Renewable and sustainable approaches for desalination

Download Renewable and sustainable approaches for desalination

Post on 13-Feb-2017

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Renewable and Sustainable Energy Reviews 14 (2010) 26412654

    Renewable and sustainable approaches for desalination

    Veera Gnaneswar Gude a, Nagamany Nirmalakhandan b, Shuguang Deng a,*a Chemical Engineering Department, New Mexico State University, Las Cruces, NM 88003, USAb Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2642

    2. Desalination technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2642

    3. Energy and greenhouse gas emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2642

    4. Water and energy sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643

    4.1. Utilizing renewable energy sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643

    4.1.1. Use of solar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644

    4.1.2. Solar collectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644

    4.1.3. Solar pond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644

    4.1.4. Photovoltaic modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2645

    4.1.5. PV thermal collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2645

    4.1.6. Use of geothermal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2645

    4.1.7. Use of wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2646

    4.1.8. Use of wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2646

    4.2. Process hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2647

    4.2.1. Coupling MSF with RO process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2647

    4.2.2. Integrating membrane distillation (MD) with other desalination processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2647

    4.2.3. Hybrid membrane process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648

    4.3. Low-cost and low-energy desalination technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648

    4.3.1. Utilization of low-grade waste heat sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648

    4.3.2. Low-temperature desalination systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649

    4.4. Water reuse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649

    A R T I C L E I N F O

    Article history:

    Received 5 August 2009

    Accepted 14 June 2010

    Keywords:

    Desalination

    Renewable energy

    Energy cost

    Water reuse

    Reverse osmosis

    Cogeneration

    Green house gases

    Environment

    A B S T R A C T

    Freshwater and energy are essential commodities for well being of mankind. Due to increasing

    population growth on the one hand, and rapid industrialization on the other, todays world is facing

    unprecedented challenge of meeting the current needs for these two commodities as well as ensuring

    the needs of future generations. One approach to this global crisis of water and energy supply is to utilize

    renewable energy sources to produce freshwater from impaired water sources by desalination.

    Sustainable practices and innovative desalination technologies for water reuse and energy recovery

    (staging, waste heat utilization, hybridization) have the potential to reduce the stress on the existing

    water and energy sources with a minimal impact to the environment. This paper discusses existing and

    emerging desalination technologies and possible combinations of renewable energy sources to drive

    them and associated desalination costs. It is suggested that a holistic approach of coupling renewable

    energy sources with technologies for recovery, reuse, and recycle of both energy and water can be a

    sustainable and environment friendly approach to meet the worlds energy and water needs. High capital

    costs for renewable energy sources for small-scale applications suggest that a hybrid energy source

    comprising both grid-powered energy and renewable energy will reduce the desalination costs

    considering present economics of energy.

    2010 Elsevier Ltd. All rights reserved.

    Contents lists available at ScienceDirect

    Renewable and Sustainable Energy Reviews

    journa l homepage: www.e lsev ier .com/ locate / rser

    * Corresponding author. Tel.: +1 575 646 4346; fax: +1 575 646 7706.

    E-mail address: sdeng@nmsu.edu (S. Deng).

    1364-0321/$ see front matter 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.rser.2010.06.008

    http://dx.doi.org/10.1016/j.rser.2010.06.008mailto:sdeng@nmsu.eduhttp://www.sciencedirect.com/science/journal/13640321http://dx.doi.org/10.1016/j.rser.2010.06.008

  • V.G. Gude et al. / Renewable and Sustainable Energy Reviews 14 (2010) 264126542642

    5. Selection criteria for a desalination process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649

    6. Desalination cost estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2650

    7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2652

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2652

    1. Introduction

    Freshwater and energy are two inseparable and essentialcommodities for sustaining human life on earth. Rapid populationgrowth and industrialization, especially in developing countries inthe recent past, have placed pressing demands for both freshwaterand energy. Supply of freshwater requires energy and unfortu-nately, many countries in the world that lack freshwater sources,are also deficient in energy sources. While conventional watertreatment technologies are adequate to treat surface and groundwaters with low dissolved solids [

  • Table 2Principal characteristics of different desalination processes.

    Characteristic Type of process

    Phase change Non-phase change Hybrid

    Nature Thermal process: MED, MSF, MVC, TVC

    (evaporation and condensation)

    Pressure/concentration gradient

    driven: RO (membrane separation,

    ED (electrochemical separation)

    Thermal + membrane: membrane

    distillation, MSF/RO, MED/RO

    Membrane pore size 0.13.5 nm 0.20.6 mmFeed temperature 60120 8C

  • [(Fig._1)TD$FIG]

    Fig. 1. Possible combinations of renewable energy sources with desalination processes.

    Table 6Possible combinations of solar collectors with desalination technologies.

    Type of solar collector Source of

    salt water

    Desalination

    process

    Direct solar Seawater,

    brackish water

    Solar stills

    Flat panel collectors Seawater MED/LTMED

    Evacuated tube collectors Seawater MSF/TVC

    Parabolic trough collectors Seawater MED/MEB

    Photovoltaic thermal collectors Seawater,

    brackish water

    MED/LTMED

    V.G. Gude et al. / Renewable and Sustainable Energy Reviews 14 (2010) 264126542644

    4.1.1. Use of solar energy

    4.1.1.1. Solar distillation. Direct utilization of solar energy fordesalination is by solar stills. Solar energy can be used directly toevaporate water from the sea/brackish and other impaire

Recommended

View more >