record copy of proposal

26
Structural renovation of Kinghaven 2 Dormitory and Meeting Room in Abbotsford, BC Kinghaven 2 [Online photo]. (2013). Retrieved from URL http://www.keystonearch.ca/?action=d7_article_viewer_view_article&Join_ID=349893&template=project.htm7 Prepared For: Projects Committee of the Department of Civil Engineering at British Columbia Institute of Technology at Burnaby BC Jacquie Gaudet, PEng, Civil Engineering industry project coordinator, BCIT Deanna Levis, Communications Instructor Ryan Shephard, EIT, IQ Engineering Prepared By: Jason Liu Submitted on: Nov 8, 2014

Upload: jason-liu

Post on 16-Aug-2015

19 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: RECORD COPY OF PROPOSAL

Structural renovation of Kinghaven 2

Dormitory and Meeting Room in

Abbotsford, BC

Kinghaven 2 [Online photo]. (2013). Retrieved from URL

http://www.keystonearch.ca/?action=d7_article_viewer_view_article&Join_ID=349893&template=project.htm7

Prepared For:

Projects Committee of the Department of Civil Engineering at British Columbia Institute of

Technology at Burnaby BC

Jacquie Gaudet, PEng, Civil Engineering industry project coordinator, BCIT

Deanna Levis, Communications Instructor

Ryan Shephard, EIT, IQ Engineering

Prepared By:

Jason Liu

Submitted on:

Nov 8, 2014

Page 2: RECORD COPY OF PROPOSAL

TABLE OF CONTENTS

TABLE OF GRAPHICS

SUMMARY

1.0 INTRODUCTION 1

1.1 OBJECTIVES 1

2.0 BACKGROUND 1

3.0 PROJECT DESCRIPTION 2

3.1 DORMITORY BUILDING 2

3.2 MEETING ROOM 2

4.0 METHODS AND PROCEDURES

4.1 ROOFING 3

4.2 WOOD FRAME AND STRUCTURE

4.2.1 Dormitory elevator shaft 4

4.2.2 Shear walls 4

4.2.3 Flooring 4

4.2.4 Meeting room 5

4.3 STRUCTURAL CONNECTIONS 5

4.3.1 Dormitory building 5

4.3.2 Meeting room 6

4.4 FOUNDATIONS 6

4.5 SEISMIC DESIGN 6

5.0 RESOURCES 7

6.0 DELIVERABLES 7

7.0 UNCERTAINTIES 7

8.0 SCHEDULE 8

9.0 CONCLUSION 9

BIBLIOGRAPHY 10

Page 3: RECORD COPY OF PROPOSAL

APPENDICIES

APPENDIX A: Kinghaven 2 architectural drawing (side view) 13

Roof plan and dimensions 15

APPENDIX B: Detailed Design Procedure for the Structural Design of Multi-

storey Wood-framed Buildings on Concrete Suspended Slabs 20

Page 4: RECORD COPY OF PROPOSAL

TABLE OF GRAPHICS

TABLES

Table 1: Proposed Schedule 8

Page 5: RECORD COPY OF PROPOSAL

SUMMARY

The purpose of my project is to redesign the structural components of the dormitory building and

meeting room of Kinghaven 2, the second phase of a men’s social housing project.

I will be redesigning the structural components of the dormitory roof using the provided roof

geometry. However, I will be designing the meeting room roof independently of the architectural

drawings. I will also redesign the structural components and detail the connections for the wood

frames using the Wood Design Manual 2010. The location of the structural elements will follow

the partitioning provided in the architectural drawings. Afterwards, connections will be selected

from Simpsons’ StrongTie Catalog and the bolts will be designed using CSA O86. Lastly, I will

design the foundations for both buildings using CSA A23.3-14 Design of concrete structures and

Reinforced concrete design: A practical approach, 2nd edition. Seismic design will be performed

according to Part 4 of the BC Building Code 2012.

The deliverables include a formal report, calculations, and REVIT drawings detailing each

unique structural component.

Page 6: RECORD COPY OF PROPOSAL

- 1 -

1.0 INTRODUCTION

My project involves the structural renovation for the dormitory building and meeting room of

Kinghaven 2 according to the architectural drawings my sponsor has given me. However, I will

be designing my own meeting room roof.

