reaction and formation of la-silicate gate dielectrics on sic ... presen...comparison of basic...

40
R eaction an d formation of La - silicate gate dielectrics on SiC substrates Tokyo Tech. FRC 1 , Tokyo Tech. IGSSE 2 , Mitsubishi Electric Corp. 3 , Y. M. Lei 1 , S. Munekiyo 1 , K. Kakushima 2 ,T. Kawanago 2 , Y. Kataoka 2 , A. Nishiyama 2 , N. Sugii 2 , H. Wakabayashi 2 , K. Tsutsui 2 , K. Natori 1 , H. Iwai 1 , M.Furuhashi 3 , N.Miura 3 and S. Yamakawa 3 Tokyo Insititute of Technology IwaiKakushima labortary

Upload: others

Post on 21-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Reaction and formation of La-silicate

    gate dielectrics on SiC substrates

    Tokyo Tech. FRC 1, Tokyo Tech. IGSSE 2, Mitsubishi Electric Corp.3, ○Y. M. Lei 1, S. Munekiyo 1, K. Kakushima 2,T. Kawanago 2, Y. Kataoka 2, A. Nishiyama 2, N.

    Sugii 2, H. Wakabayashi 2, K. Tsutsui 2, K. Natori 1, H. Iwai 1, M.Furuhashi 3, N.Miura 3 and S. Yamakawa 3

    Tokyo Insititute of Technology

    Iwai・Kakushima labortary

  • SiC Power Device

    Material Si SiC

    Eg(ev)

    Bandgap1.1 3.2

    EBD(106V/cm)

    Breakdown field0.3 3

    μ(cm2/Vs)

    mobility1450 900

    Vsat(106cm/s)

    Saturated velocity10 22

    ĸ(W/cm2K)Thermal conductivity

    1.5 5

    Comparison of basic parameter of silicon and 4H-SiC Trendency of power conversion intensity

    SiC is promising material for high efficiency power device

    M. Ohashi et al, IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 528-534

    2

    The advantage of SiC devices over silicon :

    ・High operation voltage (×10times) ・High operation frequency

    ・Better endurance of High temperature ・Low energy loss (1/100)

  • Issue of SiC power devices

    Most report

    http://jstshingi.jp/abst/p/10/1

    018/naist1.pdf

    Improvement of

    channel mobility

    is necessary

    SiC has the ability of forming SiO2 by

    thermal oxidation.

    Relationship of mobility and Dit

    http://www.iisb.fraunhofer.de/de/mobisic.html

    Inverse proportional relationship of

    mobility with interface state density

    Reduction of Dit is critical to make high-speed-SiC power device

    3

  • Approach of Interface Improvement

    NO,N2O gas annealing

    • Effective passivation of interface trap by annealing the gate

    oxide in NO,N2O gas.

    SiO2/LaSiOx gate oxides on SiC

    • Recently a passivation of interface trap on SiC has been found

    by forming LaSiOx interface layer on SiC substrate.

    Drain

    LaSiOx

    SiO2

    TaN/W

    sicSource

    Interface improvement can

    be achieved by La-silicate

    interface gate dielectrics

    [1] X. Yang, et al., ICSCRM Th-2B-5 (2013). 4

  • Purpose and outline of this presentation

    Investigate the interface reaction of La2O3 on 4H-

    nSiC substrates to find the best process for gate

    dielectric application

    1.Introduction

    2.Interface reaction of La2O3 on 4H-nSiC substrates

    3.SiN barrier layer for La-silicate dielectrics

    4.Formation of La-silicate dielectrics by SiO2 capped

    annealing.

    5.Conclusion

    5

  • 1.Introduction

    2.Interface reaction of La2O3 on 4H-nSiC substrates

    3.SiN barrier layer for La-silicate dielectrics

    4.Formation of La-silicate dielectrics by SiO2 capped

    annealing.

