satellite altimetry over oceans and land surfaces

12
Satellite Altimetry over Oceans and Land Surfaces Detlef Stammer Anny Cazenave CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

Upload: others

Post on 03-Dec-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Satellite altimetry over oceans and land surfaces

Satellite Altimetryover Oceans and

Land Surfaces

Detlef Stammer

Anny Cazenave

CRC PressTaylor &Francis GroupBoca Raton London NewYork

CRC Press is an imprint of the

Taylor & Francis Croup, an informa business

Page 2: Satellite altimetry over oceans and land surfaces

Contents

Preface xvii

Editors xxl

Contributors xxiii

Chapter 1 Satellite Radar Altimetry: Principle, Accuracy, and Precision 1

Philippe Escudier, Alexandre Couhert, Flavien Mercier, Alain Mallet,

Pierre Thibaut, Ngan Tran, Laiba Amarouche, Bruno Picard, Loren Carrere,

Gerald Dibarboure, Michael Ablain, Jacques Richard, Nathalie Steunou,

Pierre Dubois, Marie-Helene Rio, and Joel Dorandeu

1.1 Introduction 1

1.1.1 Satellite Altimetry Measurement Principle 1

1.1.2 Satellite Radar Altimetry Historical Perspective 4

1.1.2.1 Satellite Altimetry Missions 4

1.1.2.2 Geographical Perspective and International Cooperation....?1.1.2.3 Altimetry Products: History of Continuous Progress 10

