cm o d e l , t h e h e i g h t w i t h i n e a c h g r i d c e ll w a s t a k e n a s th e a v e r a g e h e i g h t o f th e

p a r t ic l e s c o n t a i n e d t h e r e i n .

I n d i c a t o r p a r ti c le s w e r e e l im i n a t e d ( i ) o n c e t h e y p a ss e d o u t o f t h e g r id o r

i n t o a d r y c e ll o n t h e b e a c h f a c e; o r ( i i ) i f t h e y m o v e d i n t o a c e ll w h e r e t h e

g r o u p s p e e d o f t h e w a v e s w a s le s s t h a n a n o p p o s i n g c u r r e n t s p e e d . I n th e l a t te r

c a s e , t h e p a r t i c l e s w e r e a n n i h i l a t e d o n t h e a s s u m p t i o n t h a t t h e w a v e e n e r g y

w o u l d b e d i s si p a te d b y b r e a k i n g t u r b u l e n c e .

E U L E R I A N M O D E L S

W ave angle

T h e w a v e a n g l e w a s o b t a i n e d f r o m t h e z e r o v o r t i c i t y e q u a t i o n f o r w a v e

n u m b e r :

0 _ _ ( I k l s in 0) - ~ ( Ik l co s 0 ) = 0 ( 8 )0x y

T h e w a v e / c u r r e n t i n t e r a c t i o n is i m p l i ci t l y i n c l u d e d i n t h e v a l u e o f k w h i c hd e p e n d s o n c u r r e n t s tr e n g t h a n d t o t a l d e p t h . T o s o l v e f o r t h e a n g l e , E q . 8 w a s

w r i t t e n i n t h e f o r m :

0A 0B- - - - - = 0 ( 9 )0x 0y

a n d s o l v e d u s i n g t h e s p a c e - c en t r e d m i x e d i m p l ic i t s c h e m e r e c o m m e n d e d b yH a r d y a n d K r a u s ( 1 9 88 ) . T h a t i s:

A xAi , j=Ai_ l , j+-~ , . [ (1 - -a) (Bi_ l , j+l -Bi_ l , j_ l )+a(Bg , j+l -B i ,~_ l )] ( 1 0 )

~ y

Page 8: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 8/33

320 K.P. BLACK AND M.A. ROSENBERG

w h e r e i i s t h e o n / o f f s h o r e g r i d ce ll s u b s c r ip t ( i n c r e a s in g s h o r e w a r d s ) a n d j is

d i r e c t e d lo n g s h o r e . T h e c o e f f i c i e n t " a " w a s s e t t o 0 .5 w h i c h c e n t r e s t h e y d e -

r i v a ti v e s in t h e x d i r e c t i o n . W e a d d e d a s m o o t h i n g fa c t o r ( w h i c h m i m i c s di f-

f r a c t io n ) i n t h e f o r m o f a n e d d y v i s c o si ty t e r m :

A'c~ =A i , j + N A [A i_ ~,j +A ~,j_ 1 +A~,~+ 1 - 3 .Ai,~] ( 1 1 )

w h e r e N~, w a s a s e l e c t e d c o e f f ic i e n t ( s e e la t e r ) . T h i s a d j u s t m e n t o c c u r r e d a f t e r

e a c h i t e r a t i o n a t e a c h c e ll . T h e s o l u t i o n m a r c h e s f o r w a r d f r o m o f f s h o r e , i te r -

a t i n g e a c h r o w u n t i l c o n v e r g e n c e , t y p i c a l l y a f t e r 3 - 4 i t e r a t io n s . T h e n :

0~,~ = s in - ~ Ai,~ /ki , j ) ( 12 )

T w o - d i m e n s i o n a l h e ig h t s i m u l a t i o n s

W h i le a L a g r a n g i a n / E u l e r i a n s c h e m e w a s d e v e l o p e d in t w o d i m e n s i o n s , a

E u l e r i a n s c h e m e w a s u s e d i n t h e t w o - d i m e n s i o n a l s i m u l a t i o n in t h is p a p e r

( T a b l e 1 ) b e c a u s e th e d a t a d i d n o t i n c l u d e w a v e b r e a k i n g o r w a v e / c u r r e n t

i n t e r a c ti o n . N o c u r r e n t m e a s u r e m e n t s w e r e a v a i la b l e f or v a l i d a t io n s o t h e

w a v e / c u r r e n t i n t e r a c t i o n w a s n e g l e c t e d f o r t h is c a se . T h u s , t o f i n d t h e w a v e

h e i g h t i n t w o d i m e n s i o n s , t h e e n e r g y c o n s e r v a t i o n e q u a t i o n w a s w r i t t e n i n

t h e f o r m e m p l o y e d b y H a r d y a n d K r a u s ( 1 98 8 ):

~ x ( F C os O ) + ~ ( F s in O ) = - F b ( 1 3 )

w h e r e F = E . Cg. H e i g h t w a s f o u n d o n a E u l e r i a n g r i d u s i n g t h e s a m e n u m e r i c a l

t e c h n i q u e s a p p l i e d t o f i n d t h e a n gl es . T h e d i s s i p a t i o n d u e t o f r ic t i o n w a s

F b = P 6 @ [H ~ o / s in h ( k d ) ]3 ( 1 4 )

a n d , i n f i n i t e d i f f e r e n c e f o r m :

F ~ i , j = ( F b i , j + F ~ i _ , ,~ ) / 2 ( 15 )T o i n c l u d e t h e w a v e / c u r r e n t i n t e r a c t i o n o n a E u l e r i a n gr id , t h e " w a v e a c -

t i o n " ( D a l r y m p l e , 1 9 88 ; J o n s s o n , 1 9 9 0 ) w a s s u b s t i t u t e d f o r F i n E q . 1 3.

H o w e v e r , n o r e s u l t s a r e p r e s e n t e d f o r th i s c a se .

H y d r o d y n a m i c m o d e l

T h e E u l e r ia n h y d r o d y n a m i c m o d e l is d e s c r ib e d b y B l a ck a n d H e a l y ( 1 98 8 ).

T h e m o d e l s o lv e s t h e tw o - d i m e n s i o n a l e q u a t i o n s f or m o m e n t u m a n d c o n ti -

n u i t y t o f i n d f lo w v e l o c it ie s a n d s e a le v e ls o n t h e s a m e g r i d e m p l o y e d f o r t h ew a v e a n g l e s.

Page 9: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 9/33

SEMI-EMPIRICAL TREATM ENT OF WAVE TRANSF ORMATION 321

FIELD MEASUREMENTS

During a 3-year f ield program, b oth the circulat ion and sedim ent transport

on beaches were measured to facil i tate accurate calibrat ion of coupled beachdynamics numerical models (Black and Rosenberg, 1991 ). Relevant to this

paper are current and sea level time series of 17- or 34-minute duration re-

Fig. 2. Measurement platform at Apollo Bay. Instruments suspended from the front of he frame(from right to left) are capacitance wave probe, suspended sediment sampler, and current me-ter. The operators are measuring instrument elevations above the bed.

Page 10: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 10/33

K . P . B L A C K A N D M . A . R O S E N B E R G

V I D E O

I - W A V E P R O B E I ]

322

~ (3,5

E~ 0 . 3. d

I JJ 0 . 1>~__.1 -0 .1

~ -o.atl J~ - 0 . 5

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0

T I M E ( r a i n )

Fig. 3. Verification of wave probe accuracy comparing sea levels recorded with the capacitance

probe and digiti sed video observations.

0 . ~ A P R I L I O , 1 9 8 7 R I L 1 3 , 1 9 8 7

- - 1

-2 ~ 1-4-5

- 6

0 4 0 8 0 1 2 0 1 6 0 0 4 0 8 0 1 20 16 1

M~ ~ ~ I A R C H 2 1 , 1 9 8 8

0 4 0 8 0 1 2 0 1 60

Fig. 4. Bathymet ry cross sections and ins tru ment positions for three wave height shoaling and

attenua tio n experiments. N.B. The wave height experiments were conducted on April 10 and

12, 1987 and March 22, 1988.

corded on a natural beach at Apollo Bay in southern Australia from 1987 to

1989. The beach was selected because of its nearly shore-parallel contours.

Instruments were deployed from alumi nium scaffolding frames, erected on

the beach and carr ied into the surf (Fig. 2). The frames were 1.83 m square

with hollow legs some 3 m tall, providing a work platform up to 6 m above

bed level, so that operations inside and outside the surf zone were possible in

most conditions.

Sea levels were record ed with capacitance-type wave probes which have a

thin teflon coated electrical wire along which the capacitance varies as the

immersio n level changes. One mat ter of concern was the selection of capaci-

tance wire thickness (Ti mpy an d Ludwick, 1983). If the wire is too thin,

stretching becomes a problem, causing zero shift and gain errors. Alterna-

tively, water drains o ff the wire more slowly as it thickens, causing the re-

sponse time o f the instrum ent to the red uced when the water level drops after

a wave has passed.

The instru ment beha viour was checked in the field by filming the mo tion

of water on the wave probe while simultaneously recording the instrume nt

output. Both the ins trument accuracy and the response time were found to be

of a high quality (Fig. 3 ). The response times were better in the field than instatic tank tests. The constan t vibration o f the wire by the waves apparently

Page 11: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 11/33

SEMI-EMPIRICAL TREATM ENT OF WAVE TRANSFORMATION 323

c a u s e d th e i m p r o v e m e n t i n t h e f ie ld , a n d m a y e x p la i n t h e a p p a r e n t d i sc r ep -

a n c y b e t w e e n o u r r e su l ts u s i n g w ir e o f 2 .6 3 m m d i a m e t e r a n d t h e w i re t h ic k -

n e ss r e c o m m e n d a t i o n o f T i m p y a n d L u d w i c k ( 1 98 3 ) .

A l l i n s t r u m e n t a t i o n w a s d e p l o y e d i n t h e m o r n i n g a n d r e t ri e v e d la t er i n t h e

d a y , w h i c h a l l o w e d t h e c a l i b r a t i o n t o b e c h e c k e d tw i c e d a i ly . B a t h y m e t r y ( F ig .4 ) w a s m e a s u r e d w i t h a l e ve l a n d h a n d - h e l d s ta f f e i t h e r d u r i n g t h e s a m e d a y

o r o n t h e d a y s p r i o r t o o r f o l lo w i n g t h e e x p e r i m e n t s . R e p e t i t i o n o f m e a s u r e -

m e n t s i n d i c a t e d a v e r t i c a l a c c u r a c y o f +_ 4 c m a t t h e o f f s h o re l o c a t io n s w h e r e

w a v e a c t i o n m a d e i t d i ff i c u lt t o h o l d t h e s t a f f v e r ti c al .

An alysis techniques

P r i o r t o a z e ro d o w n - c r o s s i n g a n a l y s i s , F o u r i e r b a n d - p a s s f i l t e r in g w a s a p -

p l i e d t o t h e m e a s u r e d s e a le v e l t i m e s e ri es t o e l i m i n a t e t h e l o w - f r e q u e n c y s u r fb e a t b e l o w 0 . 0 3 H z . F o r t h e w a v e b r e a k i n g c r i t e r i o n a s s e s s m e n t , n o h i g h -f re -

q u e n c y f i lt e ri n g w a s a p p l i e d . F o r t h e w a v e s h o a l i n g a s s e s s m e n t , w a v e s w i t h

f r eq u e n c ie s a b o v e 0 . 33 H z w e r e r e m o v e d b e c a u s e t h e v a r ia n c e o f w a v e s o f

s h o r t e r p e r i o d s c o u l d n o t b e a d e q u a t e l y s p e c i f i e d a t t h e 2 H z s a m p l i n g in t e r v a l.

A f t e r f i l t e r i n g , t h e t i m e s e r i e s w a s t h e n r e c o n s t r u c t e d u s i n g a n i n v e r s e

t r a n s f o r m a n d z e r o d o w n - c r o s s i n g s w e r e o b t a i n e d f r o m t h e f i l te r e d se ri es . T o

e l i m i n a t e s p e c tr a l c l i p p i n g o f t h e h e i g h t , t h e z e r o d o w n - c r o s s i n g h e i g h t s w e r e

o b t a i n e d f r o m t h e o r i g i n a l u n f i l t e r e d t i m e s e r i e s , b e t w e e n t h e z e r o d o w n -

c r o s s i n g t i m e s o b t a i n e d f r o m t h e f i l t e r e d r e c o r d s ( e .g . E b e r s o l e , 1 9 8 7 ) . T of u r t h e r r e d u c e t h e h e i g h t c l ip p i n g , a p a r a b o l a w a s f i t te d t h r o u g h t h e c r e s t a n d

t ro u g h o f e a ch w a v e , a n d t h e m a x i m u m a n d m i n i m u m s ea le ve l w a s o b ta i n e d

f r o m t h e s e c u r v e s . H o w e v e r , s o m e e r ro r , a s a f u n c t i o n o f s a m p l i n g in t e r v a l,

s ti ll o c c u r s i n v e r y s h a r p c r e s t e d w a v e s o r o n c o n c a v e w a v e f ac e s.