    5.Conclusion

    6

  • n-SiC(0001)substrate

    La2O3 Deposition(EB)

    FTIR measurement

    Oxidation(5%O2/95%N2)

    TEM analysis

    Substrate cleaning(SPM, HF)

    Sample preparation La2O3/SiC

    FTIR measurement n-SiC substrate

    La2O3 (2nm)

    n-SiC substrate

    Sample 1

    Sample 2

    500oC

    1000oC

    7

  • SiC(without La2O3))

    5%O2 anneal:500oC—1000oC

    12501300 1200 11001150 1050 1000

    wavenumbers(cm-1)

    Ab

    sorb

    an

    ce (

    a.u

    .)

    (a)

    1000oC

    600oC

    La2O32nm/SiC)

    Ab

    sorb

    an

    ce (

    a.u

    .)12501300 1200 11001150 1050 1000

    wavenumbers(cm-1)

    (b)5%O2 anneal:500

    oC—1000oC

    1000oC

    950oC

    900oC

    Oxidation on SiC substrate was enhanced by La2O3 film

    Accompanied by La-silicate formation

    Si-O-SiLa-O-Si

    Si-O-Si

    8

    FITR spectra of oxidized SiC surface

    (SiO2)

    (SiO2)

    (La-silicate)

    SiO2

    SiC

    La-silicate

    SiC

    SiO2

  • sample:La2O3 (2nm)/SiC

    SiC(0001) SiC(0001)50nm 10nm

    La-silicateSiO2

    TEM image of La2O3/SiC oxidized at 1000oC

    • Agglomeration of La-silicates above SiO2/SiC interface

    • La-silicate grains positioned at bunches of SiC substrate (4o)

    • Thick SiO2 of 11nm is formed (enhanced oxidation rate)

    9

  • Enhanced growth rate over thermal oxidation

    SiC(0001) 10nm

    11.8nm

    sample:La2O3 (2nm)/SiCafter oxidation in 1000℃ 5%O2 30min

    K. Kita, et al., ECS Trans, vol. 61(2), p. 135-142 (2014).

    Higher oxidation rate of 1.5 order of magnitude can been

    achieved by La2O3 capped oxidation

    However, rough interface/surface may degrade reliability

    This study

    100

    10-1

    10-2

    10-3

    1300oC 1200oC 1100oC 1000oC

    Gro

    wth

    rat

    e co

    nst

    ate(

    nm

    /min

    )

    Temperature(oC)

    SiO2 Growth rate of thermal oxidation

    Oxidation rate comparison

    10

  • 1.Introduction

    2.Interface reaction of La2O3 on 4H-nSiC substrates

    3.SiN barrier layer for La-silicate dielectrics

    4.Formation of La-silicate dielectrics by SiO2 capped

    annealing.

    5.Conclusion

    11

  • n-SiC substrate

    La-silicate

    n-SiC substrate

    SiO2

    SiO2

    n-SiC substrate

    La2O3

    SiN

    La2O3 /SiC reaction

    La2O3 /SiN reaction

    n-SiC substrate

    La2O3

    SiN barrier layer against agglomeration

    La-silicate formation by reaction of La2O3 and SiN layer

    (SiN: oxygen barrier to suppress oxidation of SiC)12

  • n-SiC(0001)substrate

    EB-La2O3 deposition

    FTIR measurement

    FTIR measurement

    SPM,HF cleaning

    PECVD-SiN deposition

    AFM, TEM analysis

    annealing(5%O2/95%N2)

    SiN(2nm, 1.5nm, 0nm)

    n-SiC substrate

    Sample preparation with SiN barrier

    La2O3(4nm)

    Sample 500oC ~1000oC

    13

  • La2O3 4nm/SiC)

    Ab

    sorb

    an

    ce (

    a.u

    .)

    12501300 1200 11001150 1050 1000

    wavenumbers(cm-1)

    (C)O2 anneal:500

    oC—1000oC

    1000゜C

    950゜C

    900゜C

    La2O3 4nm/SiN2nm/SiC)

    Ab

    sorb

    an

    ce (

    a.u

    .)

    12501300 1200 11001150 1050 1000

    wavenumbers(cm-1)

    (A)O2 anneal:500

    oC—1000oC1000゜C

    950゜C

    900゜C

    La2O3 4nm/SiN1.5nm/SiC)

    Ab

    sorb

    an

    ce (

    a.u

    .)