1.1.3 Altimetry System Requirements 11

1.2 Radar Instrument 12

1.2.1 Radar Altimeter Instrument Principles 12

1.2.2 Observation Geometry 12

1.2.3 Radar Operation 13

1.2.4 Transmitted Waveform 13

1.2.5 Instrument Architecture 15

1.2.6 Instrument Example: Poseidon-3 of Jason-2 Mission 16

1.2.6.1 Poseidon-3 Architecture 16

1.2.6.2 Poseidon-3 Main Characteristics 17

1.2.7 Key Instrument Performance 17

1.2.8 Echo Formation 18

1.3 Echo characterization and processing 18

1.3.1 Speckle Noise 21

1.3.2 Analytical and Numerical Models 21

1.3.3 Estimation Strategies 22

1.3.4 New Altimeters 23

1.3.5 Non-Ocean Surfaces 23

1.4 Precise Orbit Determination 25

1.4.1 Orbit Determination Technique 26

1.4.1.1 Performance Requirements 26

1.4.1.2 Radial Error Properties 26

1.4.2 Orbit Determination Measurement Systems 27

1.4.3 Satellite Trajectory Modeling and Parameterization 29

1.4.4 Major Modeling Evolution since the Beginning of the 1990s 30

1.4.5 Long-Term Orbit Error and Stability Budget 32

1.4.6 Foreseen Modeling Improvement 34

1.5 Geophysical Corrections 37

1.5.1 Sea State Bias Correction 38

1.5.1.1 Origins of the Sea State Effects and Correction 38

1.5.1.2 Theoretical Solutions 38

1.5.1.3 Empirical Solutions 39

Page 3: Satellite altimetry over oceans and land surfaces

v\ Contents

1.5.2 Atmospheric Propagation Effect Corrections 40

1.5.2.1 Ionospheric Correction 40

1.5.2.2 Dry Tropospheric Correction 41

1.5.2.3 The Wet Tropospheric Correction 41

1.6 Altiraetry Product Auxiliary Information: Reference Surfaces, Tides,

and High-Frequency Signal 49

1.6.1 Reference Surfaces 50

1.6.2 Tides, High-Frequency Signals 51

1.6.2.1 The Tide Correction 51

1.6.2.2 The High-Frequency Correction 52

1.6.2.3 SI and S2 Atmospheric and Ocean Signals , 54

1.7 Altimetry Time and Space Sampling: Orbit Selection and Virtual

Constellation Approach 54

1.7.1 Sampling Properties of a Single Altimeter Orbit 54

1.7.2 Orbit Sub-Cycles and Sampling Properties 56

1.7.3 Altimeter Virtual Constellation and Phasing 57

1.8 Altimetry Error Budget 58

1.8.1 Error Budget for Mesoscale Oceanography 58

1.8.2 Error Budget for Mean Sea Level Trend Monitoring 60

1.8.3 Error Budget for Sub-Mesoscale 60

Glossary 62

References 62

Chapter 2 Wide-Swath Altimetry: A Review 71

Ernesto Rodriguez, Daniel Esteban Fernandez, Eva Peral, Curtis W. Chen,

Jan-Willem De Bleser, and Brent Williams

2.1 Introduction 71

2.2 Ocean and Hydrology Sampling Requirements 72

2.3 Approaches to Wide-Swath Altimetry 76

2.3.1 From Nadir Altimetry to Wide-Swath Altimetry: Three-

Dimensional Geolocation 76

2.3.2 Wide-Swath Altimetry Using Waveform Tracking 79

2.3.3 Wide-Swath Altimetry Using Radar Interferometry 79

2.4 The Interferometric Error Budget 82

2.4.1 Roll Errors 82

2.4.2 Phase Errors 83

2.4.3 Range Errors 85

2.4.4 Baseline Errors 85

2.4.5 Finite Azimuth Footprint Biases 86

2.4.6 Radial Velocity Errors 86

2.4.7 Calibration Methods 88

2.5 Wide-Swath Altimetry Phenomenology 91

2.5.1 Water Brightness 91

2.5.2 Wave Effects 91

2.5.2.1 The "Surfboard Effect" 92

2.5.2.2 Temporal Correlation Effects 93

2.5.2.3 Wave Bunching 95

2.5.2.4 The EM Bias 97

2.5.3 Layover and Vegetation Effects 98

2.6 Wide-Swath Altimetry Mission Design 102

Page 4: Satellite altimetry over oceans and land surfaces

Contents vii

2.7 Summary and Prospects 107

Acknowledgments 108

References 108

Chapter 3 In Situ Observations Needed to Complement, Validate, and InterpretSatellite Altimetry 113

Dean Roemmich, Philip Woodworth, Svetlana Jevrejeva, Sarah Purkey,Matthias Lankhorst, Uwe Send, and Nikolai Maximenko