SHOALING

S v e n d s e n ( 1 9 8 4 ) i n t r o d u c e d t h e p a r a m e t e r B o g i v en b y:

B o = ( a z c /H z c ) 2 ( 1 6 )

w h e r e azc is t h e s t a n d a r d d e v i a t i o n o f t h e s e a le v e l r e c o r d ( w i t h z e r o m e a n )

b e t w e e n s u c c e s s i v e z e r o d o w n - c r o s s i n g s a n d H z c i s t h e c r e s t t o t r o u g h z e r o

d o w n - c r o s s i n g h e i g h t . B o i s a w a v e s h a p e f a c t o r w h i c h e q u a l s 0 . 1 2 5 f o r s i n u -

s o i d a l w a v e s a n d d i m i n i s h e s a s t h e w a v e s s h o a l . A s s u c h , B o c o u l d b e a p p l i e d

t o i n d i c a t e t h e d e v i a t i o n o f w a v e h e i g h t f r o m l i n e a r s h o al in g . F o r t h i s p u r -

p o s e , w e i n t r o d u c e t h e c o n c e p t o f a n e q u i v a l e n t h e i g h t , t h e h e i g h t o f a n e q u i v -

a l e n t s i n u s o i d a l w a v e , d e f i n e d a s:

Heq = 8~/2azc (1 7 )

Page 12: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 12/33

32 4 K.P. BLACKAND M.A. ROSENBERG

T h e e q u i v a l e n t h e i g h t is t h e c o u n te r p a r t o f t h e R M S h e i g h t o f a ti m e s er ie s ,

e x c e p t t h a t w e a r e t r e a ti n g th e r e c o r d o n a w a v e - b y - w a v e b a s i s. B y s u b s t i t u t io n :

Bo=0.125 ( H ~ q l H z c ) 2 (18)

Battjes and Janssen (1978) and Battjes and Stive (1984) found that lineartheory predicted the shoaling of RMS wave heights obtained from the time

series variance. Thus, if we can obtain a relationship between Hzc and Heq, itwould be possible to predict the shoaling of Heq using linear theory, and ob-tain the actual height from the known relationship. Data from three ApolloBay records (Tables 2 and 3 ) each containing 34-minute simultaneous time

T A B L E 2

D a t a u t il i se d : ( a ) r u n n u m b e r ; ( b ) d a t e ; ( c ) n u m b e r o f d a t a p o i n ts ; ( d ) s a m p l i n g r a t e ( H z ) ; ( e )n u m b e r o f w a v e p r ob e s ; ( f ) p e a k s p e c t ra l p e r i o d ( s ) ; ( g ) G o d a ' s s p e c t r a l p e a k e d n e s s p a r a m e t e r a t

t h e o f fs h o r e p r o b e ; ( h ) w i n d s t r e n g th a n d d i r e c t i o n ; ( i ) b a t h y m e t r y s u r v e y

( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g ) ( h ) ( i )

Wave height shoaling and attenuation experimentsAP I 2 0 4 1 1 2 A p r 8 7 4 0 9 6 2 3 1 4 .2 2 .0 9 s t r o n g , o f f sh o r e 1 0 , 1 3 Ap r

AB2 2 0 3 1 2 2 M ar 8 8 4 0 9 6 2 3 1 2 .8 1 .2 3 l i g h t , o n sh o r e 2 1 M ar

A PI 0 0 4 5 1 0 Ap r 8 7 4 0 9 6 4 3 1 0 .0 0 .9 7 l i g h t , o n sh o r e 1 0 Ap r

Breaking criterion experimentsAY2 0 0 4 1 2 0 Ap r 8 9 2 0 4 8 2 3 1 3 .7 1 .1 4 ca lm 2 0 Ap r

AY 2 0 0 4 3 2 0 Ap r 8 9 2 0 4 8 2 3 1 3 .6 1 .0 6 ca lm 2 0 Ap r

AY 2 0 0 4 4 2 0 Ap r 8 9 4 0 9 6 4 3 1 2 .9 1 .4 7 ca lm 2 0 Ap r

AY 2 0 0 4 5 2 0 Ap r 8 9 4 0 9 6 4 3 1 3 .9 1 .2 8 ca lm 2 0 Ap r

T A B L E 3

W a v e h e i g h t s h o a l i n g a n d a t t e n u a t i o n e x p e r i m e n t s . W a v e p r o b e l o c a t i o n r e l a t i v e t o t h e b r e a k p o i n t,

a p p r o x i m a t e h o r i z o n t a l d i s ta n c e ( m ) o f p r o b e f r o m t h e a v e r a g e b r e a k p o i n t p o s i t i o n ( n e g a t i v e i s

o f f sh o r e o f t h e b re a k p o i n t ) , a n d m e a n w a t e r d e p t h ( m )

R u n L o c a t i on D i s t a n c e D e p t h

A P 1 2 0 4 1 P r l o f f s h o r e - 3 0 2 .3 1

AP 1 2 0 4 1 Pr 2 b r eak p t 0 1 .1 7

AP 1 2 0 4 1 Pr 3 in sh o r e 3 5 0 .9 6

A B 2 2 0 31 P r l o f fs h o r e - 2 6 2 .3 5

AB 2 2 0 3 1 Pr 2 b r eak p t 0 1 .4 9

AB 2 2 0 3 1 Pr 3 in sh o r e 4 6 1 .0 3

AP 1 0 0 4 5 Pr l o f f sh o r e - 1 5 1 .9 0

A P 1 0 0 4 5 P r 2 i n s h o r e 2 0 0 . 7 4

A P I 0 0 4 5 P r 3 i n s h o r e 5 0 0 . 48

Page 13: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 13/33

SEMI-EMPIRICAL REATMENTOF WAVETRANSFORMATION 325

s e ri es f r o m t h r e e w a v e p r o b e s , l o c a t e d o f f s h o re , n e a r t o a n d i n s i d e t h e b r e a k e r

z o n e , w e r e a g g r e g a t e d to s e e k a u n i v e r s a l r e l a t i o n s h i p b e t w e e n H zc a n d H e q.

Equ ivalent height

Hzc/He, w a s f o u n d t o b e l i n e a r l y d e p e n d e n t o n b o t h Yzc a n d y~q ( F ig s . 5 a n d

6 ) , w h e r e Fzc=H~c/dw n d ye,=He,~/dww h i l e dw i s t h e m e a n d e p t h o v e r t h e

w a v e c y c le . A s y i s a n i n d i c a t o r o f t h e w a v e s h o a li n g , t h e r e l a t i o n s h i p w o u l d

s e e m t o b e a n e x p e c t e d re s ul t. H o w e v e r , t h e d a t a i n c l u d e s m e a s u r e m e n t s f r o m

a w i d e v a r i e t y o f l o c a t i o n s ( i n s id e , o u t s i d e a n d a t t h e b r e a k p o i n t ) a n d t h e

g e n e r a l a p p l i c a b i l i t y s e e m s s u r p r i s in g . T h e b e s t f i t l in e a r c u r v e i n v o l v i n g Yzc

w a s :

Hzc =H eq ( 1 .03 + 0 .7 1 y zc ) ( 1 9 )

w i t h c o r r e l a t i o n c o e ff i c ie n t r = 0 .6 5 a n d N = 1 75 5 d a t a p o i n t s . F o r g e n e r a l a p -

p l i c a t i o n , a r e l a t i o n s h i p a s a f u n c t i o n o f Yeq i s r e q u i r e d , a s ~'zc i s a n u n k n o w n

A L L P R O B E S : A P 1 2 0 4 1 A B 2 2 0 3 4 A P 1 0 0 4 1

B A N D P A S S F I L T E R E D : 0 . 0 3 t o 0 . 3 3 H z

2 . 5

2 , 0

* ~ , , ~ - I I ° o~

o . ._ .o , : . . . ~ : ~ , ¢ ~ _ ~ ,

1 .5 . " :~ ~ ; ~ o ~ ~

. . - ' . . . ~ ~ , ~

~ . . ~ o~ . 0 ~ ~ " . "

~.~ . . . . ' . . " •

" .

- ~ ~

e e

0 . 5 . ' ~ ~ I , ~ , t

~ ~ oA

~ ~ o

B ° ~ ~ ' o ~, . 0 , • . o o ~ 0 ~ o

. - ° . . . ~_ : ~ r o

~ ~ ~ ~ ~ ~

~ ' : . .

0 . 6 0 .8 1 . 0

H z c / d ~ ,

F i g . 5. T h e r a t i o o f z er o d o w n - c r o s s i n g h e i g h t o v e r e q u i v a l e n t h e i g h t (H=/H~)v e r s u s t h e r a t i o

o f z er o d o w n - c ro s s in g h ei g h t o v e r w a t er d e p t h ( H = / d w ) .

Page 14: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 14/33

326 K.P. BLACKANDM.A.ROSENBERG

2 .5

2 ~ )

1 .5

1 .0

A L L P R O B E S : A P 1 2 0 41 A B 2 2 0 3 4 A P 1 0 0 4 1

B A N D P A S S F IL T E R E D : 0 . 0 3 t o 0 . 3 3 H z

o o=

t ==°

~o =p=

~ °=~

° ~ : . ~ .~ ,

,~

°o~,°, o • o " eqn (2O b)o

• : o . : ' ~ . . . , . : . .e..:~ ,~: °~0 .- ~ . "=o . . o

~ . 7 . ~ , .g ~ : ; ~ . ~ , . '~ . r . . . " ,=~= A; " "~ .~ ~ 0%~ ~ • ~

= . ~ g ~ . "

. . . .

~ - ~. ~ " . ~ : . . o

a

~ o

0 5 0 . 0 0 . 2 0 . 4 0 . 6

H e q / d ~

Fig. 6. The ratio of zero down-cros sing height over equiva lent height (Hz¢/H~q)versus the ratio

of equivalent height over water d epth (Heq/d~,) .

w h e n t h e s h o a l i n g is p r e d i c t e d b y a p p l y i n g l in e a r t h e o r y . T h e b e s t f it e q u a t i o n

in v o lv in g ~'eq was :

Hzc = H eq ( 1 .07 + 0 .76~,eq) (2 0 a)

w i t h r = 0 . 4 5 a n d N = 1 75 5. A l t h o u g h t h e d a t a i s s c a t te r e d , th i s c o r r e la t i o n is

s i g n i f i c a n t a t th e a = 0 . 0 0 5 l e v e l o f s i g n i f i c a n c e ( F r e u n d , 1 9 74 , p . 4 2 8 ) . F o r

w a v e s o f sm a l l a m p l i t u d e w e c a n e x p e c t Hzc t o e q u a l Heq n d e e p w a t e r. T h el i n e a r c u r v e w h i c h p a s s e s t h r o u g h t h i s o r i g i n is:

H zc = H e q ( 1 - t- 1.05 ~'eq ) ( 2 0 b )

T h e s e E q s . 2 0 a a n d b r e l a t e t h e s h o a l i n g o f H ~m s, p r e d i c t a b l e w i t h l i n e a r t h e -

o r y ( B a t t je s a n d J a n s s e n , 1 97 8 ) , t o t h e a c t u a l m e a s u r e d w a v e h e i g h t, in c l u d -

i n g t h e n o n - l i n e a r e n v i r o n m e n t n e a r t h e b r e a k p o i n t .

T h e v a l i d i ty a n d t h e i m p o r t a n c e o f t h i s r e su l t a r e d e m o n s t r a t e d la t e r in t h e

p a p e r w h e n a n u m b e r o f c a s e s tu d i e s a re n u m e r i c a l l y s im u l a t e d . W e f i n d t h a t,

a l t h o u g h t h e r e is c o n s i d e r a b l e s c a t te r i n t h e d a t a ( F ig s . 5 a n d 6 ) , t h e l i n e a rb e s t f it E q . 2 0 p r o v i d e s a h i g h l y e f fe c t i v e m e a n s o f p r e d i c t i n g t h e s h o a l i n g f o r

Page 15: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 15/33

SEMI-EMPIRICAL TREATMENT O F WAVETRANSFORMATION 327

a ll c as e s t e st e d . T h e s e c a s es i n c l u d e d s m a l l- s ca l e l a b o r a t o r y m e a s u r e m e n t s ,

f ie l d m e a s u r e m e n t s a n d s t ee p , s h o a l i n g c n o i d a l w a v e s . I t m a y b e p o s s ib l e t o

r e f in e E q . 2 0 b y a d d i n g m o r e d a t a f r o m a v a r ie t y o f c a se s . M o r e o v e r , t h e

i n t e r c e p t in E q . 2 0 a m a y b e a f u n c t i o n o f t h e d e e p - w a t e r w a v e s t e e p n e s s a n d

f u r t h e r t h e o r e t i c a l d e v e l o p m e n t , s u c h a s t h e a d d i t i o n o f a S t o k e s s te e p n e s st e r m , m a y b e p o s s i b l e . I n t h i s p a p e r , h o w e v e r , w e a s s e s s t h e a p p l i c a b i l i t y o f

t h e b e s t f i t c u r v e b y s i m u l a t i o n o f a n u m b e r o f d if f e r e n t sh o a l i n g c a se s. T h e

s u c c e s s o f th e s e t e s t s s u g g e s ts t h a t t h e e s s e n t i a l b e h a v i o u r o f s h o a l i n g w a v e s

is e m b e d d e d i n t h e e m p i r i c a l r e su l t, a n d t h e p r o c e s s e s c a u s in g t h e s c a t t e r ar e

s e c o n d a r y f ac t o rs .