    12501300 1200 11001150 1050 1000

    wavenumbers(cm-1)

    (B)O2 anneal:500

    oC—1000oC1000゜C

    950゜C

    900゜C

    Formation of La-silicate confirmed above 900oC

    Slight suppression of SiO2 with thicker SiN

    La-O-Si-O

    Si-O-Si

    SiN 2nmSiN 1.5nmWithout SiN

    Si-O-Si

    La-O-Si-OLa-O-Si-O

    FTIR spectra of La2O3/SiN/SiC

    14

    Si-O-Si

  • 10nm

    SiC(0001)50nm

    Sample: SiO2/La2O3 4nm/SiN 2nm/SiC

    Annealing temperature:1000oC

    La2O3/SiN/SiC interface section TEM image

    SiC(0001)10nm

    La-silicate SiO2

    • Agglomeration of La-silicates above SiO2/SiC interface

    • Thick SiO2 layer is formed (enhanced oxidation rate)

    • Little suppression of oxidation variation 15

  • RMS: 1.80nm RMS: 2.35nm

    Oxides surface roughness reduction with SiN barrier layer

    has been confirmed by atomic force measurement

    La2O3 4nm/SiN2nm/SiC) La2O3 4nm/without SiN/SiC)

    RMS:1.80nm RMS:2.35nm

    (a) (b)

    Reduction of oxides surface roughness

    SiN(2nm)

    n-SiC

    substrate

    La2O3(4nm)

    n-SiC

    substrate

    La2O3(4nm)

    16

  • 1.Introduction

    2.Interface reaction of La2O3 on 4H-nSiC substrates

    3.SiN barrier layer for La-silicate dielectrics

    4.Formation of La-silicate dielectrics by SiO2 capped

    annealing.

    5.Conclusion

    17

  • SiO2 capped annealing

    n-SiC substrate

    La2O3

    SiO2

    n-SiC substrate

    La2O3

    n-SiC substrate

    SiO2

    n-SiC substrate

    SiO2

    n-SiC substrate

    SiO2

    SiO2

    La-silicate

    O2 annealing

    O2 annealing

    Before

    SiO2 capped annealing

    O2 annealing

    SiO2 La2O3

    Huge reduction of

    oxygen diffusion at

    oxidating surface

    SiC-Sub

    Suppression of oxidation variation by increasing the diffusion length

    of oxygen to reduce the amount of oxygen reaching oxidating surface

    18

    P(O2)

    L

  • n-SiC(0001)substrate

    EB-La2O3 deposition

    SPM,HF cleaning

    PECVD-SiO2 deposition

    TEM analysis

    annealing(5%O2/95%N2)1000℃n-SiC substrate

    Sample preparation for SiO2 capped annealing

    La2O3 (4nm)

    Sample

    Sputter-W(50nm) deposition

    PMA in F.G for 30 min

    Backside Al contact

    Al

    W

    SiO2 (40nm)

    19

  • • Suppression of agglomeration by SiO2 capped annealing

    • Some protrusion of La-silicates presented at the interface

    SiC(0001) SiC(0001)

    Sample: SiO2 40nm/La2O3 4nm/SiC

    50nm 10nm

    Annealing temperature:1000oC

    SiO2La-silicate

    SiO2/La2O3/SiC interface section TEM image

    protrusion

    20

  • La2O3

    O2

    O*

    ・ Thicker La2O3 may suppress the oxidation variation by

    generating more radical oxygen

    ・optimal oxygen pressure may change due to change of

    annealing temperature.

    Suppression of carbon generation with

    higher temperature and low P(O2)

    [2]

    [2] Y. Song et al., J. Am. Ceram. Soc., 88 [7], p. 1864–1869 (2005)

    Modification of SiO2 capped annealing process

    Catalytic effect by La2O3 to

    generate radical oxygen [1]

    [1] K. Kakushima, et al., J. Solid-State Electronic, vol. 54, p. 720-723 (2010).