My sponsor is Ryan Shepherd, EIT, from IQ Engineering in Abbotsford, BC. Kinghaven 2 was

selected so as to incorporate the geotechnical, seismic, and structural design aspects of this

project. Kinghaven 2, located at 31250 King Road Abbotsford, is built on surrounding farmland,

next to Abbotsford International Airport.

The scope of my design project is limited to designing the dormitory building along with the

attached one-storey office, the meeting room, and the reinforced concrete foundation with

gravity, lateral, and static seismic loading considerations. Utility installation considerations will

not be incorporated into this project.

This proposal includes the objectives, description, methods, resources, deliverables, as well as a

tentative schedule.

1.1 OBJECTIVES

The main objective of this project is to design a safe structure in accordance with Part 4

of the National Building Code of Canada 2010 that would be appropriate for social

housing considerations. A detailed listing of the objectives of this project is as follows;

• To design the structural components with gravity and lateral loading

considerations wherever appropriate

• To design an octagonal turret frame roof for the meeting room

• To design intersecting hipped roofs with a valley roof for the dormitory and a flat

roof for the one storey attached office

• To design the building structure

• To design the foundations of both the dormitory and meeting room

2.0 BACKGROUND

Kinghaven 2, located in 31250 King Road Abbotsford, is the second phase of a men’s social

housing project. The King Road church received a government subsidy to build Kinghaven 2 to

house men who need drug rehabilitation. The objective is to provide living accommodations for

clients while they are going through rehabilitation and treatment. The long term goal is to help

clients find employment and provide living accommodations for them until they are ready to

look for a place of their own. There is a three-storey dormitory with a one-storey attached office.

The dormitory portion of Kinghaven 2 is currently in the finishing stages of construction.

Page 7: RECORD COPY OF PROPOSAL

- 2 -

3.0 PROJECT DESCRIPTION

A description of my project is detailed below.

3.1 DORMITORY BUILDING

The dormitory building is a three-storey structure with a one-storey attached office. The

dormitory consists of intersecting hipped roofs with a valley truss on one of the facets.

All main roof trusses are single-ply pitched trusses. The single storey office building

contains a flat roof and a curved canopy on diagonal columns. Both of these roofs have

constant slopes and varying plan view dimensions. For a side and plan view of

Kinghaven 2, please refer to Appendix A.

3.2 MEETING ROOM

The meeting room is a square structure of heavy timber vaulted framing. Radial purlins at

their ends are supported on an eaves level square structure of wood beams. The radial

purlins converge up the sloped roof plane in a way that defines an octagonal shape,

similar to lofting a square to an octagon. A second set of wood beams will make up the

base of the octagon from which the second set of purlins will converge radially onto an

octagonal ridge block. I will be determining the effects of wind and snow loads for this

roof geometry by following the provisions from NBC 2010, BC Building Code 2012, and

CSA O86.

Page 8: RECORD COPY OF PROPOSAL

- 3 -

4.0 METHODS AND PROCEDURES

The design process will start with the roof and progress downwards through the buildings.

4.1 ROOF STRUCTURE

I will be using the roof geometry provided in the architectural drawings. I will follow the

NBC provisions for snow distributions. Figure G4 from NBC commentaries Part 4 shows

the snow distribution for valley areas. I will determine the component of gravity load

perpendicular to the joists.

The effect of wind loads on the roof geometries will be analyzed to determine the R, C,

and Z wind zones. Figure I-8 from NBC 2010 structural commentaries will be used to

obtain the peak external composite gust factors that will be applied to each tributary

surface to calculate the net specified wind pressures.

In designing the roof truss members, an iterative process will be carried out using

Microsoft Excel until design requirements are met. The resultant roof truss will then be

analyzed. The axial forces in the roof truss members need to be determined. A portion of

the dormitory roof containing the valley truss will not be designed until the valley truss is

designed.

Both dormitory and meeting room roofs will be designed with sheathing so that they act

as partial diaphragms. That way, lateral loads acting perpendicular to the plane of the roof

trusses will be transferred by the diaphragm action from the roof down onto the perimeter

shear walls. SPF2 will be used for the roof trusses since this material is widely used

throughout the Lower Mainland. For architectural perspectives, I will try to keep a

common depth for the roof truss members. The roof design will be done concurrently for

the one storey attached office flat roof and meeting room roof.