S E L E C T I O N O F A B R E A K I N G C R I T E R I O N

A l t h o u g h m a n y r e s e a rc h e r s h a v e e x p e n d e d c o n s i d e r a b l e e f fo r t t o s p e c if y a

w a v e b r e a k i n g c r i t e r i o n , t h e v a r i a b i l i t y i n t h e i r s e l e c t i o n s j u s t i f i e d f u r t h e r i n -

v e st ig a ti o ns . F i e l d m e a s u r e m e n t s o f i n d i v i d u a l p l u n g i ng w a ve s , m e a s u r e d a t

A p o l l o B a y ( T a b le 2 ) w e r e e x a m i n e d w i t h l ab o r a to r y d a t a o f S e y a m a a n d

K i m u r a ( 1 98 8 ) a n d W a l k e r ( 1 9 76 ) . W a v e h e i g h t s a t t h e b r e a k p o i n t H b w e r e

c o m p a r e d w i t h t h e h e ig h t s p r e d i c t e d by s e v e ra l c o m m o n l y e n c o u n t e r e d

b r e a k i n g c r it er ia . T h e s e w e r e M c C o w a n ( 1 8 9 4 ) , M i c h e ( 1 9 4 4 ) , G o d a ( 1 97 0 ),

W e g g e l ( 1 9 7 2 ) , M a d s e n ( 1 9 7 6 ) a n d B a t t je s a n d J a n s s e n ( 1 9 78 ) , s ee T a b l e

4 .

T h e A p o l l o B a y d a t a w a s r e c o r d e d o n A p r i l 2 0 , 1 9 8 9 w h e n w i n d c o n d i t i o n sw e r e c a lm ( T a b l e 2 ) . S e a l e ve l s w e r e m e a s u r e d a t t h r e e c a p a c i t a n c e p r o b e s

s p a c e d o v e r 1 0 m , e r e c t e d a l o n g t h e d i r e c t i o n o f w a v e t r a v e l a t t h e m o s t c o m -

m o n b r e a k p o i n t , a v i d e o f i lm o f t h e p r o b e s w a s s i m u l t a n e o u s l y r e c o r d e d .

F r o m t h e m a n y w a v e s r e c o r d ed , th e i n d i v i d u a l w a v e s w h i c h b ro k e a t t h e p o -

s i ti o n o f a n y o f t h e t h r e e p r o b e s , a s i d e n t i f i e d f r o m t h e v i d e o , w e r e u s e d . Z e r o

d o w n - c r o s s i n g a n d s p e c t ra l a n a ly s e s w e r e p e r f o r m e d o n t h e t i m e s e ri es t o o b -

t a i n r e l e v a n t w a v e i n f o r m a t i o n a n d t h e h e i g h t s o f t h e s e l e c te d w a v e s w e r e

T A B L E 4

W a v e b r e a k i n g c r i t e r ia w i t h t h e i r s h a l lo w w a t e r e q u i v a l e n t ~ bs = H b l d b , f o r a b e a c h s l o p e m = 0 . 0 2 a n d

w a v e p e r i o d T = 1 4 s ( a n d f o r w a v e s o f 0 ( 1 m ) f o r t h e c a se o f W e g g e l) . H b , d b a n d L b a r e t h e w a v e

h e i g h t, w a t e r d e p t h a n d w a v e l e n g t h a t b r e a k i n g a n d C ~, C2 a n d C a a r e c o n s t a n t s

A u t h o r B r e a k i n g c r i t e r i o n Ybs

M c C o w a n H b = 0 .7 8 db 0 .7 8

M i c h e H b = 0 . 1 4 2L b t a n h ( 2 n d b / L ~ ) O . 8 9

G o d a H b = C~ Lo [ 1 - e - c2~< ~+ ~ , ~ ) ' / 3 d b / L ° ] -I- C3 0 . 8 7

W eg g e l H b = 1 . 5 6 / { [ 1 / r i b + 4 3 . 7 5 ( 1 - - e - ~ 9 m ) / g T 2 ] [ 1 + e - ~ 9 . 5 m ] } 0 . 9 2

M ad s en H b = 0 . 7 2 ri b ( 1 + 6 . 4 m ) 0 . 8 1B a t t j e s a n d J a n s s e n H b = O . 1 4 2 L b t a n h [ O . 9 0 9 ( 2 n d b / L b ) ] 0 .81

Page 16: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 16/33

328 K.P. BLACKAND M.A. ROSENBERG

c h e c k e d a g a in s t t h e v i d e o r e c o r d , t o e n s u r e t h a t c r e s t e l e v a t io n s o f t h e s e -

l e c te d w a v e s w e r e p r o p e r ly s a m p l e d .

S e v e r a l d e f i n i ti o n s f o r w a t e r d e p t h a t b r e a k i n g ( d b ) a r e p o ss ib l e. T h e s e i n -

c l u d e ( i ) t h e m e a n d e p t h d m o v e r t h e e n t i r e t i m e s e r ie s , ( i i ) t h e m e a n d e p t h

dw o v e r t h e c y c l e o f t h e w a v e b e i n g c o n s i d e r e d , ( i i i ) t h e w a t e r d e p t h d t b e l o wt h e tr o u g h o f t h e w a v e a n d , f o r e x a m p l e , ( i v ) t h e d e p t h d s d e f i n e d b y S e y a m a

a n d K i m u r a ( 1 98 8 ) a s th e m e a n d e p t h p l u s h a l f t h e d i f fe r e n c e b e t w e e n c r e s t

a n d t r o u g h a m p l i t u d e . T h e e f f e c t iv e n e s s o f t h e b r e a k i n g c r it e r i a w a s f o u n d t o

d e p e n d o n t h e d e f i n i t i o n o f w a t e r d e p th . D i f f e r e n t f o r m u l a e r e q u i r e d d if fe r-

e n t d e f i n e d d ep t h s . T h e w a v e b r ea k i n g c r it e r ia o f M c C o w a n , M a d s e n a n d

B a t tj e s a n d J a n s s e n w e r e e f f e c t iv e w h e n dw w a s u s e d f o r db ( T a b l e 5 ) . T h e

M i c h e , G o d a a n d W e g g e l c r i t e r ia w e r e a ls o s u c c e ss f u l, b u t o n l y i f d t w a s u s e d .

T h e G o d a f o r m u l a w a s f o u n d t o o v e r - e s t i m a t e b r e a k i n g h e i g h t u s i n g d w .

S e y a m a a n d K i m u r a ( 1 9 8 8 ) s u g g e st ed n e w v a l u es o f t h e c o e ff ic ie n t s i n th eG o d a f o r m u l a a n d o u r r e s u l ts i n d i c a t e d c o e f f ic i en t s e q u a l to t h e m e a n o f t h o s e

o r i g in a l ly s u g g es te d b y G o d a a n d t h o s e b y S e y a m a a n d K i m u r a . T h e G o d a

f o r m u l a w a s c o m p a t i b l e w i th b o t h t h e s m a l l- sc a le la b o r a t o r y m e a s u r e m e n t s

a n d t h o s e f r o m A p o l l o B a y ( F i g . 7 ) w i th :

C~ = 0 . 1 6 5 , C2 = 1 .1 2, C3 = - 0 . 4 8 m + 0 . 1 ( 2 1 )

N o t a b l y , S e y a m a a n d K i m u r a u s e d d s, w h i c h w o u l d e x p la i n th e d i f f e r en c e

i n o u r r e su lts . H o w e v e r , t h e A p o l lo B a y m e a s u r e m e n t s w e r e n o t c o m p a t i b l e

w i t h t h e G o d a f o r m u l a w h e n d~ w a s u s e d . T h e a n a ly s is i n d i ca t e s a n e e d f o r ac o n s i s te n t d e f i n i ti o n o f th e w a t e r d e p t h .

O f th e b r e a k i n g c r i te r i a e x a m i n e d , t h r e e c o n t a i n a b e a c h s l op e d e p e n d e n c e

( M a ds e n , 1976; G o da , 1970 a n d W e ggel , 1972 ) a n d w e r e t he r e f o r e m o r e li ke ly

t o b e g e n e r a l l y a p p l i ca b l e . I n t h e n u m e r i c a l m o d e l , dw w a s m o r e r e a d i l y a v a il -

a b l e t h a n d r. T h e W e g g el f o r m u l a a p p e a r e d t o s y s t e m a t i c a ll y o v e r - e s t i m a t e

t h e w a v e h e i g h t a t b r e a k i n g u s i n g d w, s o i t w a s e l i m i n a t e d f r o m t h e c h o i c e s .

TABLE 5

Relative squared errors for comparison of predicted to measured Hb values for different breakingcriteria (N.B. Goda (1970) coefficients used in Goda). For the Apollo Bay data, bed slope=0.018

and 0.020, individual wave heights were used for Hb, and d~, was used for db. For the Walker (1976)

data, bed slope=0.033, individual wave heights were used for Hb, and dm was used for db

Breaking Apollo Bay Walker

criterion (1976)

McCowan (1894) 0.015 0.074

Miche ( 1944 ) 0.051 0.042Goda (1970) 0.036 0.034Weggel (1972) 0.070 0.016

Madsen (1976) 0.021 0.036Battjes and Janssen ( 1978 ) 0.020 0.073

Page 17: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 17/33

SEMI-EMPIRICAL REATM ENTOF WAVETRANSFORMATION 329

1.00 f

0.80

~ 0 . 60 ~

0 .40 Io~o

0.000.001

Gode (197 0} coeffs.used in GO

o

[s t imete ~ c~f l s , i nGO for be st f i t to date

o•

• . o .

• o ~ • ~ o ~ . . ° . - ~ o

,o° ° ,.o - . . . . ~ : , ° . o ° --. - . - - ~ . ~ " ¢ # ° ~ ° ~ •

. °-

i -_ . ., : ~ - ~Seyama/Kimure (198 8)coeffs, used in GO - -

I

0,01 0.1

d / L o

F ig . 7. D a t a f r o m A p o l l o B a y a n d S e y a m a a n d K i m u r a ( 1 98 8 ) c o m p a r e d t o t h e G o d a ( 1 9 7 0 )

w ave b reak i ng c r i t e r ion (G O ) , fo r th ree se t s o f coe f fi c ien t s . L o i s t he deep -w a t e r w ave l eng t h .

T h e G o d a f o r m u l a ( w i t h m o d i f i e d co e f fi ci e n ts ) a n d t h e M a d s e n f o r m u l a b o t h

p r o v i d e d a c c e p t a b l e p r e d ic t io n s , s o t h e s i m p l e r M a d s e n f o r m u l a w a s u ti li se d .

W h i l e th e M a d s e n b r e a k i n g c r it e r io n w a s e f fe c ti v e f o r t h e d a t a e x a m i n e d ,

o t h e r w o r k i n d i c a t e s t h a t p l u n g i n g c n o i d a l w a v e s a n d s o li ta r y w a v e s b r e a k

w h e n t h e h e i g h t t o d e p t h r a t i o i s l a r g e r t h a n t h e v a l u e s o b t a i n e d h e r e . T h e

d a t a o f B u h r H a n s e n a n d S v e n d s e n ( 1 9 7 9 ) a n d P a p a n i c o l a o u a n d R a i c h le n

( 1 98 7 ) i n d i c a te s a b r e a k i n g h e i g h t d e p e n d e n t o n U r s e l l n u m b e r a n d b e d s lo p e

w i t h ~, v a l u e s m o r e l i k e 1 . 0 - 1 . 2 ( c / f 0 . 8 - 0 . 9 ) o n b e d s l o p e s s i m i l a r t o t h o s ea t A po l l o B a y .

I n w a v e / c u r r e n t e n v i r o n m e n t s , th e b r e a k i n g h e ig h t v a ri e s w i t h th e c u r r e n t

s tr e n g th . R a t h e r t h a n s e e k a n e w f o r m u l a a n d t o m a i n t a i n c o m p a t i b i li t y ( s ee

b e l o w ) , w e u ti li se d t h e m e t h o d p r o p o s e d b y D a ll y a n d D e a n ( 1 9 8 6 ) . T h e

e q u i v a l e n t b r e a k i n g d e p t h deq w a s o b t a i n e d b y s o l v in g th e d i s p e r s i o n r e l a t io n :

c o 2 = g k t a n h ( k d eq ) ( 2 2 )

w h e r e k i s t h e w a v e n u m b e r p r e v i o u s l y d e t e r m i n e d u s i n g E q . 2 w h i c h i n -

c l u d e s t h e w a v e / c u r r e n t i n t e r a c t i o n a n d co i s t h e a b s o l u t e f r e q u e n c y , d eq r e -p l ac e s t h e a c t u a l d e p t h i n t h e M a d s e n b r e a k i n g c r it e ri o n . T h i s p r o v e d t o b e a

s e c o n d a r y m o d i f i c a t i o n fo r th e d a t a c o n s i d e r e d . F u r t h e r e v a l u a t i o n o f w a v e /

c u r r e n t i n t e r a c t i o n a t b r e a k i n g i s u n f o r t u n a t e l y b e y o n d t h e r e a lm s o f t h is

p a p e r .

P R E D I C T I O N S O F H E I G H T A T T E N U A T I O N O F B R O K E N W A V ES

D a l l y et a l. ( 1 9 8 4 ) p r o p o s e d t h a t t h e r a t e o f b r e a k i n g w a v e h e i g h t d e c a y is

d e p e n d e n t o n t h e d i f fe r e n c e b e t w e e n t h e a c t u a l en e r g y f lu x ( E ) a n d a s ta b lee n e r g y f lu x ( E s t ) . T h i s m e a n s t h a t t h e h e i g h t o f b r e a k i n g w a v e s a p p r o a c h e s a

Page 18: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 18/33

330 K.P. BLACK AND M.A. ROSEN BERG

s t ab l e w a v e h e i g h t H ~t w h i c h i s s a i d t o b e g o v e r n e d b y t h e l o c a l w a t e r d e p t h .