3.1 Introduction 113

3.2 Sea Surface Heights Obtained from Tide Gauge/GNSS Networks 115

3.2.1 Sea Level Measurements before the Altimeter Era 115

3.2.2 Tide Gauge and Altimeter Data Complementarity 115

3.2.3 Tide Gauges Used for Altimeter Calibration 116

3.2.4 Tide Gauge and Altimeter Data in Combination in Studies of

Long-Term Sea Level Change 117

3.2.5 GNSS Equipment at Tide Gauges 118

3.2.6 New Developments in Tide Gauges and Data Availability 120

3.2.7 Tide Gauges and Altimetry in the Future 120

3.3 Upper-Ocean (0 to 2000 decibars) Steric Variability: The XBT and

Argo Networks 121

3.3.1 The Relationship of SSH Variability with Subsurface T and

S—Steric Height 121

3.3.2 A Brief History of Systematic Ocean Sampling by the XBT

and Argo Networks 122

3.3.3 Ocean Heat Content and Steric Sea Level 125

3.3.4 The Global Pattern of SSH and Upper-Ocean Steric Height 125

3.3.5 Geostrophic Ocean Circulation 126

3.3.6 Horizontal Scales of Variability in the Ocean: The Challengeof Resolution 127

3.4 Deep-Ocean (greater than 2000 m) Steric Variability:

Repeat Hydrography and Deep Argo 128

3.4.1 Ventilating the Deep Ocean: Deep Water Production and

the Global MOC 128

3.4.2 Monitoring Deep Steric Variability through Repeat Hydrography 129

3.4.3 The Deep Ocean Contribution to Steric Sea Level 129

3.4.4 Future of Deep Observing: Deep Argo 130

3.5 Geostrophic Transports and Bottom Pressure Observations 130

3.5.1 Complementarity among Altimetry, Water Column Density,and Bottom Pressure 130

3.5.2 Volume Transports from End Points, and Accuracy Requirements.... 130

3.5.3 Upper-Layer Transports 132

3.5.4 Complementarity of Altimetry and Seafloor Pressure in

Accuracy and Timescales 134

3.5.5 Constraining Transports in Two-Mode Systems with Altimetryand Bottom Pressure 135

3.6 Dynamic Topography and Surface Velocity 136

3.6.1 Eulerian Velocity Measurements 136

3.6.2 Lagrangian Velocity Measurements 136

3.6.3 Geostrophic Currents and Mean Dynamic Topography 137

3.6.4 Ageostrophic Motions 139

Page 5: Satellite altimetry over oceans and land surfaces

viii Contents

3.7 The Technology Revolution and the Future of Ocean Observations 140

3.8 Outlook 140

Acknowledgments 140

References 141

Chapter 4 Auxiliary Space-Based Systems for Interpreting Satellite Altimetry:Satellite Gravity 149

Don Chambers, Ole B. Andersen, Srinivas Bettadpur, Marie-Helene Rio,

Reiner Rummel, and David Wiese

4.1 Introduction 149

4.2 Measurements: Mean Geoid and Sea Surface 150

4.2.1 Parameterizing Gravity and the Geoid 151

4.2.2 GRACE and GOCE 154

4.2.3 Surface Gravity Data and Combination Geoids 158

4.2.4 Mean Sea Surface Models 159

4.3 Measurements: Time-Variable Gravity 161

4.4 Applications: Dynamic Ocean Topography 164

4.4.1 Importance of Consistency between Geoid and MSS 165

4.4.2 Improvements in MDT with GRACE and GOCE Geoids 168

4.4.3 Toward a Higher Spatial Resolution MDT 172

4.5 Applications: Global and Regional Ocean Mass Variations 173

4.6 Conclusions and Future Prospects 178

References 180

Chapter 5 A 25-Year Satellite Altimetry-Based Global Mean Sea Level Record:

Closure of the Sea Level Budget and Missing Components 187

R. Steven Nerem, Michael Ablain, Anny Cazenave, John Church,

and Eric Leuliette

5.1 Introduction 187

5.2 The Altimeter Mean Sea Level Record 189

5.2.1 Computing Global and Regional Mean Sea Level Time Series 189

5.2.2 Altimeter Missions 189

5.2.3 Altimeter Corrections 189

5.2.4 Intermission Biases 190

5.2.5 Averaging Process 190

5.2.6 Validation ofthe GMSL Record with Tide Gauge Measurements 191

5.2.7 Mean Sea Level Variation and Uncertainties 192

5.2.7.1 Global Scale Uncertainty 192

5.2.7.2 Regional Scales 194

5.3 Interpreting the Altimeter GMSL Record 194

5.3.1 Steric Sea Level Contribution 195

5.3.2 The Cryosphere Contributions to GMSL 198

5.3.3 The Land Water Storage Contributions to GMSL 199

5.3.3.1 Interannual Variations 200

5.3.3.2 Long-Term Variations 201

5.4 Closing the Sea Level Budget and Uncertainties 201

5.4.1 Glacial Isostatic Adjustment 202

5.4.2 Ocean Mass/Barystatic Sea Level from GRACE 202

5.4.3 Closure and Missing Components 203

Page 6: Satellite altimetry over oceans and land surfaces

Contents lx

5.5 How Altimetry Informs Us About the Future 204

References 204

Chapter 6 Monitoring and Interpreting Mid-Latitude Oceans by Satellite Altimetry 211

Kathryn A. Kelly, Joshua K. Willis, Gilles Reverdin, Shenfu Dong,and LuAnne Thompson6.1 Introduction: Role of Mid-Latitude Oceans 211

6.2 Western Boundary Currents 212

6.3 Meridional Circulation and Interbasin Exchanges 217

6.4 Climate Change 221

6.5 Summary and Future Research 226

Acknowledgments 226

References 226

Chapter 7 Monitoring and Interpreting the Tropical Oceans by Satellite Altimetry 231