The amount of load transferred is then determined at locations where gravity load

supports are needed to support the roof. These locations are needed when designing the

wood framing for the uppermost storey. The completed wood frame design for each

storey is then overlaid onto the floor plan of the storey underneath. Afterwards, the load

support system for each successive storey underneath will be designed such that it

supports the load transfer locations above.

Page 9: RECORD COPY OF PROPOSAL

- 4 -

4.2 WOOD FRAME AND STRUCTURE

The wood structure for the dormitory consists of the elevator shaft, the shear walls, and

the floor framing. Common wood structural components throughout the project include

shearwalls and floor framing.

4.2.1 DORMITORY ELEVATOR SHAFT

The masonry elevator shaft is usually designed as one of the last components. It

is restrained against lateral movement by the floor. Therefore, typical reinforced

masonry walls will usually suffice since there is no need to design it as a large

self-supporting vertical cantilever with respect to lateral loads.

4.2.2 SHEAR WALLS

Shear walls are designed to resist the shear forces from upper storey shear walls

and diaphragms. Exterior, as well as corridor and party walls between suites will

be designed as shear walls, most of which are also sound blocking walls. The

shear walls will be designed using SPF for sound blocking with sheathing stitch

nailed on both sides. Strap ties are selected for nailing over OSB or plywood

sheathing. The shear wall chords will carry the moment resisting axial forces, and

they will be designed based on their maximum factored axial load. The factored

overturning moment at any storey is the cumulative of all the overturning

moments at every store above (Canadian Wood Council, 2010).

The maximum shear force will be assumed as a uniformly distributed load along

the shear wall length (Canadian Wood Council, 2010). Shear forces will be

distributed “based on the relative stiffness of each segment using the shear wall

deflection equations to determine the stiffness of each segment” (Canadian Wood

Council, 2010). The shear wall sheathing and connection to framing members will

be designed based on the factored shear resistance of the segment per unit length

using CSA O86. Additionally, if holdowns are to be used to anchor stacked shear

walls, the shear wall studs will also be designed to resist the maximum tensile

force. Shear walls are designed after seismic loads are calculated since they are

part of the seismic resisting system (Canadian Wood Council, 2010).

Shear wall shear forces are transferred to the bottom plate of the shear wall. This

force is then transferred through to the lower storey shear wall via the floor

framing in between.

4.2.3 FLOOR STRUCTURE

Once the dormitory roof is designed, the third storey floor framing will be

designed based on dead loads of nonloadbearing partitions, live loads, and

transferred loads. The floor joists are not used to resist lateral loads; therefore,

Page 10: RECORD COPY OF PROPOSAL

- 5 -

they are designed as beams using CSA O86. Instead, the shear walls will resist

lateral loading on the structure. The floor framing design will consist of and be

based upon the wood planking, sheathing, wood joists, R12 batt insulation, and

suspended ceilings. The wood planking will be arranged in a controlled-random

pattern. The planking and sheathing will also be selected.

4.2.4 MEETING ROOM

Perimeter wood beams will resist the lateral forces imposed by the purlins. The

gravity and lateral loads from the perimeter wood beams are then transferred to

the wood columns.

4.3 STRUCTURAL CONNECTIONS

Structural connections for the dormitory include shear clips, hurricane ties, and

holdowns. Shearwalls and their associated connections as well as hurricane ties will also be used

for the one-storey attached office and meeting room.

4.3.1 DORMITORY BUILDING

In general, the factored resistance of a single connection varies with direction.

The number of terms considered for simultaneous loading will depend on the

method of calculating wind forces and the use of the connector (Simpsons Strong-

Tie Company Inc, 2012). After the dormitory roof is designed based on the forces

carried by rafters, plated rafter connectors will then be specified.

In providing increased uplift resistance, hurricane ties will be designed after

calculating wind uplifts on the roof (this is done after designing the roof framing

layout). The adequacy of hurricane ties will be evaluated using the unity equation

found in Simpson’s Strong-Tie Catalog. Even though hurricane ties provide some

resistance to loads applied parallel to the roof boundary, this does not replace the

need for diaphragm boundary members. Additional shear elements such as

blocking will be designed. RBC roof boundary clips will be used to nail the

blocking onto top plates.

After seismic loads are calculated, the shear walls, shear wall connections,

holdowns, and truss clips will be designed.

