r-string dacee247/fa04/fa04/lectures/l15_f04.pdf · • dac architecture has significant impact on...

29
EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 1 EE247 Lecture 15 D/A Converters D/A architecture examples Unit element Binary weighted Static performance Component matching – Architectures Unit element Binary weighted Segmented Dynamic element matching Dynamic performance – Glitches DAC Examples EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 2 R-String DAC Advantages: Simple, fast for <8-10bits Inherently monotonic Compatible with purely digital technologies Disadvantages: 2 B resistors & 2 B switches for B bits High element count & larger area for B>10bits High settling time for B > 10: τ max = 0.25 x 2 B RC *Ref: M. Pelgrom, “A 10-b 50-MHz CMOS D/A Converter with 75-W Buffer,” JSSC, Dec. 1990, pp. 1347. C

Upload: lengoc

Post on 27-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 1

EE247Lecture 15

D/A Converters • D/A architecture examples

– Unit element– Binary weighted

• Static performance– Component matching– Architectures

• Unit element• Binary weighted• Segmented

– Dynamic element matching• Dynamic performance

– Glitches• DAC Examples

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 2

R-String DAC• Advantages:

– Simple, fast for <8-10bits– Inherently monotonic– Compatible with purely digital

technologies

• Disadvantages:– 2B resistors & 2B switches for B

bits à High element count & larger area for B>10bits

– High settling time for B > 10:τmax = 0.25 x 2B RC

*Ref: M. Pelgrom, “A 10-b 50-MHz CMOS D/A Converter with 75-W Buffer,” JSSC, Dec. 1990, pp. 1347.

C

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 3

R-String DACIncluding Interpolation

Resistor string DACResistor string interpolator increases resolution w/o drastic increase in complexitye.g. 6bit DACà 3+3

Considerations:Interpolation string loading of main R stringLarge R values à less loading but lower speedCan use buffers

Vout

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 4

R-String DACIncluding Interpolation

Use buffers à Issues: offset & speed

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 5

Static DAC INL / DNL Errors

• Component matching• Systematic errors

– Contact resistance– Edge effects in capacitor arrays– Process gradient– Finite current source output resistance

• Random errors– Lithography– Often Gaussian distribution (central limit theorem)

*Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSC Aug. 1989, pp. 1118-28.

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 6

Gaussian Distribution

-3 -2 -1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x /σ

Pro

babi

lity

dens

ity p

(x)

( )2

2

x

2

2 2

1p( x ) e

2

where standard deviat ion : E( X )

µ

σ

πσ

σ µ

−−

=

= −

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 7

Yield

( )2xX

2

X

P X x X

1e dx

2

Xerf

2

π

+ −

− ≤ ≤ + =

=

=

∫ 0

0.1

0.2

0.3

0.4

Pro

babi

lity

dens

ity

p(x)

0 0.5 1 1.5 2 2.5 30

0.20.40.60.8

1

X

38.3

68.3

95.4

P(-

X ≤

x ≤

+X

)

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 8

Yield

X/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.04011.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.96823.8000 99.98554.0000 99.9937

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 9

Example

• Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with σ = 2mV and µ = 0.

• Fraction of opamps with |Vos| < X = 6mV:– X/σ = 3 à 99.73 % yield (we’d still test before

shipping!)

• Fraction of opamps with |Vos| < X = 400µV:– X/σ = 0.2 à 15.85 % yield

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 10

Component Mismatch

R

R

10000

100

200

300

400

No.

of r

esis

tors

1004 1008 1012996992988R[ ]Ω

Example: Two side-by-sideResistors

E.g. Let us assume in this example 1000 Rs measured & 68.5% within +-4OHM or +-0.4% of averageà 1σ for resistorsà 0.4%

Large # of devices measured & curved à typically if sample size large shape is Gaussian

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 11

Component Mismatch

1 2

1 2

2dR

R

R RR

2

dR R R

1

Areaσ

+=

= −

R

R

00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pro

babi

lity

dens

ity p

(x)

σ 2σ 3σ−σ−2σ−3σdR

R

Two side-by-sideResistors

For typical technologies & geometries1σ for resistorsà 0.02 το 5%

In the case of resistors σ is a function of area

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 12

DNL Unit Element DAC

i i refR I∆ =

DNL of unit element DAC is independent of resolution!

E.g. Resistor string DAC:

Iref

i

i

nom ref

i i ref

nomi

i nom nom nom

nom nom i

DNL dRR

R I

R I

DNL

R R dR dR

R R R

σ σ

∆ =

∆ =

∆ − ∆=

−= = ≈

=

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 13

DNL Unit Element DAC

Example:If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

Answer:From table: for 99.9% à X/σ = 3.3σDNL = σdR/R = 0.4%3.3 σDNL = 1.3%

àDNL= +/- 0.013 LSBDNL of unit element DAC is independent of resolution!