    SiO2

    La2O3 SiC-SubSiO2

    SiC-Sub

  • 5 20 50 100

    W/SiO2(40nm)/La2O3(10nm)/SiC

    Oxygen ratio (%)

    Hyst

    eres

    is v

    olt

    age

    ran

    ge

    (V)

    1.6

    1.2

    0.8

    0.4

    0

    1MHz

    L/W =50/50μm

    C-V, Hysteresis on different O2 partial pressure

    -5 -1 3 7 1511 19 23 270

    20

    40

    60

    100

    80

    120

    Gate voltage (V)

    Cap

    acit

    ance

    (n

    F/c

    m-2

    )

    W/SiO2(40nm)/La2O3(10nm)/SiC

    L/W =50/50μm

    100%O2

    Annealing ambient

    50%O220%O25%O2

    1MHz

    Electrical properties improved by increasing

    O2 partial pressure within annealing period

    5%100%

    22

    5% 100%

    C-V on annealing temperature of 1050℃

  • n-SiC substrate

    La2O3 (4nm)

    Before

    Al

    W

    SiO2 (40nm)

    Modification of SiO2 capped annealing process

    n-SiC substrate

    La2O3 (10nm)

    After

    Al

    W

    SiO2 (40nm)

    }Annealing in

    5%O2, 1000℃Annealing in

    O2, 1050℃}

    23

  • 4H-SiC (1120) 100nm

    La-silicate SiO2W

    W50nm/SiO235nm/la2O310nm/SiC(gate oxide SiO2/La2O3 1050℃ oxidation)

    SiO2/La2O3/SiC interface section TEM image

    A uniform La-silicate layer has been achieved by

    SiO2 capped annealing in O2 ambient, 1050℃24

  • 100nm 10nm

    Light color region distributed in La-silicate layer

    4H-SiC (1120) 4H-SiC (1120)

    SiO2/La2O3/SiC interface section TEM image

    25

  • Electron diffraction pattern for region 1,2

    Both black and light color region in La-silicate

    layer are indicated to be La-silicate grain region26

    10nm4H-SiC (1120)

    *1 *2

  • c

    o

    u

    n

    t

    s

    c

    o

    u

    n

    t

    s

    c

    o

    u

    n

    t

    s

    c

    o

    u

    n

    t

    s

    500 600 700 800 900 1000

    500 600 700 800 900 1000 500 600 700 800 900 1000

    500 600 700 800 900 1000

    (1) (2)

    (3) (4)

    Energy loss (eV) Energy loss (eV)

    Energy loss (eV) Energy loss (eV)

    O

    La

    O

    La

    O

    La

    O

    10nm4H-SiC (1120)

    *1 *2*4

    *3

    EELS analysis result of 4 gate oxide region

    ・Lower Lanthanum density has been detected in light color reigion. ・Existence of Lanthanum atom in thermal growth region (4) has been confirmed by EELS

    27

  • Hypothesis for light color region in La-silicate

    La-silicate SiO2

    SiO2

    *4

    *3

    SiC-substrate

    *2*1

    SiO2 protrusion in La-silicate layer by facet

    dependent oxidation of SiC substrate 28

  • Si

    O O

    O

    O

    Si

    O O

    O

    OO

    OO

    O

    SiBO

    BO

    Si Si

    Si

    BO

    BOSi

    O O

    O

    O

    Si

    O O

    O

    OO

    O

    O

    O

    La NBO

    BO

    Si Si

    La

    NBO

    BO

    La atomBO

    NBOSiO4-tetrahedron

    BO: bridging oxygen atom

    Si-O-Si bonding La-O-Si bonding

    NBO:non-bridging oxygen atom

    Atomic configuration of La-silicate

    La atoms act as the

    network modifier to

    relax the SiO4 network

    The interface between La-silicate/SiC may be modified by

    Lanthanum atom in thin grown SiO2

    29

  • Conclusion

    • Oxidation with La2O3 capped SiC substrate• Enhanced oxidation rate with radical oxygen atoms generated

    by La atoms• Grain growth, agglomeration of La-silicates• Surface roughness due to step enhanced oxidation

    • SiN barrier layer for La2O3/SiC substrates• Formation of LaSiON interface layer• Reduction of gate oxides surface roughness

    • SiO2 capped annealing for La2O3/SiC substrates• Formation of uniform La-silicate layer• Interface modification with Lanthanum atom relax the SiO4

    network of thermal growth layer

    30

  • Thank you very much

  • Spot 4

    Spot 3

    Spot 2

    Spot 1

    Si

    CO

    La

    50 250 450 650 850

    c

    o

    u

    n

    t

    s

    Energy loss (eV)