At this point, the shear walls and associated connections will be placed as

indicated on the floor plans. Following the design of the shear walls, the clips will

be designed to attach the shear wall top and bottom plates to the upper and lower

floor frames, respectively. Clips on shear walls will go perpendicular vertically to

a roof that acts like a partial diaphragm to hold the roof in place during wind

events. The shear wall clips and shear wall to floor framing connections are

Page 11: RECORD COPY OF PROPOSAL

- 6 -

designed after seismic loads are determined. Shear wall design is repeated for

each floor, keeping in mind that gravity loads and moments are cumulative.

If necessary, hold downs will be designed for placement on lower corners of the

adjacent face on which the wind pressure is blowing on, wherever such surplus

shear wall overturning restraint is needed. Where holdowns are not used,

loadbearing walls will tip over due to a shortage of gravity loads or an

insufficiency in leverage caused by a shortage in length that would render them

incapable of resisting wind pressures. The holdown will be selected based on the

load that they are required to carry, which is calculated based on their location

with respect to the shear wall segments. This is done once the seismic design is

complete and only if necessitated.

4.3.2 MEETING ROOM

The meeting room connections for purlins to perimeter wood beams will be

designed after a seismic analysis.

4.4 FOUNDATIONS

I will be designing a conventional strip and pad footing foundation with a Main Floor

slab on grade. Lines from corridor and exterior walls from the wood frame building are

overlaid onto the foundation. Deflection and shear will be checked, and slab thickness

will be adjusted accordingly to meet the applicable requirements. The footing design will

also be based on soil bearing capacity. Seismic calculations will be performed

concurrently and will be taken into account when determining the strength of the

foundation. The foundation may have to be enlarged if it cannot handle the seismic loads.

Anchor bolts will be used to transfer the shear wall loads onto the foundation. The L-Bolt

anchor bolts are used to attach sill plates to concrete foundations for general anchorage

(Simpsons Strong-Tie Company Inc, 2012). Anchor bolts will be designed using CSA

O86.

4.5 SEISMIC DESIGN

Seismic design will be based on a static analysis and will be done according to Part 4 of

the BC Building Code 2012.

Page 12: RECORD COPY OF PROPOSAL

- 7 -

5.0 RESOURCES

Microsoft Excel

AutoCAD 2015

REVIT

Architectural drawings and a detailed generic design procedure from sponsor

CSA O86 Engineering Design In Wood

Wood Design Manual 2010

CSA A23.3-14 Design of concrete structures

Reinforced concrete design: A practical approach, 2nd edition

BC Building Code 2012

NBC 2010 Part 4 of Division B and structural commentaries

Google Maps

6.0 DELIVERABLES

Formal report

Calculations

REVIT drawings detailing structural features

7.0 UNCERTAINTIES

Seismic design will be attempted for this project. However, I am not familiar with the approach

for static seismic design as it is outside the curriculum. Therefore, the seismic design will be

tentative, and will mostly be a demonstration of my learning process.

Page 13: RECORD COPY OF PROPOSAL

- 8 -

8.0 SCHEDULE

Table 1 shows a Gantt chart of my proposed schedule for this project. This schedule is subject to

the vicissitudes of school tasks, and is therefore innacurate. The schedule is designed to leave

room for contingencies. I also believe that a tighter schedule will be more conducive to effective

time management.

Table 1: Proposed schedule

Page 14: RECORD COPY OF PROPOSAL

- 9 -

9.0 CONCLUSION

This project covers the design of the roof and wood frame for the meeting room and dormitory

portion of Kinghaven 2. The design will be performed for seismic and gravity loading.

Connection design will be performed using the Simpsons Strong-Tie Catalog based on gravity

and lateral resistance requirements. The BC Building Code 2012 will provide the minimum

requirements for safety. Additionally, CSA O86 will provide the formulae needed to check the

bending, compression, tension, shear, and moment resistance of members. First, the roof will be

designed and then design progress downwards onto successively lower storeys. For the

foundation design, CSA A23.3-14 Design of concrete structures and Reinforced concrete design:

A practical approach, 2nd edition will be used. The foundations will be designed at the same time

seismic design is done. Afterwards, shear walls and connections will be designed. It is my hope

that this project will inspire me to think and reason creatively while striving for a higher, more

intuitive plane of understanding.