Tong Lee, J. Thomas Farrar, Sabine Arnault, Benoit Meyssignac,

Weiqing Han, and Theodore Durland

7.1 Introduction 231

7.2 Tropical Atlantic Ocean 232

7.2.1 Intraseasonal and Eddy Activities 232

7.2.1.1 Eddy Structures 232

7.2.1.2 Tropical Instability Waves 233

7.2.2 The Seasonal Cycle 233

7.2.3 Equatorial Waves 234

7.2.4 Interannual Variability 235

7.3 Tropical Indo-Pacific Ocean 236

7.3.1 Tropical Pacific 236

7.3.1.1 Intraseasonal Variability 236

7.3.1.2 Seasonal Variability 239

7.3.1.3 Interannual and Decadal Variability 244

7.3.2 Tropical Indian Ocean 249

7.3.2.1 Intraseasonal Variability 249

7.3.2.2 Seasonal Cycle 252

7.3.2.3 Interannual Variability 253

7.3.2.4 Decadal and Multidecadal Changes 255

7.3.3 Indo-Pacific Linkage and Indonesian Throughflow 256

7.4 Summary 257

Acknowledgments 258

References 258

Chapter 8 The High Latitude Seas and Arctic Ocean 271

Johnny A. Johannessen and Ole B. Andersen

8.1 Introduction 271

8.1.1 Satellite Altimetry in the High Latitude and Arctic Ocean 273

8.2 Mapping the Sea Ice Thickness in the Arctic Ocean 275

8.3 Sea Level Change 276

8.3.1 The Seasonal Cycle 278

8.3.2 Secular and Long-Term Sea Level Changes 279

Page 7: Satellite altimetry over oceans and land surfaces

X Contents

8.3.3 Arctic Sea Level Budget 282

8.3.4 The Polar Gap and Accuracy Estimates 283

8.4 Mean Dynamic Topography 284

8.5 Ocean Circulation and Volume Transport 285

8.5.1 Surface Circulation 285

8.5.2 Volume Transport 289

8.6 Summary and Outlook 290

Acknowledgment 291

References 291

Chapter 9 The Southern Ocean 297

Sarah T. Gille and Michael P. Meredith

9.1 Introduction 297

9.2 Characterizing Spatial Variability of the Antarctic CircumpolarCurrent from Altimetry 297

9.3 Mapping the Time-Varying, Three-Dimensional Structure of

the Southern Ocean 299

9.4 ACC Transport From Altimetry 301

9.5 Eddy Variability 306

9.6 Summary and Conclusions 309

Acknowledgments 310

References 310

Chapter 10 Ocean Eddies and Mesoscale Variability 315

Rosemary Morrow, Lee-Lueng Fu, J. Thomas Farrar, Hyodae Seo,

and Pierre-Yves he Traon

10.1 Introduction 315

10.2 Improvements in Along-Track Data and Mapping Capabilities 316

10.2.1 Reprocessing of Along-Track Data 317

10.2.2 Multi-Mission Mapping 317

10.3 Observed Mesoscale Eddies and Jets 319

10.4 Spectral Analyses of Along-Track SSH 321

10.5 Resolving Higher-Order Dynamical Processes 325

10.5.1 Toward Two-Dimensional Spectral Energy Fluxes 325

10.5.2 Lagrangian Fine-Scale Ocean Dynamics from Altimetry 325

10.6 Understanding Three-Dimensional Vertical Structure of Eddy and

Sub-Mesoscale Processes 326

10.7 Understanding Coupled Mesoscale Processes 329

10.8 Effects of Internal Waves at Smaller Spatial Scales 332

10.9 Summary and Perspectives 333

Acknowledgments 335

References 335

Chapter 11 Satellite Altimetry in Coastal Regions 343