T h e s t a b l e h e i g h t c a n b e d e f i n e d , t h e r e f o r e , a s:

H s t = V d (23)

w h e r e F is a d i m e n s i o n l e s s co e f f ic i e n t. A f t e r i n t r o d u c i n g E = 0 . 1 2 5 p g H 2 a n d

E st= 0.125pgH Z~ t, t he d i s s i pa t i o n due t o b r e a k i n g F b ( E q . l a ) ob t a i n e d f r o m

t h e D a l ly e t a l. ( 1 9 8 4 ) f o r m u l a , w h i c h n e g l e c t s w a v e / c u r r e n t i n t e r a c t i o n , is :

F b = K c g [H2__~,2d2]2 d H L -- _ _

(24)

w h e r e K is a d is s i p a ti o n c o e ff ic ie n t. I n a w a v e / c u r r e n t e n v i r o n m e n t , w e a p -

p l ie d E q . 9 o f D a ll y a n d D e a n ( 1 9 8 6 ) w h i c h p r e d i c ts t h e a t t e n u a t i o n o f t h e

w a v e a c ti o n . M e a s u r e m e n t s i n d i c a t e F l i es n e a r 0 .4 0 , a l t h o u g h v a l u e s a s l a rg ea s 0 .5 h a v e b e e n u t i li s e d , a n d K = 0 . 1 5 - 0 . 2 0 ( D a l l y e t a l. , 1 9 8 4 ) .

T h e n u m e r i c a l a p p r o x i m a t i o n f o r t h e h e ig h t d is s ip a t io n i n o n e m o d e l ti m e

step i s :

c ~ A t K 2 2 2A H = ~ [ H - V d ] ( 2 5)

H o n t h e R H S o f E q . 2 5 i s c e n t e r e d i n th e m o d e l s p a ce s te p b y i t e r a ti o n o f :

H 2 = H , - C [ 0 . 2 5 (H 2 + H i ) 2 - / " 2 d 2 ] / d ( H 2 + H ~ ) ( 2 6 )

C i s t he c o ns t a n t C gcA tK , w he r e cgc i s g r o up s pe e d a t t he m i d - p o i n t o f t he s te p .

H ~ a n d H 2 a r e th e o l d a n d n e w h e i g h t s, r e s p e c ti v e ly . I t e r a t io n s c e a s e w h e n H 2

va r i e s by on l y a s m a l l a m ou n t ( < 0 .0001 m ), u s ua l l y a f te r 3 - 4 i t e r a t ions .

R e f o r m i n g o f w a v es

O n c e b r o k e n , a w a v e w i ll r e m a i n s o e v e n w h e n t h e h e i g h t t o d e p t h r a ti o i s

w e l l b e l o w t h e b r e a k i n g l im i t . T h i s f a c t o r n e g a t e s t h e u s e o f a s i m i l a r i t y l a wi n s i d e th e b r e a k p o i n t , b u t i t is i m p l i c i t to t h e D a l l y e t al. f o r m u l a t i o n , w h i c h

s ugges ts t ha t w a ve s c e a s e t o b r e a k on l y a f t e r t he i r he i gh t t o d e p t h r a t i o r e a c he s

t h e s t ab l e e q u i l i b r iu m v a l u e o f /" . H o w e v e r , i n a n u m e r i c a l m o d e l , i f t h e t i m e

s te p i s sm a l l o n h o r i z o n t a l b a t h y m e t r y o r o n s lo w l y s h o a li n g b a t h y m e t r y o n a

s a n d b a n k , t h e w a v e h e i g h t a p p r o a c h e s t h e s t a b l e v a l u e H s t a s y m p t o t i c a l l y ,a n d , i f f r ic t io n is lo w , th e w a v e s n e v e r r e f o r m . A f t e r c o m p a r i s o n o f m o d e l

s i m u l a t io n s w i t h d a t a , t h e f o ll o w i n g r e f o r m a t i o n c r i t e r i o n w a s c h o s e n :

H < 1 .0 2 /" d ( 2 7 )

f o r ci n g t h e w a v e s t o r e f o r m w h e n t h e i r h e i g h t w a s w i t h i n 2 % o f nst.

Page 19: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 19/33

S E M I - EM P I R I C A L T R E A T M E N T O F W A V E T R A N S F O R M A T I O N 3 31

B or e t heor y

B a t tj es a n d J a n s s e n ( 1 9 7 8 ) a s s u m e d t h a t th e d i s s i p a ti o n in b r o k e n w a v e s

w a s s i m i l a r t o t h a t o f a p e r i o d i c b o r e , a n d :

F b = o t f p n 2 / d ( 2 8 )

w h e r e c~ i s a c o n s t a n t o f o r d e r 1 a n d fp is t h e p e a k f r e q u e n c y o f t h e s p e c t r u m .

MOD EL CONFIRMATION

W e n e e d t o c o n f i r m t h e a p p l i c a b i li t y o f t h e a b o v e t h e o r y i n a v a r i e t y o f

c o n d i t i o n s i n c l u d i n g t h e n o n - s t e a d y c a se . T h e n u m e r i c a l m o d e l i s e m p l o y e d

f o r t h i s p u r p o s e . T h r e e t y p e s o f c h e c k a re n e e d e d t o a s se s s t h e m e r i t s o f th ee m b e d d e d p r o c e d u r e s i n a n u m e r i c a l s i m u l a t i o n . T h e s e a re m o d e l v a li d a ti o n ,

w h i c h e n t a il s c h e c k i n g t h e m o d e l f o r c o d i n g e r ro r s; m o d e l c a l ib r a t io n , w h e n

t h e i n p u t p a r a m e t e r s , p h y s i c a l c o e f f ic i e n ts a n d e m p i r i c a l r e l a ti o n s h i p s a r e e s-

t a b l is h e d ; a n d m o d e l v e r i f ic a t i o n w h i c h r e q u i r e s r u n n i n g t h e m o d e l u s in g di f-

f e r e n t b o u n d a r y d a t a , b u t l e a v i n g a ll o t h e r p a r a m e t e r s u n c h a n g e d t o e s t ab l is h

t h e u n i v e r s a l v a l i d i t y o f t h e s i m u l a t i o n .

T h e n u m e r i c a l m o d e l w a s s u c c e s sf u ll y v a l i d a t e d b y s i m u l a t i n g ca s es w i t h

k n o w n a n a l y ti c a l s o l u t io n s . T h e s e w i ll n o t b e r e p e a t e d h e r e b u t w e r e ( i ) s et -

u p a n d s e t - d o w n o n a p l a n e b e a c h , ( i i) t h e w a v e h e i g h t a t t e n u a t i o n s o l u t i o no f D a l l y e t al. ( 1 9 8 4 ) o n a p l a n e b e a c h , a n d ( i ii ) t h e s h o a l i n g p r e d i c t e d b y

l i n e ar th e o r y . T h e m o d e l w a s c a l i b ra t e d a n d v e r i f ie d b y tr e a t i n g m o r e c o m -

p le x e n v i r o n m e n t s o n a n a t u r a l b e a c h a n d f r o m t h e l a b or a to r y .

W e n e e d t o a ss e ss t h e m e r i t s o f ( i ) t h e e q u i v a l e n t h e i g h t s h o a li n g m e t h o d

( i i) t h e b r e a k i n g c ri t e r io n ( i ii ) t h e D a i l y e t a l. m e t h o d o n a w a v e - b y -w a v e

b a s is a n d ( i v ) t h e n e e d f o r i n c l u s i o n o f w a v e / c u r r e n t i n t e r a c t i o n in th e c a se s

t r e a t e d . T h e c o e f f i c i e n t s t o b e e s t a b l i s h e d w e r e t h e D a l l y c o e f f ic i e n t s K , F

( E q s . 2 3 a n d 2 4 ) , b e d f r i c t i o n c o e f f i c i e n t C f ( E q . 3 ) , e d d y v i s c o s i t y A H i n t h e

h y d r o d y n a m i c m o d e l ( B l ac k a n d H e a ly , 1 9 8 8 ), a n d s m o o t h i n g c o e ff ic i en t

N A i n t h e a n g l es s o l u t i o n ( E q . 11 ) . B e c a u s e o f t h e m u l t i p l e c o m b i n a t i o n s , w e

d e r i v e d t h e s e v a l u e s u s in g a s e n s i t i v it y a n a ly s i s b y v a r y i n g e a c h p a r a m e t e r

o n e a t a t i m e .

T h r e e d a t a s e t s f r o m A p o l l o B a y w e r e m o d e l l e d . T h e s e c o n t a i n e d t h e s i -

m u l t a n e o u s o u t p u t f r o m t h r e e w a v e p r o b e s , l o c a te d o u t s id e , n e a r t o a n d i n-

s h o r e o f t h e b r e a k p o i n t ( T a b l e s 2 a n d 3 ; F i g . 4 ) . T h e f i r s t t w o w e r e s a m p l e d

a t 2 H z , s o t h e t h i r d d a t a s e t, w i t h a 4 H z s a m p l i n g r a te , w a s s e l e c t e d t o e n s u r e

t h a t w a v e c r e st s w e r e b e i n g a d e q u a t e l y r e s o l v e d . T h e t i m e s e ri es w e r e s e l e c t ed

t o i n c l u d e a n a r r o w a n d a w i d e b a n d s w e ll ( T a b l e 2 ) , i n c o n d i t i o n s o f l o w o r

o f f s h o re w i n d s . T o a s se s s th e g o o d n e s s o f fi t o f th e m o d e l t o t h e m e a s u r e dt i m e s e r ie s , a r e l a t iv e s q u a r e d e r r o r w a s c a l c u l a t e d :

Page 20: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 20/33

332 K.P. BLACK AND M.A. ROSENBERG

~2=~(Hp - - n m ) 2 / ~ . , ( H m ) 2 (29)

w h e r e H p is th e p r e d i c t e d h e i g h t a n d H m i s th e m e a s u r e d h e ig h t .

A s t h e s h o a l i n g E q . 2 0 w a s d e r i v e d f r o m f ie l d d a ta , i ts a p p l i c a t i o n t o l a b o -

r a t o r y m e a s u r e m e n t s s h o u l d p r o v i d e a r o b u s t g e n e r a li ty te st . A c c o r d in g l y , w em o d e l l e d th e o n e - d i m e n s i o n a l m e a s u r e m e n t s o f w a v e h e ig h t s h o al in g a n d a t-

t e n u a t io n m a d e b y W a t a n a b e a n d D i b a j n i a ( 1 98 8 ) . T h e y d e v e l o p e d a n u -

m e r i c a l m o d e l w h i c h a p p l i e d t h e m i l d -s l o p e e q u a t i o n s ( W a t a n a b e a n d M a -

r u y a m a , 1 9 8 6 ) a n d s i m u l a t e d t h r e e l a b o r a t o r y c a s e s f o r v e r i f i c a t i o n . W e

u t i li s e d t h e i r C a s e 2 c o n f i g u r a t i o n o f tw o 1 : 2 0 p l a n e b e a c h e s s e p a r a t e d b y a

h o r i z o n t a l p l a t f o r m ( F i g . 8 b ) . T h i s t e st s e rv e d a d d i t i o n a l l y t o p r o v i d e a c o m -

p a r i s o n w i t h t h e r e s u l ts o b t a i n e d u s i n g t h e m i l d - s lo p e e q u a t i o n s .

C n o i d a l w a v e s h o a l i n g is a n a d d i t i o n a l c a se w o r t h e x a m i n i n g f o r i ts h i g h e r

o r d e r. T h u s , w e s im u l a t e d t h e m e a s u r e m e n t s o f B u h r H a n s e n a n d S v e n d s e n( 1 9 79 ) f o r c n o i d a l w a v e s p r o p a g a t i n g a n d b r e a k i n g o n a p l a n e 1 : 3 4 . 26 s l o p e

( F i g . 9 ) . C a s e 0 4 1 0 7 1 w a s m o d e l l e d , w i t h i n i t ia l w a v e h e ig h t o f 0 . 07 m a n d

p e r i o d o f 2 .5 s.

F i n a l ly , w e s o u g h t a d i f f i c u lt t w o - d i m e n s i o n a l t e st w h i c h i n c l u d e d s t r o n g

r e f r a c t io n , d i f f r a c t io n a n d s h o a l in g . F o r t h i s p u r p o s e , t h e e l l ip t i ca l s h o a l m o -

d e l le d b y H a r d y a n d K r a u s ( 1 9 8 8 ) w a s s e le c te d . H a r d y a n d K r a u s ( 1 9 8 8 )

u s e d t h i s d a t a t o e x a m i n e t h e r e l a ti v e m e r i t s o f l i n e a r a n d c n o i d a l w a v e t h e -

o r y , m a k i n g i t p o s si b le f o r u s c o m p a r e t h e n e w s h o a li n g m e t h o d w i t h c n o i d a l

w a v e t h e o r y te st s. T h e b a t h y m e t r y ( F ig . 1 0 ) w a s c o m p o s e d o f a f la t b o t t o m

( 0 .4 6 m d e e p ) o n w h i c h w a s p l a c e d a h a l f e l li p s o id w i t h m a j o r a n d m i n o r

s e m i - a x e s o f le n g t h 3 .9 6 a n d 3 .0 5 m . T h e e l e v a t i o n o f th e e l li p s o i d at i ts h ig h -

e st p o i n t a b o v e t h e b o t t o m w a s 0 .3 0 5 m , m a k i n g th e u n d i s t u r b e d w a t e r d e p t h

0 . 1 5 5 m a t th i s p o i n t . T h e w a v e s a p p r o a c h e d w i t h t h e i r c r e st s i n i ti a l ly p a r a ll e l

t o t h e l o n g e r a x is . W e m o d e l l e d t h e l a r g e s t w a v e h e i g h t C a s e M 11 c o n s i d e r e d

b y H a r d y a n d K r a u s ( 1 98 8 ) , w i t h H = 0 . 06 5 m a n d T = 1 .3 s, t o m a x i m i s e t h e

e f fe c t o f w a v e s h o a li n g , b u t t h e s e w a v e s d o n o t b r e a k o n t h e s h o a l. T h e m o d e l

p r e d i c t io n s w e r e c o m p a r e d w i t h d a t a m e a s u r e d a l o n g s e ct io n s p a ra ll el to t h e

l ong a x is o f t he s hoa l , i .e . , a c r o s s t he m i dd l e o f t he s hoa l , a nd a t 1 .5 m a nd 3 . 0

m l e e w a r d .