Page 15: RECORD COPY OF PROPOSAL

- 10 -

BIBLIOGRAPHY

References

Canadian Wood Council. (2010). Wood Design Manual 2010. Ottawa, ON: Canadian Standards

Association.

Building and Safety Standards Branch. (2012). BC Building Code 2012. BC: Building and Safety

Standards Branch.

Simpson's Strong-Tie Company Inc. (2012). Wood Construction Connectors. Canada: Simpson's

Strong-Tie Company.

Klop, Jonathan. (2008). Detailed Design Procedure for the Structural Design of Multi-storey

Wood-framed Buildings on Concrete Suspended Slabs. Abbotsford: IQ Engineering.

Resources

Canadian Wood Council. (2010). Wood Design Manual 2010. Ottawa, ON: Canadian Standards

Association.

Building and Safety Standards Branch. (2012). BC Building Code 2012. BC: Building and Safety

Standards Branch.

Simpson's Strong-Tie Company Inc. (2012). Wood Construction Connectors. Canada: Simpson's

Strong-Tie Company.

Klop, Jonathan. (2008). Detailed Design Procedure for the Structural Design of Multi-storey

Wood-framed Buildings on Concrete Suspended Slabs. Abbotsford: IQ Engineering.

Page 16: RECORD COPY OF PROPOSAL

APPENDIX A

Page 17: RECORD COPY OF PROPOSAL
Page 18: RECORD COPY OF PROPOSAL
Page 19: RECORD COPY OF PROPOSAL
Page 20: RECORD COPY OF PROPOSAL
Page 21: RECORD COPY OF PROPOSAL
Page 22: RECORD COPY OF PROPOSAL

APPENDIX B

Page 23: RECORD COPY OF PROPOSAL

  

Design Procedures

Detailed Design Procedure for the Structural Design of Multi‐storey Wood‐framed Buildings on Concrete Suspended Slabs 

Preliminary Design: 

1. Receive electronic drawings from architect  (draftsman begins cleanup, prelim framing layout, prelim detailing, etc) 

2. Spend some time familiarizing yourself with the drawings. 3. Check for continuity of framing between floors & highlight areas of special concern (ie, large 

open areas on lower floors which may require post and beam framing) 4. Check for special loads, i.e., concrete on floors, special roofing, live loads in amenities areas. 

Roofs which act as decks may have concrete pavers, etc 5. Determined snow, wind, and earthquake for the geographical location of the project. (BCBC 

2006 code) 6. Low rise wood frame buildings can typically be designed using the static equivalent method of 

earthquake design. Check the building for the 7 structural irregularities listed in the code & confirm that the static equivalent method of analysis is appropriate. 

7. Run prelim lateral analysis to determine the required amount of shearwalls in each direction.  Ensure that there are enough walls available.  Typically, corridor walls and party walls between suites will be used as shearwalls (one side sheeted with plywood or OSB.)  The suspended slab is considered a fixed base and is elevation 0 in the lateral design of the wood frame building.  However, if the suspended slab is well above the finished grade of the soil, consider using the finished grade as 0 elevation. 

8. Check if there are adequate concrete walls in the parkade to carry the lateral loads from the suspended slab (imparted by the wood frame building into the slab) to the soil. 

9. Design a preliminary roof framing layout, either wood trusses or rafters (because the truss designer is not hired until much further on in the project, a good layout will be needed to continue with design) 

10. Consult with architect and/or developer about joist framing direction in suites. Some developers required joists to frame from corridor to outside wall in order to run ducting in between to the outside wall.  Typically, however, joists are run across the suites from party wall to party wall. 

11. Design floor framing layout for each typical suite.  (check if i‐joists are to be used)  12. Design preliminary concrete slab and slab band layout.  The architect will provide parkade 

columns based on his parking layout, spaced either two or three stalls wide. 13. Check for long slab band spans (i.e. greater than 25 ft) and consult architect for revised column 

layout or adding more columns where possible. 14. Check for minimum slab and slab band depths based on code requirements for span lengths. 