Paolo Cipollini, Jerome Benveniste, Florence Birol, M. Joana Fernandes,

Estelle Obligis, Marcello Passaro, P. Ted Strub, Guillaume Valladeau,

Stefano Vignudelli, and John Wilkin

Glossary 343

11.1 Introduction and Rationale 344

Page 8: Satellite altimetry over oceans and land surfaces

Contents xi

11.2 Dealing with Coastal Waveforms 346

11.2.1 Pulse-Limited Waveforms 346

11.2.2 SAR Waveforms 349

11.3 Improvements in Range and Geophysical Corrections 350

11.3.1 Dry Troposphere 350

11.3.2 Wet Troposphere 351

11.3.3 Recent Improvements in Coastal Tides and Dynamic

Atmospheric Correction 356

11.4 Data Available for Coastal Altimetry 356

11.4.1 PEACHI Expertise Prototype 356

11.4.1.1 SARAL/AltiKa 358

11.4.1.2 Implementation on Jason-2 and Jason-3 359

11.4.1.3 Data Availability and Delivery Mode 359

11.4.2 ALES '. 359

11.4.2.1 ALES Data Set: Availability and Reliability 359

11.4.2.2 ALES Data Set Improves Coastal Sea Level Research.... 360

11.4.2.3 Examples of Usage of the ALES Data Set 362

11.4.3 X-TRACK Regional Altimetry Products 362

11.5 Applications Using Observations Alone 364

11.6 Integration of Coastal Altimetry in Coastal Observing Systems 370

11.7 Conclusions 372

Acknowledgment 373

References 373

Chapter 12 Monitoring Waves and Surface Winds by Satellite Altimetry: Applications 381

Saleh Abdalla and Peter A. E. M. Janssen

12.1 Introduction 381

12.2 The Altimeter and Its Ocean Measurements 383

12.3 Altimeter Surface Wind Speed 386

12.3.1 Principle of Wind Speed Measurement 386

12.3.2 Quality of Altimeter Wind Speed Observations 388

12.3.3 Benefits of Altimeter Wind Speed Observations 392

12.3.4 Altimeter Wind Speed Data and Problems 394

12.3.4.1 Effect of Slicks 397

12.3.4.2 Neutral versus 10-m Winds 397

12.3.4.3 Sea State Effects 398

12.3.5 Backscatter versus Mean Square Slope 399

12.3.6 Extreme Winds 400

12.4 Significant Wave Height 402

12.4.1 Principle of SWH Measurement 402

12.4.2 Quality of Altimeter SWH Data 402

12.5 Applications 406

12.5.1 Data Assimilation 406

12.5.2 Estimation of Effective Model Resolution 413

12.5.3 Sea State Climatology 414

12.6 New Developments 417

12.6.1 SAR (Delay-Doppler) Altimetry 417

12.6.2 CFOSAT 418

12.7 Concluding Remarks 420

References 420

Page 9: Satellite altimetry over oceans and land surfaces

xii Contents

Chapter 13 Tides and Satellite Altimetry 427

Richard D. Ray and Gary D. Egbert13.1 Introduction 427

13.2 Tidal Aliasing 428

13.3 Barotropic Tidal Models for and from Satellite Altimetry 431

13.4 Barotropic Tidal Energetics 436

13.5 Baroclinic Tides 444

13.5.1 Stationary Baroclinic Tides 445

13.5.2 Nonstationary Baroclinic Tides 448

13.6 Outstanding Issues 453

Acknowledgments 454

References 454

Chapter 14 Hydrological Applications of Satellite Altimetry: Rivers, Lakes, Man-Made