    10nm4H-SiC (1120)

    *1 *2*4

    *3

  • FFT測定結果

    格子のデータが一致しています18

    sample:La2O3 (2nm)/SiCafter oxidation in 1000℃ 5%O2 30min

  • ステップ制御エピタキシー

    C-face

    Si-face

    (1120)face

    SiC酸化スピードの異方性

    オフ角

    テラスステップ

    (0001)面

    テラス面とステップ面の反応スピードが違う

    テラスステップ

    ステップ ステップオフ角;4°

    [4]

    [4] Y. Song et al., J. Appl. Phys. 95 (2004) 4953.

    4H-SiC

    膜厚不均一

    SiO2膜厚不均一性の説明

  • Tokyo Institute of Technology

    160

    40

    0

    Cap

    acit

    ance

    (n

    F/cm

    2)

    80

    Gate voltage (V)20-2-4-6 4 6 8 10 161412

    120

    : 1MHz

    : 500kHz

    : 100kHz

    : 10kHz

    W/TEOS-SiO2/La2O3(4nm)/SiC950oC oxidation50mm/50mm

    Gate voltage (V)20-2-4-6 4 6 8 10 161412

    : 1MHz

    : 500kHz

    : 100kHz

    : 10kHz

    W/TEOS-SiO2/La2O3(4nm)/SiC1000oC oxidation50mm/50mm

    Gate voltage (V)20-2-4-6 4 6 8 10 161412

    : 1MHz

    : 500kHz

    : 100kHz

    : 10kHz

    W/TEOS-SiO2/La2O3(4nm)/SiC1050oC oxidation50mm/50mm

    950oC 1000oC 1050oC

    950oC, 1000oCの場合にはslow trapが大きい。

    ・ La2O3が完全にsilicateに変わっていない

    ・界面、絶縁膜のバルク欠陥の除去が不十分

    1050oCの場合に、その問題は改善

    35

    熱処理温度増加によるCV特性の変化

  • La-silicate

    n-SiC substrate

    La2O3 (10nm)

    SiO2 (40nm)

    Sufficient oxygen

    insufficient oxygen

    n-SiC substrate

    La-silicate

    SiO2 (40nm)

    n-SiC substrate

    La2O3 (10nm)

    SiO2 (40nm)Fixed

    charges

    Incomplete oxidation by insufficient oxygen generate

    fixed negative charges at la2O3/La-silicate interface

  • SiO2 La2O3

    SiC-SubLa2O3

    SiC-Sub

    SiO2

    O2

    O*

    SiO2 La2O3 SiC-Sub

    ・ Thicker La2O3 may suppress the oxidation variation by generating more radical oxygen・Prohibition of carbon generation reaction with higher temperature

    Suppression of carbon generation with

    higher temperature and low P(O2)

    [2]

    [2] Y. Song et al., J. Am. Ceram. Soc., 88 [7], p. 1864–1869 (2005)

    Modification of SiO2 capped annealing process

    Huge reduction of

    oxygen diffusion at

    oxidating surface

    Catalytic effect by La2O3 to generate radical oxygen

    radical oxygen

    oxygen molecule

    21

    [1]

    [1] K. Kakushima, et al., J. Solid-State Electronic, vol. 54, p. 720-723 (2010).

  • La2O3

    O2

    O*

    ・ Thicker La2O3 may suppress the oxidation variation by

    generating more radical oxygen

    ・optimal oxygen pressure may change due to change of

    annealing temperature.

    Suppression of carbon generation with

    higher temperature and low P(O2)

    [2]

    [2] Y. Song et al., J. Am. Ceram. Soc., 88 [7], p. 1864–1869 (2005

    Modification of SiO2 capped annealing process

    Catalytic effect by La2O3 to

    generate radical oxygen [1]

    [1] K. Kakushima, et al., J. Solid-State Electronic, vol. 54, p. 720-723 (2010).

    SiO2

    La2O3 SiC-SubSiO2

    SiC-Sub

  • SiC(0001) 10nm

    protrusion

    [2]