E.g. Resistor string DAC:

i

i

DNL dR

R

σ σ=

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 14

DAC INL Analysis

B

A

N=2B-1n

n

N

Output/[Lsb]

Input/[Lsb]

E

Ideal VarianceA n nσε

2

B N-n (N-n)σε2

E = A-n r =n/N= A-r(A+B)= A (1-r) -B.rà Variance of E:

σE2 =(1-r)2 .σΑ

2 + r 2 .σB2

=N.r .(1-r).σε2

àMaximum @ r =0.5, n=N/2àMax INL @ midscale

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 15

DAC INL

• Error is maximum at mid-scale (N/2):

• INL depends on DAC resolution and element matching σε

• While σDNL = σε

Ref: Kuboki et al, TCAS, 6/1982

2 2E

2E

BINL

B

n1n

Nd

To find max. variance: 0dn

n N / 2

12 1

2 with N 2 1

ε

ε

σ σ

σ

σ σ

−= ×

=

→ =

= −

= −

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 16

Untrimmed DAC INL

Example:

σINL = 0.1 LSB

σε = 1% B = 8.6σε = 0.5% B = 10.6σε = 0.2% B = 13.3σε = 0.1% B = 15.3

+≅

−≅

ε

ε

σσ

σσ

INL

BINL

B 2log22

1221

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 17

Simulation Example

σε = 1%B = 12

σINL = 0.3 LSB(midscale)

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

DN

L [i

n LS

B]

DNL and INL of 12 Bit converter (from converter decision thresholds)

-0.04 / +0.03 LSB, avg=6.7e-005, std.dev=0.01, range=0.069

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

[in

LSB

] -0.2 / +0.8 LSB, avg=0.22, std.dev=0.21, range=0.99

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 18

Binary Weighted DAC

• INL same as for unit element DAC

• DNL depends on transition– Example:

0 to 1àσDNL2 = σ(dΙ/Ι)

2

1 to 2 àσDNL2 = 3σ(dΙ/Ι)

2

• Consider MSB transition: 0111 … à 1000 …

4 Iref Iref

Iout

2Iref2B-1 Iref

……………

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 19

MOS Device Matching

d1 d 2d

d d1 d 2

d d

WthLd

WGS thLd

I II

2

dI I I

I I

d dVdIV VI

+=

−=

= + −

Id1 Id2

•Current matching depends on:-Device ratio matching

à larger area less mismatch effect-Threshold voltage matching

à Larger gate-overdrive less threshold voltage mismatch effect

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 20

Current-Switched DACs in CMOS

WthLd

WGS thLd

d dVdIV VI

= + −

Iout

Iref

……

Switch Array

•Advantages:Can be very fastSmall area for <9-10bits

•Disadvantages:Matching depends on Vth matching & device W/L matching

256 128 64 ………..…..1

Example: 8bit Binary Weighted

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 21

DNL of Binary Weighted DAC

( ) ( )

DNLmaxB

INL DNLmax max

2 B 1 2 B 1 2DNL

B 2

B / 2

1 12 1

2 2

2 1 2

0111... 1000...

2

2

ε

ε ε

ε

ε

σ σ σ

σ

σ σ

σ σ σ

− −

=

≅ − ≅

= − +

1442443 14243

• Worst-case transition occurs at mid-scale:

• Example:B = 12, σε = 1%àσDNL = 0.64 LSBàσINL = 0.32 LSB

2 4 6 8 10 12 140

5

10

15

DAC input code

σ DN

L2 / σ ε

2

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 22

Simulation Example

σε = 1%B = 12

σDNL = 0.6 LSB(midscale)

MSB transitions clearly visible

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

DN

L [i

n LS

B]

DNL and INL of 12 Bit converter (from converter decision thresholds)

-0.9 / +0.4 LSB, avg=-7.5e-005, std.dev=0.039, range=1.3

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

[in

LSB

] -0.7 / +0.7 LSB, avg=3.3e-014, std.dev=0.33, range=1.3

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 23

“Another” Random Run …

Now (by chance) worst DNL is mid-scale.

Statistical result!500 1000 1500 2000 2500 3000 3500 4000

-2

-1

0

1

2

bin

DN

L [i

n LS

B]

DNL and INL of 12 Bit converter (from converter decision thresholds)

-1 / +0.1 LSB, avg=-9.3e-005, std.dev=0.035, range=1.4

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

INL

[in

LSB

] -0.8 / +0.8 LSB, avg=-1.1e-013, std.dev=0.37, range=1.6

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 24

Unit Element vs Binary Weighted

Unit Element DAC Binary Weighted DAC

B

INL

DNL

S

B

2

2 12

=

=−

ε

ε

σσ

σσ

BS

B

B

INL

INLDNL

=

=≅−

ε

ε

σσ

σσσ12

2

2

22

Number of switched elements:

Significant difference in performance and complexity!

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 25

Unit Element vs Binary WeightedExample: B=10

Unit Element DAC Binary Weighted DAC

B2

DNL1

INL

B

2 16

S 2 1024

ε

ε ε

σ σσ σ σ−

=≅ =

= =Number of switched elements:

Significant difference in performance and complexity!