Reservoirs, Inundated Areas 459

Jean-Francois Cretaux, Karina Nielsen, Frederic Frappart, Fabrice Papa,

Stephane Calmant, and Jerome Benveniste

14.1 Introduction 459

14.1.1 Past, Present, and Future of Satellite Altimetry 460

14.1.2 Short History of Past Applications of Satellite Altimetry on

Surface Water 462

14.1.3 Objectives of This Chapter 463

14.2 Satellite Altimetry: Measurement and Interpretation 463

14.2.1 General Principle of Satellite Altimetry 463

14.2.2 Jason-2 DIODE/DEM Tracker 465

14.2.3 Review of the Different Modes (LRM, SAR, and SARIn) 465

14.2.4 Review of the Geophysical Corrections 466

14.2.4.1 Dry Tropospheric Correction 466

14.2.4.2 Wet Tropospheric Correction 466

14.2.4.3 Ionospheric Correction 466

14.2.4.4 Sea State Bias Correction 467

14.2.4.5 Tidal Corrections 467

14.2.5 Review of the Biases and Their Determination 467

14.3 Satellite Altimetry for Hydrology: Some Basics 468

14.3.1 Review of the Retracking and Height Retrieval 468

14.3.1.1 Ocean and Ice-2 Retrackers 470

14.3.1.2 OCOG Retracker 471

14.3.1.3 Sea Ice Retracker 471

14.3.1.4 Threshold Retracker 471

14.3.2 Hooking Effect 472

14.3.3 Geoid Gradient Correction over Lakes 474

14.3.4 Selection and Editing of Measurements for Hydrology 475

14.3.5 Cross-Track Correction for SARIn and Snagging 480

14.4 Examples of Application 483

14.4.1 Use of Altimetry over Lakes and Reservoirs 483

14.4.1.1 Regional Survey of Lakes (Tibetan Plateau Lakes) 483

14.4.1.2 Case Study on Lakes Using SAR/SARIn 485

14.4.2 Use of Satellite Altimetry over Rivers 489

14.4.3 Use of Satellite Altimetry over Floodplains 491

Page 10: Satellite altimetry over oceans and land surfaces

Contents x"'

14.4 Conclusions and Perspectives 495

References 498

Chapter 15 Applications of Satellite Altimetry to Study the Antarctic Ice Sheet 505

Frederique Remy, Anthony Memin, and Isabella Velicogna15.1 Introduction 505

15.2 The Antarctica Ice Sheet 506

15.2.1 General Characteristics 506

15.2.2 How to Observe the Evolution of the Ice Sheet 508

15.3 Polar Altimetry 508

15.3.1 Some Specifics of Radar Altimetry on Ice Sheets 508

15.3.2 Characteristics of Laser Altimetry on Ice Sheets 510

15.3.3 Methodology for Constructing Height Time Series 510

15.4 Contribution of Altimetry to Studying Antarctic Climate 511

15.5 Main Surface Characteristics of the Antarctic Ice Sheet 511

15.5.1 Surface Topography 512

15.5.2 Constraints for Numerical Models 513

15.6 Temporal Variations 514

15.6.1 Different Times and Signals 514

15.6.2 Lake Drainage 515

15.6.3 Firn Compaction 515

15.6.4 Present-Day Mass Balance 516

15.6.5 Acceleration of Outlet Glaciers 517

15.7 Summary and Perspective 518

References 519

Chapter 16 Advances in Imaging Small-Scale Seafloor and Sub-Seafloor Tectonic

Fabric Using Satellite Altimetry 523

R. Dietmar Miiller, Kara J. Matthews, and David T. Sandwell

16.1 Introduction 523

16.2 Satellite-Derived Gravity for Tectonic Mapping 523

16.2.1 Brief History 523

16.2.2 Methodology and Limitations 524

16.2.3 Improved Radar Technology—Current and Future 526

16.3 Oceanic Microplates 527

16.3.1 Models for Microplate Formation 527

16.3.2 Associated Seafloor Structures 530

16.3.3 Recent Advances in Mapping the Structure and History of

Microplates Using Satellite Altimetry 530

16.3.3.1 Indian Ocean 531

16.3.3.2 Pacific Ocean 532

16.4 Mapping Major Tectonic Events in the Ocean Basins 534

16.4.1 The Enigmatic Mid-Cretaceous Tectonic Event 534

16.4.2 Insights from Combining Satellite Altimetry with Geologicaland Geophysical Ship Data 537

16.4.3 What Caused the 100 Ma Event? 539

16.5 Mapping Sub-Seafloor Tectonic Fabric 539

16.5.1 North Falkland Basin 540

16.5.2 Lord Howe Rise 542

Page 11: Satellite altimetry over oceans and land surfaces

xiv Contents

16.6 Conclusions and Future Outlook 542

Acknowledgments 542

References 544

Chapter 17 Ocean Modeling and Data Assimilation in the Context of Satellite Altimetry 547

