renal 4 2017 october 30, 2017 nrosci/biosci i070 renal...

7
Renal 4 2017 October 30, 2017 1 NROSCI/BIOSCI I070 Renal Physiology 4 Today we will focus on the regulation of the osmolality of the blood (and body fluids). Note that last time we discussed how ADH release is sensitive to changes in pOsm, and ADH can rapidly adjust water excretion to maintain a normal plasma osmolality. However, in doing so, ADH would also alter body fluid volume. [slide 1] Thus, there needs to be a mechanism to independently regulate excretion of osmoles, if body fluid volume were to be maintained. Note that total fluid volume is not as critical a parameter as osmolality (why?) and therefore does not need to be regulated as rapidly or sensitively. This is certainly reflected in the different sensitivities of ADH secretion for changes in volume and osmolality. Interstitial fluid is ~300 mOsm/L (actually a little less, ~290). This is made up primarily of Na+ and the negatively-charged ions associated with it. Plasma Na+ is typically around 140-145 mOsm/L (or 140-145 mEq/L, since for a monovalent ion osm=Eq). Na+ and the associated anions account for greater than 90% of ECF osmolality. The control of plasma osmolality (pOsm), which is then in equilibrium with interstitial fluid osmolality, is done by regulating how much water there is to dilute or concentrate the solutes. There are two major mechanisms to accomplish this: control of water loss (relative to solute) by the kidneys and control of water intake (thirst). Osmolality is regulated by altering water intake and excretion relative to the number of osmoles (which is primarily Na+). However the number of osmoles in the body is also a critical component of this regulation. And since Na+ is the major osmole, let’s consider the regulation of Na+ excretion. Slide 2:

Upload: trinhcong

Post on 07-May-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Renal42017 October30,2017

1

NROSCI/BIOSCII070

RenalPhysiology4

Todaywewillfocusontheregulationoftheosmolalityoftheblood(andbodyfluids).NotethatlasttimewediscussedhowADHreleaseissensitivetochangesinpOsm,andADHcanrapidlyadjustwaterexcretiontomaintainanormalplasmaosmolality.However,indoingso,ADHwouldalsoalterbodyfluidvolume.[slide1]Thus,thereneedstobeamechanismtoindependentlyregulateexcretionofosmoles,ifbodyfluidvolumeweretobemaintained.Notethattotalfluidvolumeisnotascriticalaparameterasosmolality(why?)andthereforedoesnotneedtoberegulatedasrapidlyorsensitively.ThisiscertainlyreflectedinthedifferentsensitivitiesofADHsecretionforchangesinvolumeandosmolality.

Interstitialfluidis~300mOsm/L(actuallyalittleless,~290).ThisismadeupprimarilyofNa+andthenegatively-chargedionsassociatedwithit.PlasmaNa+istypicallyaround140-145mOsm/L(or140-145mEq/L,sinceforamonovalentionosm=Eq).Na+andtheassociatedanionsaccountforgreaterthan90%ofECFosmolality.

Thecontrolofplasmaosmolality(pOsm),whichistheninequilibriumwithinterstitialfluidosmolality,isdonebyregulatinghowmuchwaterthereistodiluteorconcentratethesolutes.Therearetwomajormechanismstoaccomplishthis:controlofwaterloss(relativetosolute)bythekidneysandcontrolofwaterintake(thirst).Osmolalityisregulatedbyalteringwaterintakeandexcretionrelativetothenumberofosmoles(whichisprimarilyNa+).Howeverthenumberofosmolesinthebodyisalsoacriticalcomponentofthisregulation.AndsinceNa+isthemajorosmole,let’sconsidertheregulationofNa+excretion.