Application of the enhanced shoaling method and energy dissipation

T o a p p ly E q , 2 0 , t h e n u m e r i c a l m o d e l w a s u p g r a d e d a s fo llo w s . T h e s i m u -

l a ti o n s s t a r t a t t h e o f f s h o r e b o u n d a r y w i t h th e m e a s u r e d v a l u e o f H eq . T h e

s h o a l i n g o f H eq w a s s i m u l a t e d u s i n g l i n e a r t h e o r y ( E q . 7 ) . Hzc w a s o b t a i n e d

a t e a c h t i m e s t ep f r o m H eq w i t h E q . 2 0 . F r i c t i o n a l d i s s i p a t i o n w a s a p p l i e d t o

H zc a n d t h e a d j u s t e d H zc w a s e m p l o y e d t o d e t e r m i n e i f t h e b r e a k i n g h e i g h t

w a s e x c e e d e d a n d , i f so , t h e w a v e h e i g h t w a s a d j u s t e d a g a i n u s i n g E q. 2 5 .A f t e r s o m e m a n i p u l a t i o n o f E q . 2 0 , w e f in d :

Page 21: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 21/33

SEMI-EMPIRICAL REATMEN TOF WAVETRANSFORMATION 3 3 3

20

16

. - , .12

Ev

• r 8

4

0

• M e a s u r e d D a t a ( a

m L i n e a r S h o a l i n g

- - W a t a n a b e

• • • Une xplained

~ Shoal ing

~ I , , I ~ I , , , ~ l

O I I = ~ _ I ! ,,,-,,-:¢"/ ~ ~ ¥ ' "

_ 2 0 ] ~. : . ' . . : . ' . . ' . - : . ' . . / . . ' . ' . . ' . ' / . . : . ' . . : . ' / . ' / . . / . . ' ." - ' """ 0Z ~ : : ' . ' ~ 2 0

¢ ~ , , , :J " . . . . ( b )

20

16

,._. 12

E~ .~

,.r 8

4

0

• M e a s u r e d D a t a ( C )

- - E n h a n c e d s h o a l i n g I

6 4 2 0

X ( m )

F ig . 8 . W a t a n a b e a n d D i b a j n i a ( 1 9 8 8 ) C a s e 2 . ( a ) C o m p a r i s o n w i t h m e a s u r e m e n t s o f ( i ) t h e

W a t a n a b e a n d D i b a j n i a m i l d - s lo p e e q u a t i o n p r e d i c t i o n s a n d ( i i ) l i n e a r w a v e t h e o ry , ( b ) B a t h -y m e t r y , ( c ) C o m p a r i s o n w i th m e a s u r e m e n t s o f p r e d ic t io n s u s i n g t h e e n h a n c e d s h o a l in g m e t h o d

( E q . 2 0 a ) .

W a v e G e n e r a t o r

/

~ 14.78m ~ :: : 12.33m ,1

F ig . 9 . T h e e x p e r i m e n t a l s e t -u p o f B u h r H a n s e n a n d S v e n d s e n ( 1 9 79 ) .

Page 22: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 22/33

33 4 K.P. BLACKAND M.A. ROSENBERG

g ( m )

t~ 3 LeewardSide

I d=o . 45m

W A V E S

F ig . 1 0. T h e e l l i p ti c a l s h o a l m o d e l l e d b y H a r d y a n d K r a u s ( 1 9 8 8 ) .

Heq =0.5 [ -a d/ b+ ((ad/b)2+4dHzc/b) 1/2] (30)

where a, b are the gradient and intercept in Eq. 20, respectively. Heq was then

obtained from the adjusted Hzc using Eq. 30c in preparation for the next time

step.For the field data simulations, the equivalent height input at the offshore

boundary was obtained directly from the measured time series. For the labo-

ratory tests, the equivalent height was obtained by substituting the publishedheights and water depths into Eq. 30c. Linear shoaling and the equivalentheight procedure were both modelled in all the above tests for comparative

purposes.

M O D E L C A L I B R A T I O N - - -W A T A N A B E A N D D I B A J N I A L A B O R A T O R Y D A T A

The model was calibrated against the Watanabe and Dibajnia ( 1988 ) Case2 data and the most appropriate coefficients were found to be K=0.15,

F=0.35, Cf=0.01 andAH=0.1 m 2 s -1.Linear theory significantly under-estimated the measured shoaling (Fig. 8a)

but, with the addition of the enhanced shoaling (Eq. 20a), the maximumwave height was in good agreement with the measurements (Fig. 8c). TheWatanabe and Dibajnia data is periodic and measured in the laboratory, whilethe enhanced shoaling equation was derived from field data. The correspond-ence evident in the model calibration provides the first firm evidence of theusefulness of the enhanced shoaling technique for a wider variety of condi-tions than those measured. With the shoaling giving close agreement to the

measurements, breaking occurred at the measured location using the Madsenbreaking criterion.

Page 23: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 23/33

SEMI-EMPIRICAL TREATMEN T OF WAVE TRANSF ORMATI ON 335

T h e w a v e h e i g h t a t t e n u a t i o n p r e d i c t e d b y th e D a l l y et al. m e t h o d c o m p a r e d

w e l l w i t h t h e m e a s u r e m e n t s u s i n g D a l l y c o e ff ic i en t s K = 0 .1 5 , F = 0 .3 5 . T h e s e

a r e w i t h i n th e r a n g e r e c o m m e n d e d b y D a l l y e t a l. ( 1 9 8 4 ) a l th o u g h t h e v a l u e

o f F = 0 .3 5 i s l es s t h a n t h e v a l u e 0 . 4 5 o b t a i n e d b y E b e r s o l e ( 1 9 87 ) . T h e w a v e s

r e f o r m e d o n t h e h o r i z o n t a l p l a tf o r m ( F ig . 8 b ) a n d t h e n s h o a l e d o n t h e s ec -o n d b e a c h b e f o r e b r e a k i n g f o r t h e s e c o n d t i m e , a s m e a s u r e d . T h i s d i d n o t

o c c u r w i t h o u t th e r e f o r m a t i o n c r i te r i o n ( E q . 2 7 ) . T h e i n e x p li c ab l e w a v e

s h o a li n g o n t h e p l a t fo r m ( m a r k e d i n F ig . 8 a ) w a s n o t p r e d i c t e d b y th e m o d e l .

W e f o u n d t h a t A n h a d v e r y l i t t l e e f f e c t o n t h e s o l u t i o n a n d w e c h o s e t h e

v a l u e 0 .1 m 2 s - ~, w h i c h m i l d l y s m o o t h e d t h e v e l o c it ie s o n t h e f i n e n u m e r i c a l

g r id s u s e d . T h e l i m i t e d e f fe c t o c c u r s b e c a u s e t h e e d d y v i s c o s i ty i s o n l y o p e r-

a t in g o n l o w - f r e q u e n c y w a v e s o f l o w a m p l i t u d e .

F i g u r e 8 a i n d i c a t e s t h a t t h e m i l d - s lo p e e q u a t i o n s , a s a p p l i e d b y W a t a n a b e

a n d D i b a j n i a ( 1 9 88 ) , a p p e a r t o u n d e r - e s t i m a t e t h e w a v e h e ig h t s h o a l i n g a tt h e b r e a k p o i n t. C o n s e q u e n t l y , th e b r e a k p o i n t l o c a t i o n a n d b r e a k i n g cr it e-

r i o n a re a ff e ct ed . T h e W a t a n a b e a n d D i b a j n i a a t t e n u a t i o n p r o c e d u r e i n s i d e

t h e s u r f z o n e i n d u c e s w a v e h e i g h t d e c a y a t a s i m i l a r r a t e t o t h e D a l l y e t al.

f o r m u l a .

MODEL VERIFICATION

Cnoidal waves of Buhr Hansen and Svendsen

F o r t h e d i f f i c u lt c a s e o f c n o i d a l w a v e s h o a l in g , a g o o d f it t o t h e d a t a o f B u h r

H a n s e n a n d S v e n d s e n ( 1 9 7 9 ) w a s o b t a i n e d w i th th e e n h a n c e d s h o a li ng

m e t h o d ( E q . 2 0 b ; ( F i g . 1 l a ) . N o t a b l y , a b e t t e r f it o c c u r r e d i f t h e g r a d i e n t i n

E q . 2 0 b w a s in c r e a s e d t o a b o u t 1 .3 4 ( F i g . 1 l b ) . I n a ll o t h e r s i m u l a t io n s i n -

c l u d i n g t h e e l l ip t ic a l s h o a l ( b e l o w ) , t h e b e s t p r e d i c t i o n o f s h o a l in g o c c u r r e d

w i t h E q . 2 0 a e x c e p t f o r t h i s c n o i d a l w a v e te s t, w h e n t h e s t e e p e r c u r v e ( E q .

0 . 1 2

0 . O 8

0.04

0 . 0 0

0

. _ ~ - - _

- - M E~SUR~. M F . J~S

- - E N h A N C e D S ~ O m J N O

, 1 ~ 1 , 1

~ ~ ~

, I ~ L i I L N

1 6 2 0 2 4

X (m)

- - E N H~ NC F. D S H O A UN O

~ I ~ J I I I I I ~ I

4 8 1 2 1 6 2 0 2 4

× Im)

Fig. 11. Comparison of model predictions with cnoidal wave measurements of Buhr Hansen

and Svendscn (1979) Case 041071, (a) using Eq. 20b and (b ) with the gradient in Eq. 20bincreased to 1.34 from 1.05.

Page 24: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 24/33

336 K .P . B L A C K A N D M . A . R O S E N B E R G

2 0 b ) w a s n e e d e d . N o d i s t in g u i s h a b l e d i f f e r e n c e b e t w e e n t h e tw o E q s . 2 0 a a n d

b w a s e v i d e n t w i t h t h e A p o l l o B a y f ie ld m e a s u r e m e n t s .

T h e c n o i d a l w a v e h e i g h t w a s u n d e r - e s t i m a t e d u s i n g li n e a r th e o r y , a s ex -

p e c te d . H o w e v e r , i t w a s f o u n d t h a t a m o d i f i c a t io n o f t h e p o w e r i n th e s h oa l-

i n g E q . 7 b t o a b o u t 1 .2 ( f r o m 0 .5 ) g a v e a s i m i l a r r e s u lt to t h e e n h a n c e d s h o a l -i n g m e t h o d . T h i s s u g ge s ts a p o s s ib l e a l t e r n a t i v e e m p i r i c a l r e l a ti o n s h i p , o f t h e

f o r m o f E q , 2 0a , w h i c h r e l at es t h e s h o a li n g e q u a t i o n p o w e r ( i n s t e a d o f

H z c / H e q ) t o y . M u n k ( 1 9 49 ) s u g g e s t e d a p o w e r 4 / 3 f o r s o l it a ry w a v e s .

T h e M a d s e n b r e a k i n g c r i te r i o n w a s n o t a p p l i ca b l e to t h e c n o i d a l w a v e s a n d

t h e b r e a k i n g h e i g h t t o d e p t h r a t i o w a s f o u n d b y s u c c e s s i v e n u m e r i c a l t e s t s .

T h e r e su l t ( y = 1 .1 5 ) w a s i n a c c o r d a n c e w i th m e a s u r e m e n t s o f P a p a n i c o l a o u

a n d R a i c h l e n ( 1 98 7 ) . I n s i d e t h e b r e a k p o i n t , e n e r g y d e c a y a p p e a r s t o o c c u r

i n i ti a l ly f a st e r th a n t h a t p r e d i c t e d b y t h e D a l l y e t a l. f o r m u l a . T h i s i s p r e s u m -

a b ly o c c u r r i n g i n t h e w a v e h e i g h t t r a n s i ti o n z o n e i m m e d i a t e l y a f te r b r e a k in g ,r e f e r r e d t o b y a n u m b e r o f r e s e a r c h e r s ( e. g. S v e n d s e n , 1 98 4; B a s c o a n d Y a -

m a s h i t a , 1 9 8 6 ) . F u r t h e r r e f i n e m e n t o f t h e a t te n u a t i o n m a y b e r e q u i r e d in

t h i s h i g h l y t u r b u l e n t z o n e f o r p lu n g i n g w a v e s ( R o s e n b e r g a n d B l a ck , 1 99 1 ) .

H o w e v e r , t h e g e n e r a l tr e n d is s ti ll s u r p r is i n g l y w e l l p r e d i c t e d u s i n g t h e s a m e

c o e ff ic ie n ts , K = 0 . 1 5 a n d F = 0 .3 5 .