Detlef Stammer and Stephen M. Griffies17.1 Introduction 547

17.1.1 Observational Oceanography and Ocean Circulation Modeling 547

17.1.2 The Need for Ocean Data Assimilation 548

17.1.3 Aims for This Chapter 548

17.2 Ocean General Circulation Models 548

17.2.1 The Hydrostatic Primitive Equations 548

17.2.2 Flux-Form Ocean Equations 550

17.2.3 Basics of Finite Volume Discrete Ocean Equations 551

17.2.4 Oceanic Boussinesq Approximation 551

17.2.5 Ocean Responses to Virtual Salt Fluxes versus Real Water Fluxes....552

17.2.6 Impacts from Changes to the Gravitational Geopotential 553

17.2.7 Fast and Slow Dynamics 553

17.3 Sea Level Tendencies and Spatial Patterns 555

17.3.1 Sea Level Tendencies and Mass Continuity 556

17.3.2 Non-Boussinesq Steric Effect and the Boussinesq Sea Level 556

17.3.3 Evolution of Global Mean Sea Level 557

17.3.3.1 Mass Conserving Non-Boussinesq Fluids 557

17.3.3.2 Volume-Conserving Boussinesq Fluids 558

17.3.4 Sea Level Tendencies and the Hydrostatic Balance 558

17.3.5 Sea Level Tendencies due to Mass Changes 559

17.3.6 Sea Level Tendencies due to Local Steric Changes 560

17.3.7 Sea Level Changes due to Applied Surface Loading 560

17.3.8 Sea Level Gradients and Ocean Circulation 561

17.3.8.1 Surface Ocean 561

17.3.8.2 Full Ocean Column 561

17.3.8.3 Barotropic Geostrophic Balance and Transport

through a Section 562

17.4 Ocean Data Assimilation 562

17.4.1 Elements of Ocean Data Assimilation 563

17.4.2 Some Details for Filtering Methods 565

17.4.3 Smoother Methods 566

17.5 Applications with Respect to Altimetry 567

17.5.1 Process Modeling 567

17.5.2 Assimilation of Sea Level into Models 571

17.6 Summary and Concluding Remarks 574

Acknowledgments 574

References 574

Chapter 18 Use of Satellite Altimetry for Operational Oceanography 581

Pierre-Yves Le Traon, Gerald Dibarboure, Gregg Jacobs, Matt Martin,

Elisabeth Remy, and Andreas Schiller

18.1 Introduction 581

Page 12: Satellite altimetry over oceans and land surfaces

Contents xv

18.2 Operational Oceanography 582

18.2.1 History of Development 582

18.2.2 Operational Oceanography Infrastructure 582

18.2.3 Applications and Users 583

18.3 The Unique Role of Satellite Altimetry for Operational Oceanography 584

18.3.1 The Close Relationships between Operational Oceanographyand Satellite Altimetry 584

18.3.2 Synergies with Other Satellite and In Situ Observations 584

18.3.3 General Requirements/Constellation 585

18.4 Use and Impact of Satellite Altimetry for Operational Oceanography 586

18.4.1 Evolution of the Altimeter Constellation over the Last 25 Years 586

18.4.2 Multiple Altimeter Data Processing for Operational

Oceanography 587

18.4.2.1 Level 2 Data Assembly and Homogenization 589

18.4.2.2 Intercalibration, Orbit, and Large-ScaleError Correction 589

18.4.2.3 Calculation of Sea Level Anomalies 590

18.4.2.4 Strengthening the Links with DataAssimilation Systems.... 591

18.4.2.5 Mapping SLA on Regular Space and Time Grids 591

18.4.2.6 Geoid and Mean Dynamic Topography 592

18.4.3 Assimilation in Ocean Forecasting Models 593

18.4.4 Impact of Multiple Altimeter Data Assimilation in Ocean

Forecasting Models 594

18.5 Future prospects 598

18.5.1 Evolution of Operational Oceanography and New Challenges 598

18.5.2 Evolution of Altimetry Technology and Impact on

Operational Oceanography 602

18.5.2.1 Improving Coverage and Robustness 602

18.5.2.2 Improving Precision and Accuracy 603

18.6 Conclusion 604

References 604

Index 609