(Typically slabs will be a minimum 8" deep and slab bands 16") 15. Overlay wood framed building footprint onto suspended slab drawing ‐ check for any slab 

cantilevers that may be required to support decks /and or walls 16. Copy lines from corridor walls and exterior walls from the wood frame building onto the slab ‐ 

these line loads will be used in slab design, together with an area load to represent the suite loads (i.e. 4 floors stack onto one area) 

1    IQ Engineering – May 2008 – Prepared by JK   Detailed design procedure for structural design of multi‐storey wood framed buildings on       concrete parkade  

    

jonathan
Reviewed
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Page 24: RECORD COPY OF PROPOSAL

  

Design Procedures

17. Run preliminary slab strips and check deflection and shear ‐ if necessary, increase or decrease slab thickness (slab should be designed so no shear reinforcement is required.) 

18. Determine a live load reduction factor to be used in the slab / slab band designed. Note that the live load reduction factor will apply to the occupancy load of the suites only, and not the snow load, assembly, or soil / parking loads. 

19. Obtain soil technical data from geotech engineer's report.  (Factored ultimate bearing pressure and allowable bearing pressure are required for footing design.) 

20. Check if pad footings will be feasible ‐ if soil bearing capacity is poor, or if the typical elevation of the water table is higher than the footings, a raft slab design may be required. 

 

Working Design / Final Design: 

Wood frame: 

1. Consult architect for current drawings and determine what change have been made, if any, since the preliminary design (draftsman prepares plans with arbitrary framing members, rebar layout, prepares details, schedules, and notes) 

2. Consult mechanical engineer for locations and weights of mechanical equipment to be supported by the structure (i.e., roof top units with concrete pads) 

3. Confirm location of mechanical chases, stairwells, and elevator shafts required through floors  4. Finalize shear wall design ‐ check that deflections are acceptable ‐ provide design schedules to 

draftsman 5. If trusses over party walls are to be designed to carry lateral loads from the roof diaphragm to 

the party wall shearwall, indicate this with a note on plan for the truss designer. 6. Design connections for shearwalls between floor and at suspended slab.  Typically, nails, framing 

angle and framing plates, and anchor bolts are used.  Mark up framing details as required. 7. Design and specify multi‐storey hold down anchors at ends of shearwalls (i.e., Simpson CTDS 

system with take‐up devices to account for wood shrinkage.) Discuss location of hold down anchor relative to end of wall with draftsman so he will be able to place them accurately on the suspended slab plan. 

8. Design and specify the connection of the hold down anchors to the suspend slab. 9. Design wood frame beams and joists ‐ mark up suite plans with member sizes for draftsman. 10. Pay special attention when designing decks. A step will be required between the deck and the 

building as well as a slope to shed water. Where possible, cantilever beams from the building out to the corners of the decks and frame joists in between.  There may or may not be a post (s) provided by the architect at the edge of the deck 

11. Discuss deck framing details with architect.  Ensure that there are details for connections between deck beams and posts. 

12. Check for special exterior finishes on the building, such as manufactured stone or brick veneer.  These finishes can added considerable weight to the building and should be accounted for in exterior stud wall design, as well as in the suspended slab design. 

13. Discuss special details for the above mention finishes with the draftsman.  Typically, angle iron with lag screws will be used to support brick veneer.  If the brick covers multiple storeys, an 

2    IQ Engineering – May 2008 – Prepared by JK   Detailed design procedure for structural design of multi‐storey wood framed buildings on       concrete parkade  

    

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Page 25: RECORD COPY OF PROPOSAL

  

Design Procedures

angle iron will be used at each level, with provision given for wood shrinkage. (Remember, brick is considered a permanent load when applying load duration factors.) 

14. Design and detail canopies / porte cocheres at building entrances.  Consider the lateral forces in the canopies and if necessary design a lateral load resisting system. 

15. Design special framing in open / amenities areas. If steel framing is used, provide details.  Consider carefully the relative shrinkage of wood framing compared to steel, and provided details to allow for this differential shrinkage (ie, frame steel slightly lower that wood) 

16. For long spans of either steel or wood beams, consider vibration requirements. 17. Specify any steel base plates on the slab and provide this info to the draftsman. 18. Design built‐up post under ends of beams for the accumulating loads from floor to floor. Design 

built‐up up posts under ends of roof girder trusses & copy down to suspended slab. 19. Design interior stud walls for gravity loads, accumulating at each level going down. 20. Design exterior stud walls for gravity loads and wind loads. (Remember to check exterior finishes 

add the appropriate weights to the design.) 21. Provide details for masonry firewall, if present, and masonry elevator shaft.  These elements 

typically carry their own weight only and are supported out‐of‐plane by the wood floors.  