E l l i p ti c a l s h o a l

T h e t w o - d i m e n s i o n a l E u l e r i a n m o d e l ( E q . 13 ) w a s a p p l i e d t o a n e ll ip t ic a ls h o a l to i n c o r p o r a t e t w o - d i m e n s i o n a l i t y . F o r t h i s c a se , a h i g h d e g r e e o f c o r -

r e s p o n d e n c e b e t w e e n t h e m o d e l a n d t h e m e a s u r e d w a v e a n g l e s a n d h e i g h t s

w a s o b t a i n e d a f t er a p p l ic a t io n o f t h e e n h a n c e d s h o a l in g m e t h o d ( F ig . 1 2 ).

T h e e n h a n c e m e n t o f h e i g h t w a s p a r ti c u la r l y i m p o r t a n t a c ro s s t h e m i d d l e o f

t h e e ll ip s o i d , w h e r e s h o a l in g w a s m o s t p r o n o u n c e d ( F i g . 1 2 a ) . R e f r a c t i o n

d o m i n a t e d l e e w a r d o f t h is l o c a t i o n a n d s o t h e c o r r e s p o n d e n c e b e tw e e n t h e

m o d e l a n d m e a s u r e m e n t s r e l ie d to a g r e a t e r d e g r e e o n t h e a c c u r a t e s p ec i fi c a-

t i o n o f t h e w a v e a n g l e s.

S m o o t h i n g w a s r e q u i r e d w h e n s o l v i n g f o r t h e a n g l e s i n t h i s t e s t , a n d t h e

c o e f f i c i e n t N A = 0 . 0 5 ( E q . 11 ) w a s s e l e c te d t o b e t h e m i n i m u m v a l u e n e c e s -

s a ry t o p r e v e n t t h e c o l la p s e o f t h e n u m e r i c a l s o l u t i o n i n t h e l e e o f t h e s h o a l

( H a r d y a n d K r a u s , 1 9 88 ) . T h i s s t a b il i se d t h e a n g l e s s o l u t io n , w i t h t h e r e s u l t

t h a t t h e w a v e h e ig h t s w e r e a ls o s m o o t h e d . N o t a b l y , d i f f ra c t io n i s a d o m i n a n t

p r o c e s s i n th e l e e o f th e s h o a l a n d t h e m o d e l a p p l i e d d o e s n o t s p e c if ic a l ly

a c c o u n t f o r w a v e d if f r a c ti o n . T h e r e s u l ts i n d i c a t e t h a t t h e s m o o t h i n g s c h e m e

( E q , 11 ) p r o v i d e d a n a c c e p t a b l e s u b s t i tu t e f o r t h e f u ll d if f r a c t io n e q u a t i o n s

in t h i s ca se .

T h e e l li p ti c a l s h o a l is a d i f fi c u l t t e st o f b o t h t h e s h o a l in g e q u a t i o n a n d t h e

r e f r a c t i o n m o d e l , p a r t i c u l a r l y a s t h e w a v e h e i g h t s d e p e n d c r i t i c a l l y o n t h es p e c i f i c a t i o n o f w a v e a n g l e a n d w a v e h e i g h t s h o a l i n g . A l t h o u g h t h e r e w a s

Page 25: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 25/33

SEMI-EMPIRICALTREATMENTOF WAVETRANSFORMATION 337

• ( a )

0 . 0 9 ~

0 . 0 ~

, ' , ' 1~o

1 5 3 0

"~ 5

oZ - 5<

0 .15

~ 0 .10

Q O5

(c)•

- 2 - 1 - 0 1 2

~ 1 0

- 15 _ 3 3 - 3 0 , _ ,

, I , 1 ~ 1 , 1 , 1 ,

~

, I , I , I , I ~ I ~ T "

- 2 - 1 - 0 1 2 3

x(m) x(m)• M e a s u r e d D a t a

F i g. 12. C o m p a r i s o n o f m o d e l p r e d i c t i o n s w i t h m e a s u r e m e n t s o v e r a n e l l ip t i c al s h oa l. ( a ) W a v e

h e i g h t a c r o s s th e c e n t r e o f t h e s h o a l . ( b ) W a v e h e i g h t s 3 .0 5 m l e e w a r d o f t h e c e n t r e o f t h e s h o a l .

( c ) W a v e a n g l e s a c r o s s t h e c e n t r e o f t h e s h o a l . ( d ) W a v e a n g l e s 1 . 5 3 m l e e w a r d o f t h e c e n t r e .

E S = e n h a n c e d s h o a l i n g ( E q . 2 0 a ) ; C N = c n o i d a l w a v e t h e o r y ; L S = l i n e a r s h o a l i n g . T h e d a t a

a n d c n o i d a l w a v e c o m p a r i s o n ( C N ) w a s e x t r a c t e d f r o m H a r d y a n d K r a u s ( 1 98 8 ) .

T A B L E 6

2R e l a t i v e s q u a r e d e r r o r s ~ c o m p a r i n g t h e p r e d i c t e d a n d m e a s u r e d w a v e h e i g h t s a t A p o l l o B a y . T h r e e

s e ts o f s i m u l a t i o n s w e r e m a d e : ( i ) a n d ( i i ) u s i n g H zc a n d H ~ q, r e s p e c t i v e l y w i t h t h e D a l l y e t a l. h e i g h t

a t t e n u a t i o n ; a n d ( i i i ) u s i n g H z c w i t h b o r e t h e o r y h e i g h t a t t e n u a t i o n

A P 1 2 0 4 1 A B 2 2 0 3 1 A P 1 0 0 4 5

(/)n~cP r l - -

P r 2 0 .0 7 0 .0 4

Pr 3 0 .1 0 0 .0 8

(ii) neq

Pr l 0 .0 2 0 .0 1

Pr 2 0 .0 6 0 .0 4

Pr3 0 .11 0 .07

( i iO Hzc B ore theo ry c¢ = 1.0Pr 2 0 .0 8

Pr 3 0 .1 4

0 .1 0

0 .07

0 .0 4

0.11

0 .07

Page 26: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 26/33

338 K.P.BLACKANDM.A.ROSENBERG

c o n s i d e r a b l e s c a tt e r in F i g . 6 ( r e l a t in g H zc /H eq o 7eq ) , t h e e n h a n c e d s h o a l i n g

m e t h o d a p p e a r s t o e s t i m a t e t h e h e i g h t s b e t t e r t h a n c n o i d a l w a v e t h e o r y , a s

a p p l i e d b y H a r d y a n d K r a u s ( 1 9 8 8 ) to th e s a m e c o n f i g u r a t i o n ( F i g . 1 2 a ) .

F ie l d m easu r em en ts

T h e m o d e l w a s a p p l i e d to th r ee d a t a s et s f r o m A p o l l o B a y w i t h o u t m o d i -

f y in g th e m e t h o d s o r c o e f f ic i en t s . A g o o d c o r r e s p o n d e n c e b e t w e e n t h e m o d e l

a n d m e a s u r e m e n t s w a s i n d i c a t e d b y a r e l a t i v e s q u a r e d e r r o r v a r y i n g f r o m

0 . 0 1 t o 0 . 1 1 ( T a b l e 6 ; F i g s . 1 3 a n d 1 4 ) . H o w e v e r , t h e q u a l i t y o f t h e f it v a r i e d

i rr e gu la r ly b e t w e e n t h e t h r e e e x p e r i m e n t s a n d t h e d i f fe r e n t p r o b e s. S o m e o f

t h i s d e v i a t i o n w a s r e l a t e d t o c h a n g e s t o t h e h e i g h t t i m e s e r i e s a s t h e w a v e s

p r o g r e ss e d s h o r e w a r d s , d u e t o n o n l i n e a r i n t e r a c t i o n a n d f o r m a t i o n o f ha r -

A P 1 20 4 1 P A R T I C L E M O D E L V E R I F I C A T I O N

H = H z c , K = 0 . 1 5 , r ' = 0 . 3 5

R E F O R M A T 1 .0 2 r" c f = 0 .0 1

( a )

A

A

AE

1.5 ~- ~ Measurements ( i ) Offsho re ~

1.0 ~

9 . 5 , o

0 . 00 . 0 2 4 0 . 0 4 8 0 . 0 7 2 0 . 0 9 6 9 . 0 1 2 0 0 .0 1 4 4 0 . 0 1 6 8 0 0 1 9 2 0 . 0

2.0

1.5

1.0

0.5

0.00.0

2.0

1.5

1.0

0.5

O.O0.0

240.0 4-80.0 720.0 960,0 12 00 .0 1 4 -4 0 .0 16800 1920.0

( i ii ) Insho re

240.0 480,0 720 0 960.0 12000 14 40 .0 1680.0 19200

T I M E ( s)

Page 27: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 27/33

SEMI-EMPIRICALTREATMENTOF WAVETRANSFORMATION 339

A P 1 20 41 P A R T I C L E M O D E L V E R I F I C A T I O N

H = H e q ( 1 . 0 7 + 0 . 7 6 ~ e q ) , K = 0 . 1 5 , r ' = 0 . 3 5

R E F O R M A T 1 .0 2 r ' c ! = 0 .0 1(b )

2, 0

1 ,5

-e

0. 5

o. o

o. o

2. 0

1.5

A

~ t . 0

"r "

0 . 5

0 .00 .0

2 .0

1 .5

_

t= 1.o~

" 1 -

0 .5

0 . 0O.O

- - • o Measurements ( i) O f f s h o r e ~

2 4 0 . 0 4 8 0 . 0 7 2 0 , 0 9 6 0 . 0 1 2 0 0 , 0 1 4 4 0 . 0 1 6 8 0 , 0 1 9 2 0 . 0

_

( i i i ) I n s h o r e

2 4 0 . 0 4 8 0 0 7 2 0 0 9 6 0 . 6 1 2 0 0 . 0 1 4 4 0 . 0 1 6 8 0 . 0 1 9 2 0 0

T I M E ( s )

F i g . 1 3. C o m p a r i s o n o f m e a s u r e m e n t s a t A p o l l o B a y o n A p r i l 4 , 1 9 8 7 w i t h p r e d i c t io n s u s i n g

( a ) l i n ea r w a v e s h o a l in g , a n d ( b ) t h e e n h a n c e d s h o a l i n g p r o c e d u re .

m o n i e s . M o r e o v e r , t h e s m a l l w a v e s w e r e s o m e t i m e s o v e r t a k e n b y la r ge r w a v e s .

T h e m o d e l d i d n o t a t t e m p t t o t r e a t t h e s e f a c t o r s ( i t s i n p u t w a s t h e o f f s h o r e

t i m e s e r ie s o f w a v e h e i g h t s o n l y ) a n d y e t t h e o v e r a l l c o r r e s p o n d e n c e w a s s t i ll

v e r y e n c o u r a g i n g ( T a b l e 6 ) .

B e c a u s e o f t h e s c a t te r i n t h e r e l a t i o n s h i p b e t w e e n H z c a n d H e q ( F i g . 6 ) a n

e x a c t c o n v e r s i o n b e t w e e n t h e t w o h e i g h t s w a s n o t a c h i e v a b l e . T h e e f f e c t o f

t h e s c a tt e r is d e p i c t e d b y t h e r e c o r d s f r o m t h e o f f s h o r e p r o b e s ( F i g s . 1 3 b a n d

1 4 b ) i n w h i c h , a t P r o b e 1 , t h e d i r e c t c o n v e r s i o n f r o m t h e m e a s u r e d H eq u s i n g

E q . 2 0 a i s c o m p a r e d w i t h t h e m e a s u r e d H zc. T h e s q u a r e d e rr o r c o m p a r i n g t h e

c o n v e r t e d H e q a n d a c t u a l H z c w a s s m a l l a n d v a r i e d f r o m 0 . 0 1 t o 0 . 0 4 .

T h e s h o a l in g w a s b e t te r e s t im a t e d u s i n g t h e e q u i v a l e n t h e ig h t m e t h o d t h a nw i t h l in e a r t h e o r y ( F i g . 1 3 a a n d b ) . A t P r o b e 2 C a s e A P 1 2 0 4 1 ( F i g . 1 3 a ) ,

Page 28: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 28/33

340 K.P. BLACK AND M.A. R OSENB ERG

w h e r e s h o a l i n g w a s m o s t e v i d e n t a t t i m e s 1 2 0 , 8 6 0 , 1 4 0 0 a n d 1 7 5 0 s , t h e

s h o a l i n g w a s u n d e r p r e d i c t e d u s i n g H z c (F i g . 1 3 a ) b u t t h is w a s m o s t l y c o r -

r e c t e d b y t h e e q u i v a l e n t h e i g h t p r o c e d u r e ( F i g . 1 3 b ) . A t o t h e r t i m e s a n d lo -

c a t i o n s , t h e d i f f e r e n c e s b e t w e e n t h e e q u i v a l e n t h e i g h t r e s u lt s a n d l i n e a r t h e -

o r y w e r e m a r g i n a l ( T a b l e 6 ) . O n c e t h e w a v e s b r o k e , th e i r h e i g h t s w e r e m o r eg o v e r n e d b y t h e D a l l y e t a l . f o r m u l a t i o n t h a n t h e s h o a l i n g , a n d t h e a d v a n -

t a g es o f t h e e q u i v a l e n t h e i g h t p r o c e d u r e b e c a m e l e s s i m p o r t a n t .

T h e la r ge r w a v e s b r o k e o n t h e s t e e p e r s l o p e o f f s h o r e o f P r o b e 2 ( F i g . 4 ) .

A t t h i s l o c a t i o n 7b v a r i e d a r o u n d 0 . 9 0 , a s p r e d i c t e d b y t h e M a d s e n f o r m u l a .