Slide2:

Renal42017 October30,2017

2

[simplifiedversion–slide3]Na+isfreelyfilteredintheglomerulusandthenreabsorbedbyactivetransportinmostsegmentsofthetubulesystem.(Whichsegmentsdon'ttransportNa+?)Aswithwater,~2/3oftheNa+isreabsorbedintheproximaltubule(indeed,it’stheNa+that’scausingthereabsorptionofwater),andthisisaccomplishedlargelybyprimaryactivetransport(i.e.,theNa-K-ATPase)atthebasolateralmembraneandvariousprocessesontheapicalmembrane,includingsecondaryactivetransportofothersolutes(e.g.,glucose,aminoacids)[slide4].Anadditional25-30%oftheNa+isreabsorbedintheascendinglimboftheLoopofHenle(slide5),andherethemaintransporterontheapicalmembraneistheNa-K-2Cltransporter.However,theregulatedportionofreabsorptionoccursdistaltotheloopofHenle,inthecollectingduct.Beforewetalkaboutthat,afewothercommentsonthenon-regulatedprocessesofNa+reabsorption.[slides6,7,8]ThecontrolofNa+reabsorptionisprimarilyunderthecontrolofasinglehormone,aldosterone.[slide9]Aldosteroneisasteroidhormonereleasedfromtheadrenalcortex.AldosteroneactsonthecorticalcollectingductstopromoteNa+reabsorption(activetransport).Intheabsenceofaldosterone,approximately2%ofthefilteredloadofNa+isexcretedintheurine.(Thismaynotsoundlikealot,butgiventhatthefilteredloadofNa+is~25,OOOmillimoles/day,2%representsalotofNa+.)Incontrast,inthepresenceofhighconcentrationsofaldosterone,essentiallyallNa+isreabsorbed.Therefore,~98%ofthefilteredloadofNa+isreabsorbedinanon-regulatedmanner,whereastheexcretionof~2%ofthefilteredloadishighlyregulated.HowdoesaldosteroneincreaseNa+reabsorption?[slide10]AldosteronecausesthesynthesisofnewNa+,K+-ATPasemoleculesthatgetinsertedintothebasolateralmembraneinthecorticalcollectingducts.Inaddition,aldosteronestimulatestheinsertionofNachannelsintotheluminalmembrane.(Itisinterestingtonotethataldosteronealsohasasimilareffectintheintestines,whichactstopromoteNa+absorptionfromthediet.)Thisactionofaldosterone,likemostactionsofsteroidhormones,ismediatedviaanactiononthegenome,tocauseincreasedtranscription,increasedmRNA,andincreasedsynthesisoftheseproteinsinvolvedinNatransport.NotethatNaK-ATPaseexpressionintheproximaltubuleisnotregulatedbyaldosterone.

[slides11-15providesomeadditionalcomplexitytothis,andaddinsomeofthemorerapideffectsofaldosteroneonregulationofthesetransporters.]

Renal42017 October30,2017

3

So,aldosteronecontrolsthereabsorptionofNa+.[slide16]Thisleadstothequestionofwhatcontrolsthereleaseofaldosterone.Theprimarystimulusforaldosteronesecretionisangiotensinactingonthealdosterone-releasingcellsoftheadrenalcortex.(K+alsoactsdirectlytoincreasealdosteronerelease;we'llcomebacktothis.)Therenin-angiotensinsystem[slide17]:Reninisreleasedfromthejuxtaglomerularcells,whichlieadjacenttothemaculadensa.Reninisanenzymethat,inblood,causesthesynthesisofangiotensin1fromangiotensinogen(alsocalledreninsubstrate).Angiotensinogen,whichissynthesizedintheliver,istypicallypresentinrelativelyhighconcentration,sotheproductionofangiotensin1isdependentupontheamountofcirculatingrenin.Angiotensin1isthenconvertedtoangiotensinII(theactivehormone)byangiotensinconvertingenzyme,whichislocalizedinpulmonarycapillaries.(Whatitthesignificanceofsuchlocalization?)AngiotensinIIhasalargenumberofactionsinadditiontostimulatingaldosteronesecretion,allofwhichacttomaintainbloodpressureandplasmavolumeandosmolality.So,angiotensinIIhasabunchofactions,whichpromptsthequestionofwhatinitiatesthis.Whatisthestimulusforreninsecretion.[slide18]Thereare3primarystimuliforrenninrelease:sympatheticinnervationofthejuxtaglomerularcells(beta-adrenergicreceptorstimulatedreninsecretion),themaculadensa,andintrarenalbaroreceptors(theJGcellsthemselvesarestretch-sensitive;lessstretch,whichreflectslowerrenalperfusionpressure,stimulatesreninsecretion)