Concrete: 

1. Finalize layout of slab bands and columns. (slab bands are typically 8'‐0" wide and terminate at exterior walls or at the intersection with other slab bands) 

2. Consult mechanical engineer for openings required through suspended slab. 3. Consult architect for depressions or drops required in suspended slab. 4. Note locations of slab steps (typically 3 1/2" at edge of building) and discuss details with 

draftsman. Ensure that slab rebar can be detailed and installed properly through the step, and that the slab design thickness is not reduced through the step. 

5. Copy loads onto slab from building above.  Check for soil loads (i.e. in landscaped areas) and / or parking loads on the slab.   

6. If there is parking or drive aisles on the slab, discuss slab slopes with civil engineer & architect. 7. Areas accessible to traffic must be designed to support firefighting equipment (usually 25kPa.) 8. Top reinforcement is to be epoxy coated under parking areas. ‐ provide note on drawings and 

consider the effects on development lengths in design. 9. Lay out slab design strips ‐ number of strips will depend on the complexity of the slab.  

Alternately, a finite element analysis can be performed on the entire slab. 10. Design slab strips with appropriate loading patterns and live load reductions ‐ see concrete code 

clause 9.2.3.1 ‐ ensure minimum rebar requirements are met in all areas of slab 11. Ensure that design depths of slabs and slab bands will not encroach on the clear headroom 

required in the parkade. See architectural sections. 12. As mentioned above, slabs should be designed to avoid the requirement of shear reinforcement 

(i.e., Vf <= Vc) 13. Design slab bands for loads from slab strips ‐ add line loads or point loads from building that 

land directly on slab band. 

3    IQ Engineering – May 2008 – Prepared by JK   Detailed design procedure for structural design of multi‐storey wood framed buildings on       concrete parkade  

    

Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Administrator
Highlight
Page 26: RECORD COPY OF PROPOSAL

  

4    IQ Engineering – May 2008 – Prepared by JK   Detailed design procedure for structural design of multi‐storey wood framed buildings on       concrete parkade  

    

Design Procedures

14. Typically, 4‐20M continuous top bars are provided along the length of the slab band.  Subtract these bars from the bars required by analysis and provide the remainder over the column, extending the appropriate length each way. 

15. Ensure all areas where rebar is required by analysis, either in the top or the bottom of the slab band, meet the minimum reinforcement requirement set on in the concrete code, 10.5.1 

16. Use a trusted analysis program, such as ADAPT RC, and occasionally check results versus hand calculations / basic principles. 

17. Design shear reinforcement, (i.e. stirrups) as required by analysis (use 4 legged 10M or 15M stirrups at a reasonable spacing.) 

18. Mark up slab and slab band drawings with rebar determined by design ‐ try to keep rebar layouts as simple as possible 

19. Design beams over garage doors, man doors, etc. (ensure min headroom requirements are maintained.) 

20. Design special elements, such as concrete ramps and stairs, and parapet walls along perimeter of slab 

21. Tabulate column loads determined from slab band analysis. 22. Design columns for axial loads and accidental eccentricities  23. Specify column ties as required by design or as dictated by code minimums. 24. Provide column reinforcement info to draftsman. 25. Design pad footings with soil bearing pressure obtained from geotech engineer.  Keep the 

amount of different sizes of footings to a reasonable level.  Provide info to draftsman. 26. Design strip footings for wall line loads. 27. Check for special footing requirements, such as "L‐shaped" footings along property lines. 28. Design foundation walls for lateral loads provided by geotech engineer, or as determined by soil 

mechanics. 29. Check connection of wall to slab and wall to footing for shear forces. Specify dowels as required. 

Determine if shear key is required at footing.  30. Design retaining walls around building, if present. 

 

Review 

1. Review the drawings to ensure that the design sketches/markups have been understood correctly by draftsman 

2. Review details and request additional details as required. 3. Detail construction / control joints in concrete walls & slabs 4. Consider the "constructability" of all details 5. Review general notes for applicability. 6. Once the roof truss layout has been prepared by the truss designer, confirm that it matches the 

original design.  Make adjustments to plans where necessary.  

Administrator
Highlight