T h u s , t h e d a ta s u p p o r t e d t h e M a d s e n f o r m u l a , w i th t h e e x c l u s io n o f so m e

s te e p e r p e a k s a t P r o b e 2 , w h i c h m a y b e r e la t ed t o w a v e / w a v e o r w a v e / c u r -

r e n t i n te r a c ti o n s . T h e m o r e c o m m o n l y e m p l o y e d v a l u e o f 0 .7 8 a t t h e b r e a k

A B 22 03 1 P A R T I C L E M O D E L V E R I F I C A T IO N

H = H z c , K = 0 . 1 5 , r ' = 0 . 3 5

R E F O R M A T 1 . 0 2 r" C f = 0 .0 1

(a )

t. 5 ~ ~ Measurements ~ (i) Offsho re J

0.5

0.~0 . 0 2 4 0 . 0 4 8 0 . 0 7 2 0 . 0 9 6 0 . 0 1 2 0 0 . 0 1 4 4 .0 . 0 1 6 8 0 0 1 9 2 0 0

2 . 0

1 .5

"1"

0 . 5

0 , 0@ ,o

2 . 0

1 . 5

. ~ .

E ~.o,~ ,

0 . 5

0 0o . o

( i i) Near break point

e , , o . o 4. 8 0 .0 7 2 0 0 9 6 0 . 0 ~2 0 0 . 0 1 4 . 4. 0 .° 1 6 8 0 . 0 , 9 2 0 0

(iii) Inshore

2 4 0 . 0 4 8 0 . 0 7 2 0 0 9 6 0 . 0 1 2 0 0 0 1 4 4 0 . 0 1 5 8 0 0 1 9 2 0 0

T I M E ( s )

Page 29: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 29/33

SEMI-EMPIRICAL TREATMEN T OF WAVE TRANSF ORMATION 341

A B 2 2 0 3 1 P A R T I C L E M O D E L V E R I F I C A T I O N

H = H e q ( 1 . 0 7 + 0 . 7 6 ~ e q ) , K = 0 . 1 5, r ' = 0 . 3 5

R E F O R M A T 1 . 0 2 r ' c f = 0 . 0 1

( b )

2.0

1.5

0.5

0 . 00 . 0

2 . 0

1 .5

E

0 . 5

0 . 0O.O

2~ 0 - -I

1 ,5

i : =" ~ ' 1 , 0

0 .5

0 . 00 .0

~ M e a s u r e m e n t s ~ , (i) O f f s h o r e _

2 4 0 . 0 4 8 0 . 0 7 2 0 . 0 9 6 0 . 0 1 2 0 0 . 0 1 4 4 0 . 0 1 6 8 0 0 1 9 2 0 .0

( i i ) N e a r b r e ak po in t -

2 4 0 . 0 4 8 0 . 0 7 2 0 . 0 9 6 0 . 0 1 2 0 0 . 0 1 4 4 Q . 0 1 6 8 0 . 0 1 9 2 0 . 0

_

( i ii ) Inaho re

_

240 .0 4 8 0 . 0 7 2 0 . 0 9 6 0 . 0 1 2 0 0 . 0 1 4 -4 0 .0 1 6 8 0 0 1 9 2 0 . 0

T I M E ( S )

Fig. 14. Com parison of m easuremen ts at Apollo Bay on M arch 22, 198 8 with predictions using(a) l inear wave shoaling and ( b) the enhanced shoaling procedure. The inshore record in (a)and (b ) shows a l inear trend in measured height which is du e to tidal sea level rise. This factorwas neglected in the model.

p o i n t w a s t o o s m a l l . M o r e o v e r , 7b i n s i d e t h e b r e a k p o i n t w a s l es s th a n 0 . 7 8 ,

n e g a t i n g t h e u s e o f a s im p l e s i m i l a r it y l a w i n s i d e t h e s u r f z o n e .

T h e D a l l y e t al . w a v e h e i g h t a t t e n u a t i o n f o r m u l a o p e r a t e d s a t i s fa c t o r il y o n

a w a v e - b y - w a v e b a s i s in th e n a tu r a l b e a c h e n v i r o n m e n t . H o w e v e r , b e c a u s e o f

t h e i n te r a c t i o n b e t w e e n t h e D a l l y a n d f r i c t i o n c o e f f i c ie n t s , a n e x a c t s p ec i f i-

c a t i o n o f t h e b e s t v a l u e s o f b o t h w a s d i f f i c u l t t o a c h i e v e . I n o n e c a s e w i t h h i g h

f r i c t io n ( C f = 0 .1 ) , t h e w a v e h e i g h t s w e r e g r e a t e r a t t h e i n s h o r e p r o b e t h a n i n

a l o w e r f r i ct i on c a s e ( C f = 0 .0 1 ). T h i s o c c u r r e d b e c a u s e , w i t h h i g h f r i c t i o n ,

t h e w a v e s q u i c k l y r e a c h e d t h e r e f o r m a t i o n h e i g h t a n d t h e n p r o p a g a t e d u n b r o -k e n . T h i s a l l o w e d t h e m t o s h o a l a n d a t t a i n g re a te r h e i g h t s th a n t h e ir b r o k e n

Page 30: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 30/33

342 K.P. BLACK AND M.A. ROSENBERG

c o u n t e r p a r t s . O t h e r w i s e , t h e b e d f r i c ti o n h a d l it tl e in f l u e n c e , a n d v a r i o u s a t -

t e m p t s t o i m p r o v e t h e f i t t o t h e d a t a b y v a r y i n g th e f r i c t io n h a d n o r e a l su c-

c es s. U l t i m a t e l y , w e t o o k t h e s t a n d a r d v a l u e o f C f = 0 .0 1 . B y m e a s u r i n g t h e

b o t t o m s h e a r s tr e ss u n d e r b r o k e n w a v e s , S a w a r a gi a n d I w a t a ( 1 9 7 4 ) c o n -

c l u d e d t h a t t h e b e d f r i c ti o n w a s a s e c o n d a r y t e r m a n d t h i s w a s c o n f i r m e d b yD a l ly e t al. ( 1 9 8 4 ) . W h i l e t h is i s in a c c o r d a n c e w i t h t h e m o d e l l i n g h e r e , t h e

i m p a c t o f b e d f r i c ti o n o n w a v e r e f o r m a t i o n s h o u l d n o t b e n e g le c te d . T h e w a v e s

p a s s th r o u g h a s u d d e n c h a n g e o f s t at e a t r e f o r m a t i o n , a n d t h e y h a v e t o s h o a l

c o n s i d e r a b l y b e f o r e b r e a k i n g a g a i n .

A t t h e i n s h o r e p r o b e , s o m e o f t h e m e a s u r e d v a r i a b il it y i n t h e w a v e h e i g h t

t i m e s e ri es w a s n o t e v i d e n t i n t h e m o d e l p r e d i c t i o n ( e. g. F ig . 1 4 b ) . T h e

a m o u n t o f v a r i a b il i ty i n t h e m o d e l w a s h i g h ly se n s i ti v e t o t h e r e f o r m a t i o n

c r i te r i o n . I n s o m e l o c a t i o n s n e a r t h e p o i n t o f r e f o r m a t i o n , s m a l l a d j u s t m e n t s

t o t h e r e f o r m a t i o n c r i t e r io n a l l o w e d m o r e w a v e s t o r e fo r m , w h i c h r e s u l t e d i nh i g h e r v a r i a b il i ty i n t h e n u m e r i c a l s i m u l a t i o n a t m o r e s h o r e w a r d l o c a ti o n s .

B o r e t h e o r y a t t e n u a t i o n w i t h a = 1 .0 ( E q . 2 8 ) h a v e a w o r s e f it t o th e d a t a

t h a n t h e D a l ly e t a l. i n f o r m a t i o n . T h e p r e d i c t e d h e i g h t s w e r e t o o l ar ge , p a r t ic -

u l a rl y a t th e i n s h o r e p r o b e s , w h i c h i s in a c c o r d a n c e w i t h t h e r e s ul ts o f T h o r n -

t o n a n d G u z a ( 1 9 8 3 ) a n d o f S t i v e ( 1 9 8 4 ) w h o f o u n d t h a t t h e c la s si ca l h y -

d r a u li c j u m p f o r m u l a t i o n u n d e r - e s t i m a t e d t h e d i s s ip a t io n b y 3 0 - 5 0 % . T h e

D a l l y e t a l. f o r m u l a p r o v i d e d a n a c c e p t a b l e r e s u lt , so n o f u r t h e r a t t e m p t t o

s p e c i f y a w a s m a d e ( s e e, f o r e x a m p l e E b e r s o l e , 1 9 87 ) .

A l t h o u g h t h e m o d e l i n c l u d e d t h e w a v e / c u r r e n t i n t e r a ct io n , t h e d i f fe r en c e si n t h e s o l u t i o n w i t h o u t t h e in t e r a c t i o n w e r e s m a l l ( D a l l y a n d D e a n , 1 9 8 6 ) .

T h e r e w a s n o c o n s i s te n t c h an g e in t h e s q u a r e d e r r o r fu n c t i o n w h e n w a v e /

c u r r e n t i n t e r a c t i o n w a s n e g l e c t e d a t A p o l l o B a y , a b e a c h w i t h n e a r l y p a ra l le l

c o n t o u r s w i t h n o o b v i o u s r ip c u r r e n t s . T h e t y p i c a l l o w - f r e q u e n c y c u r r e n t i n -

t e n s i ti e s o v e r m o s t o f t h e s u r f z o n e w e r e u p t o a b o u t 0 .3 m s - l w h i c h w a s

o n l y a p p r o x i m a t e l y 10% o f t h e g r o u p s p e e ds . T h e w a v e / c u r r e n t i n t e r a c t io n

p l a ys a m o r e s i g n i fi c a n t r o l e in t h e s w a s h z o n e w h e r e c u r r e n t s p e e d s a r e f a s te r.

CONCLUSIONS

W a v e h e i g h t d a t a , r e c o r d e d o n a n o c e a n b e a c h i n s o u t h e r n A u s t r a li a , w a s

a n a l y s e d f o r b r e a k e r c r i t e r io n , s h o a l i n g a n d a t t e n u a t i o n . A m e t h o d t o e n -

h a n c e l i n e a r s h o a l i n g w a s p r e s e n t e d w h i c h w a s f o u n d t o b e a p p l i c a b l e i n a

w i d e v a r i e t y o f e n v i r o n m e n t s , i n c l u d i n g s h o a li n g c n o i d a l w a v e s r i g h t u p t o

t h e b r e a k p o i n t . A n a n a l y s is o f b r e a k i n g c r it e r ia i d e n t i f ie d a n u m b e r o f s ui t-

a b le c h o ic e s , b u t t h e s l o p e - d e p e n d e n t M a d s e n ( 1 9 7 6 ) b r e a k e r h e i g h t c ri te -

r i o n a d e q u a t e l y p r e d i c t e d t h e b r e a k e r p o s i t i o n i n l a b o r a to r y a n d f ie ld d a ta ,

e x c l u d i n g s t e e p c n o i d a l w a v e s . T h e D a l l y e t a l. w a v e h e i g h t a t t e n u a t i o n

m e t h o d ( w i th K = 0 . 1 5 a n d F = 0 . 3 5 ) w a s f o u n d t o b e a p pl ic a bl e t o a w i d ev a r i e ty o f c o n d i t i o n s . W e u n i f i e d t h e s e f in d i n g s in a n u n s t e a d y n u m e r i c a l

Page 31: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 31/33

SEMI-EMPIRICAL TREAT MENT OF WAVE TRANSFORMATIO N 343

s i m u l a t io n . A m i x e d L a g r a n g i a n / E u l e r i a n n u m e r i c a l s o lu t i o n s c h e m e w a s

p r e s e n te d w h i c h h as s o m e a d v a n ta g e s o v e r t h e m o r e c o m m o n l y e m p l o y e d

E u l e r i a n s c h e m e s . T h e m o d e l w a s v a l i d a t e d , c a l i b ra t e d a n d v e r i f i e d w i t h l ab -

o r a t o ry a n d f ie ld m e a s u r e m e n t s . A g o o d p r e d i c t i o n o f w a v e h e i g h t a n d w a v e

a n g l e w a s o b t a i n e d i n a ll c as e s .

A C K N O W L E D G E M E N T S

T h e a u t h o r s w o u l d li ke t o t h a n k G r a h a m S y m o n d s , P e te r N i e l se n a n d T o m

H a r d y f or t h e i r v a l ua b le c o m m e n t s o n t h e m a n u s c r i p t . T h i s w o r k w a s f u n d e d

b y t h e A u s t r a l i a n R e s e a r c h C o u n c i l a n d t h e V i c t o r i a n I n s t it u t e o f M a r i n e

S c i e n c e s .

R E F E R E N C E S

A bbo t t, M . B . , M cC ow an , A . D . and W ar ren , I . R ., 1983 . A cc u racy o f sho r t-w ave num er i ca l m ode l s .

J . H yd rau l . E ng ., 110 : 1287 -13 00 .

B asco , D . R . a nd Y am a sh i t a , T . , 1986. T ow ard a s i m p l e m od e l o f t he w ave b reak i ng t r ans i t ion

reg i on in su r f zones . P roc . 20 t h In t . C oas t a l E ng . C onf . , A S C E , pp . 9 55 -9 70 .