Renal42017 October30,2017

4

Onemorethingabouttherenin-angiotensinsystemwhilewearetalkingaboutit:inrecentyearsthewholesystemhasgottenwaymorecomplex(slide19).Nowinadditiontotheclassicangiotensinsystem,thereisACE2generatingAng1-7;thereisareceptorforreninitself,andmore….[TheonlypointIwanttomakehereisthatthisisanactiveareaofresearch,withnewtwistsandturns.]Inadditiontoaldosterone,otherhormonesinfluenceNa+reabsorption.[slide20]AngiotensinIIappearstoactdirectlyontheproximaltubuletopromoteNa+reabsorption,asdoessympatheticinnervationofthekidney.Atrialnatriuretichormone,releasedfromtherightatriuminresponsetostretchpromotesNa+excretion.AtrialnatriuretichormonedecreasesNareabsorption,andalsoincreasesGFR(whichpromotesNaexcretion).[Anaside:Recentdataalsoindicatethatoxytocin,releasedfromtheposteriorpituitaryinresponsetoincreasedosmolality,isalsonatriuretic(atleastinsomespecies)Thoughoxytocinmayalsoincreasereninsection(atleastinsomespecies)sotheeffectsofoxytocinmightbequitecomplicated.].Also,sympatheticinnervationofproximaltubulepromotesNareabsorption.Notethatwehavementioned3thingsthatsympatheticinnervationofthekidneysinfluence:reninsecretion,Nareabsorption,andrenalbloodflow[slide21].These3effectsofsympatheticinputtothekidneyaredifferentiallysensitivetorenalnerveactivityandaremediatedbydifferenttypesofadrenergicreceptors.Briefcommentonsaltappetiteandcontributionofsaltintaketosodiumbalance.(slide22)Briefcommentonsalt,bloodpressure,andabriefcommentondietarysaltanddietarysaltrecommendations.(slides23,24,25)Slide26:aniceflowchartforyoutoworkthrough.

Renal42017 October30,2017

5

WhataboutK+?K+doesnotcontributesubstantiallytoosmolality;itsextracellularfluidconcentrationisquitelow(~4.2mEq/L).However,theextracellularfluidlevelofK+mustbemaintainedwithinnarrowlimitsfornormalfunctionofcells[slide27],especiallyexcitablecells.K+isfreelyfilteredintheglomerulusandlargelyreabsorbed.[slide28,29]Regulationoccursbysecretionatthelevelofthecorticalcollectingducts.Thisregulationisprimarilybyaldosterone.RememberthatonestimulusforaldosteronereleaseisadirectactionofincreasedextracellularK+levelonthealdosterone-releasing:cells.AldosteroneincreasesNa/K-ATPaseinthecollectingducts,whichwouldpromoteK+secretion.[slide30]

Slides31,32,33(fromtextbook),makingpointsregardingtherelationshipbetweenaldosteroneandK+homeostasis.Note:thesamehormonecontrolsNa+reabsorptionandK+secretion.Thus,onewouldtendtochangeattheexpenseoftheother.However,seeslides34and35.AcommentonCa++homeostasisandthecentralrolethatparathyroidhormoneplaysinthis;simplenegativefeedbackreflexcontrolrelatingCa++andparathyroidhormone:slides36,37DiureticDrugsSeveralclassesofdrugsserveasclinically-usefuldiuretics.[slide38]

Iscoffeeadiuretic?[slides39

Renal42017 October30,2017

6

Theroleofthekidneyinlong-termpHregulation.InthecollectingtubuleH+reabsorptionorsecretion(andtheoppositewithbicarbonate)isalteredinresponsetoplasmaH+(slides44-45).Giventhehighconcentrationofbicarbonateintheplasma,thefilteredloadofbicarbonateislargeandthevastmajorityis“reabsorbed”intheproximaltubule.Thewordreabsorbedwasplacedinquotations,becauseasillustratedinslides46and46itisnottheactualbicarbonatemoleculesinthetubulefluidthataretransportedintotheperitubularcapillaries.Recentlyrenalnervedenervationhasreceivedconsiderableattentionasatreatmentforhypertension[slides48-54].Doesitwork?Yes,no,yes…Why?RenalDialysis[slides55-56]

Renal42017 October30,2017

7