B a t tj e s , J. A . and Janssen , J . P . F .M . , 1978 . E ne rgy l o s s and se t up due t o b reak i ng o f r an do m

w aves . P roc . 16 t h In t . C oas t a l E ng . C onf . , A S C E , pp . 569 -5 88 .

B a t t je s , J .A . and S t ive , M . J . F . , 1984 . C a l i b ra t i on and ve r i f i c a t i on o f a d i s s i pa t ion m o de l fo r

r an do m b reak i ng w aves . P roc . 19 t h In t . C oa s t a l E ng . C onf . , A S C E , pp . 64 9 -66 0 .

B l ack, K . P . and H ea l y , T . R . , 1988 . F o rm a t i on o f r i pp l e bands i n a w ave -co nve rge nce zone . J.

S ed i m en t . P e t ro l ., 58 (2 ) : 195 -20 7 .

B l ack , K . P . and G ay , S .L . , 1990 . A num er i ca l s che m e fo r de t e rm i n i ng t r a j ec t o r i e s i n pa r t ic l e

m o d e l s . I n : R . B r a d b u r y ( E d i t o r ) , A c a n t h a s t e r a n d t h e C o r a l R e e f. A T h e o r e t i c a l A p p r o a c h .

Spr inger-Ver l ag , Ber l in , pp . 151-156.

B l ack , K . P . and M c S hane , P . D . , 1990 . In f l uence o f su r f ace g rav i t y w aves on w i nd -d r i ven c i r-

cu l a t i on in i n t e rm ed i a t e dep t h s on an expo sed coas t. A us t . J . M ar . F re shw a t e r R es ., 41 : 3 5 3 -

363.

B l ac k , K . P . a n d R o s e n b e r g , M . A . , 1 9 9 1. H y d r o d y n a m i c s a n d S e d i m e n t D y n a m i c s in W a v e -

d r i ven E n v i ronm en t s . V o l . 1: F i e l d E q u i pm en t an d D a t a . V i c t o r i an In s t i t u t e o f M ar i ne S c i -

ences T echn i ca l R e po r t N o . 13 , 229 pp .

B r i nk -K j ae r , O . and Jo nsson , I . G . , 1973 . V e r i f i c a t ion o f cno i da l shoa li ng : P u t na m and C h i nn ' s

e x p e r im e n t s . H y d r o d y n . a n d H y d r a u l i c E ng . T e c h . U n i v . D e n m a r k . P r o g r . R e p. , 2 8 : 1 9 - 2 3 .

B uh r H anse n , J . and S v endsen , I . A . , 1979 . R eg u l a r w aves i n shoa l i ng w a t e r , expe r i m en t a l da t a .

In s t . H y dro . and H y drau l i c E ng . T ech . U n i v . D e nm ark , S e r. P ap . 21 .

D a l l y , W . R . and D ea n , R . G . , 1985 . W ave he i gh t va r i a t i on a c ros s beaches o f a rb i t r a ry p ro f il e . J.

G e o p h y s . R es ., 9 0 : 1 1 , 9 1 7 - 1 1 , 9 2 7 .

D a l ly , W . R . a n d D e a n , R . G . , 1 98 6. T r a n s f o r m a t i o n o f r a n d o m b r e a k i n g w a v e s o n s u r f b e a t .

P roc . 20 t h In t . C oas t a l E ng . C onf . , A S C E , pp . 109 -1 23 .

D a l l y , W . R . , D ea n , R . G . an d D a l rym pl e , R . A . , 1984. A m od e l fo r b reak e r decay on beaches .

P roc . 19 t h In t . C oas t a l E ng . C onf . , A S C E , pp . 82 -98 .

D a l rym pl e , R . A . , 1988. M ode l fo r r e f r ac t i on o f w a t e r w aves . J . W a t e rw ay P o r t C oas t a l O cean

E n g ., A S C E , 1 1 4 ( 4 ) : 4 2 3 - 4 3 5 .

Page 32: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 32/33

34 4 K.P. BLACK AND M.A. ROS ENBERG

E b e r s o l e , B . A . , 1 98 7 . M e a s u r e m e n t a n d p r e d i c t i o n o f w a v e h e i g h t d e c a y i n t h e s u r f zo n e . C o a s t a l

H y d r o d y n a m i c s , A S C E C o n f ., U n i v . D e l aw a r e , p p . 1 - 1 6 .

E b e r s o l e , B . A . a n d D a l r y m p l e , R . A . , 1 97 9. A n u m e r i c a l m o d e l f o r n e a r s h o r e c i r c u l a ti o n in c l u d -

i n g c o n v e c t i v e a c c e l e r a t io n s a n d l a t e r a l m i x i n g . D e p t . C i v i l E n g. U n i v . D e l a w a r e T e c h R e p .

N o . 4 , O f f i c e N a v a l R e s ., G e o g r a p h y .P r o g r am s , O c e a n E n g . R e p . N o . 2 1 .

E b e r s o l e , B . A . a n d D a l r y m p l e , R . A . , 1 98 0. N u m e r i c a l m o d e l l i n g o f n e a r s h o r e c i r c u l a t i o n . P r o c .1 7 th C o a s t a l E n g . C o n f ., A S C E , p p . 2 7 1 0 - 2 7 2 5 .

E l g a r, S . a n d G u z a , R . T . , 1 98 5. S h o a l i n g g r a v i t y w a v e s : c o m p a r i s o n s b e t w e e n f i e ld o b s e r v a -

t i o n s , l in e a r t h e o r y , a n d a n o n l i n e a r m o d e l . J . F l u i d M e c h . , 1 58 : 4 7 - 7 0 .

F r e u n d , J .E . , 1 97 4. M o d e r n E l e m e n t a r y S t a t is t i cs . P r e n t i c e H a l l , L o n d o n , 5 3 2 p p .

G o d a , Y . , 1 97 0. A n a l y s i s o f t h e b r e a k e r i n d e x . P r o c . J S C E , 1 80 : 3 9 - 4 9 .

H a r d y , T . A . a n d K r a u s , N . C . , 1 98 8. C o u p l i n g S t o k e s a n d c n o i d a l w a v e t h e o r i e s i n a n o n l i n e a r

r e f r a c t i o n m o d e l . P r o c . 2 1 s t I n t . C o n f . C o a s t a l E n g ., A S C E , p p . 5 8 8 - 6 0 1 .

J o n s s o n , I . G . , 1 99 0. W a v e - c u r r e n t i n t e r a c t i o n s . I n : B . L e M e h a u t e a n d D . M . H a n e s ( E d i t o r s ) ,

T h e S e a . O c e a n E n g i n e e r i n g S ci e n ce . W i l e y , N e w Y o r k , V o l . 9 ( P a r t A ) , C h a p . 3 , p p . 6 5 -

120.

L i u , P . L . -F . , Y o o n , S .B . a n d K i r b y , J . T ., 1 98 5. N o n l i n e a r r e f r a c t i o n - d i f f r a c t i o n o f w a v e s i ns h a l l o w w a t e r . J . F l u i d M e c h . , 1 5 3 : 1 8 5 - 2 0 1 .

L o n g u e t - H i g g i n s , M . S . a n d S t e w a r t , R . W . , 1 96 4. R a d i a t i o n s t r e s se s i n w a t e r w a v e s ; a p h y s i c a l

d i s c u s s i o n , w i t h a p p l i c a t i o n s . D e e p - S e a R e s ., 1 1: 5 2 9 - 5 6 2 .

M a d s e n , O . S . , 1 9 76 . W a v e c l i m a t e o f t h e c o n t i n e n t a l m a r g i n : e l e m e n t s o f i t s m a t h e m a t i c a l d e -

s c r i p t i o n . I n : D . J . S t a n l e y a n d D . J . P . S w i f t ( E d i t o r s ) , M a r i n e S e d i m e n t T r a n s p o r t i n E n v i -

r o n m e n t a l M a n a g e m e n t . W i l e y , N e w Y o r k , N Y , p p . 6 5 - 8 7 .

M c C o w a n , J . , 1 9 84 . O n t h e h i g h e s t w a v e o f p e r m a n e n t t y p e . P h i lo s . M a g . E d i n b u r g h , 3 8 ( 5 ) :

3 5 1 - 3 5 8 .

M i c h e , R ., 1 94 4. F e r m e l i m i t e d e l a h o u l e l o r s d e s o n d e f e r l e m e n t . A n n . P o n t s C h a u s s e es , 1 14 :

1 3 1 - 1 6 4 .

M u n k , W . H . , 1 94 9. T h e s o l i t a r y w a v e t h e o r y a n d i t s a p p l i c a t i o n s t o s u r f p r o b l e m s . A n n . N . Y .A c a d . S ci . , 5 1 : 3 7 6 - 4 2 4 .

M u n k , W . H . a n d A r t h u r , R . S ., 1 95 2. W a v e i n t e n s i t y a lo n g a r e fr a c t e d ra y . I n : G r a v i t y W a v e s ,

C h . 1 3 . N B S C i r c . , 5 2 1 : 9 5 - 1 0 8 .

N o d a , E . K . , 1 97 2. W a v e i n d u c e d c i r c u l a t i o n a n d l o n g s h o r e c u r r e n t p a t t e r n s i n t h e c o a s t a l z o n e .

T e t r a T e c h . , C a l i f . T e t r a T e c h . ( T C - 1 4 9 - 3 ) T e c h . R e p . 3 , 1 2 0 p p .

N o d a , E . K . , S o n u , C . J ., R u p e r t , V . C . a n d C o l l i n s , J . I ., 1 9 7 4. N e a r s h o r e c i r c u l a t i o n s u n d e r s e a

b r e e z e c o n d i t i o n s a n d w a v e - c u r r e n t i n t e r a c t i o n s i n t h e s u r f z o n e . T e t r a T e c h ., C a l i f. T e t r a

T e c h . ( T C - 1 4 9 - 4 ) , T e c h . R e p . 4 , 2 1 6 p p .

P a p a n i c o l a o u , P . a n d R a i c h l e n , F . , 1 9 87 . W a v e c h a r a c t e r i s t i c s i n t h e s u r f z o n e . C o a s t a l H y d r o -

d y n a m i c s , A S C E C o n f . U n i v . D e l a w a r e , p p . 7 6 5 - 7 8 0 .

R o s e n b e r g , M . A . a n d B l a c k , K . P . , 1 99 1. W a v e h e i g h t a t t e n u a t i o n i n th e w a v e b r e a k i n g t r a n s i -t i o n z o n e . P r o c . 1 0 t h A u s t r a l a s i a n C o a s t a l a n d O c e a n E n g i n e e r i n g C o n f e r e n c e . I n s t i t u t i o n

o f E n g i n e er s , A u c k l a n d ( i n p r e s s ) .

S a w a r a g i , T . a n d I w a t a , K . , 1 97 4. O n w a v e d e f o r m a t i o n a f t e r b r ea k i n g . P r o c . 1 4 th I n t . C o a s t a l

E n g . C o n f . , A S C E , p p . 4 8 1 - 4 9 7 .

S e y a m a , A . a n d K i m u r a , A . , 1 9 88 . T h e m e a s u r e d p r o p e r t i e s o f i r r e g u l a r w a v e b r e a k i n g a n d

w a v e h e i g h t c h a n g e a f t e r b r e a k i n g o n t h e s l o p e . P r o c . 2 1 s t C o n f . C o a s t a l E n g . , A S C E , p p .

4 1 9 - 4 3 2 .

S t i v e , M . J . F . , 1 9 84 . E n e r g y d i s s i p a t i o n i n w a v e s b r e a k i n g o n g e n t l e s l o p e s . C o a s t a l E n g . , 8 : 9 9 -

127.

S v e n d s e n , I . A . , 1 9 84 . W a v e h e i g h t s a n d s e t - u p i n a s u r f z o n e . C o a s t a l E n g . , 8 : 3 0 3 - 3 2 9 .

T h o r n t o n , E .B . a n d G u z a , R . T . , 1 9 83 . T r a n f o r m a t i o n o f w a v e h e i g h t d i s t r i b u t i o n . J . G e o p h y s .R e s . , 8 8 : 5 9 2 5 - 5 9 3 8 .

Page 33: Semiemperical Wave Transformation

8/22/2019 Semiemperical Wave Transformation

http://slidepdf.com/reader/full/semiemperical-wave-transformation 33/33

S E M I -E M P I R IC A L T R E A T M E N T O F W A V E T R A N S F O R M A T I O N 345

Timpy, D.L. and Ludwick, J.C., 1983. Bore height measurement with improved wavestaff. J.

Waterway Port Coastal Ocean. Eng., ASCE, 111 (3): 495-510.

Walker, J.R., 1976. Refraction of finite-height and breaking waves. Proc. 15th Int. Conf. CoastalEng., pp. 507-524.

Watanabe, A. and Maruyama, K., 1986. Numerical modelling of nearshore wave field under

combined refraction, diffraction and breaking. Coastal Eng. Jpn. (JSCE), 29: 19-39.Watanabe, A. and Dibajnia, M., 1988. A numerical model of wave deformation in surf zone.

Proc. 21st Coastal Eng. Conf., ASCE, pp. 578-587.

Weggel, J.R., 1972. Maximum breaker height for design. Coastal Eng., 21: 419-430.

Yamaguchi, M., 1988. A numerical model of nearshore currents due to irregular waves. Proc.21st Int. Coastal Eng., ASCE, pp. 1113-1126.

Young, D.-L. and Lin, M.-C., 1988. A study on beach deformation around Cho-Shui River mouth.

IAHR Symposium on Mathematical modelling of sediment transport in the coastal zone,Copenhagen, pp. 58-67.