B2

B2

DNL1

INL

2 322 16

S B 10

ε ε

ε ε

σ σ σσ σ σ−

≅ =≅ =

= =

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 26

DAC INL/DNL Summary

• DAC architecture has significant impact on DNL

• INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision

• Results are for uncorrelated random element variations

• Systematic errors and correlations are usually also important

Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 27

Segmented DAC• Objective:

compromise between unit element and binary weighted DAC

• Approach:B1 MSB bits à unit elementsB2 = B-B1 LSB bits à binary weighted

• INL: unaffected• DNL: worst case occurs when LSB DAC turns off and one more MSB

DAC element turns on: same as binary weighted DAC with B2+1 bits• Number of switched elements: (2B1-1) + B2

Unit Element Binary Weighted

VAnalog

MSB (B1 bits) (B2)LSB

… …

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 28

ComparisonExample:

B = 12, B1 = 5, B2 = 7B1 = 6, B2 = 6

σε = 1%

( )B 122

B2

DNL INL

1INL

B12

2 2

2

S 2 1 B

ε

ε

σ σ σ

σ σ

+

≅ =

= − +

409512

31+763+6

0.010.640.160.113

0.320.320.320.32

Unit element (10+0)Binary weighted(0+10)Segmented 5+7Segmented 6+6

# s.e.σDNL[LSB]σINL[LSB]DAC Architecture

MSB LSB

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 29

Dynamic DAC Error: Glitch

• Consider binary weighted DAC transition 011 à 100

• DAC output depends on timing

• Plot shows situation where– LSB/MSBs on time– LSB early, MSB late– LSB late, MSB early

1 1.5 2 2.5 30

5

10

idea

l

1 1.5 2 2.5 30

5

10

early

1 1.5 2 2.5 30

5

10

Timela

te

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 30

Glitch Energy

• Glitch energy (worst case): ~dt x 2B-1

• LSB energy: ~T

• Need dt x 2B-1 << T or dt << 2-B+1 T

• Examples:

<< 488<< 1.5<< 2

121610

120

1000

dt [ps]Bfs [MHz]

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 31

DAC Reconstruction Filter

• Need for and requirements depend on application

• Tasks:– Correct for sinc distortion– Remove “aliases”

(stair-case approximation)

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C In

put

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

sinc

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C O

utpu

tFrequency

B fs/2

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 32

Reconstruction Filter Options

• Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2)

• Digital filter can prewarp spectrum to compensate in-band sinc attenuation (from ZOH)

DigitalF ilter

DAC SCFilter

ZOH CTFilter

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 33

Sample DAC Implementations

• Untrimmed segmented– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC

December 1986, pp. 983.– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering

CMOS D/A Converter,” JSSC March 2001, pp. 315.• Current copiers:

– D. W. J. Groeneveld et al, “A Self-Calibration Techique for Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517.

• Dynamic element matching:– R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795.

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 34

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 35

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 36

Current-Switched DACs in CMOS( )

( )

( )

( )

M 1

M 2 M 1

M 3 M 1

M 4 M 1

M 2

M 1

M 1

M 1

M 1

M 1

M 1

M 1

M 1

2GS th1

GS GS

GS GS

GS GS2

2GS th2 1

GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

m4 1

V VI kV V 3RIV V 5RIV V 6RI

3RI1V VI k I

V V2I

gV V

3RgI I I 1 3Rg12

3RgI I I 1 5Rg12

3RgI I 12

−== −= −= −

−−= = − =

→ = ≈ −−

→ = ≈ −−

→ = −

( )M 1

2

1 mI 1 6Rg≈ −

Iout

•Assumption: RI is small compared to transistor gate overdriveà Desirable to have gm small

Example: 4 unit element current sources

VDD

I1 I2 I3 I4

3RI 2RI RI

M1 M2 M3 M4

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 37

Current-Switched DACs in CMOSIout

•Assumption: RI is small compared to xtor gate overdriveà Desirable to have gm small

Example: 4 unit element current sources

VDD

I1 I2 I3 I4

2RI RI

M1 M2 M3 M4

I

I/2 I/2

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 38

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 39

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 40

I

I/2 I/2

Current Divider

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 41

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 42

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 43

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 44

Dynamic Element Matching

/ 2 error ∆1

I1

( )( )12

1)1(2

121)1(

1

1

1

∆−=

∆+=

o

o

II

II ( )( )12

1)2(2

121)2(

1

1

1

∆+=

∆−=

o

o

II

II

During Φ1 During Φ2

( ) ( )

2

211

2

211

)2(2

)1(2

2

o

o

I

I

III

=

∆++∆−=

+=

I2

fclk

Io

Io/2Io/2

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 45

Dynamic Element Matching

( )( )

( )( )( )214

1

2)1(

121)1(

3

121)1(

2

121)1(

1

11

1

1

1

∆+∆+=∆+=

∆−=

∆+=

o

o

o

I

II

II

II ( )( )

( )( )( )214

1

2)2(

121)2(

3

121)2(

2

121)2(

1

11

1

1

1

∆−∆−=∆−=

∆+=

∆−=

o

o

o

I

II

II

II

During Φ1 During Φ2

( )( ) ( )( )

( )21

2121

)2(3

)1(3

3

14

21111

4

2

∆∆+=

∆−∆−+∆+∆+=

+=

o

o

I

I

III

E.g. ∆1 = ∆2 = 1% à matching error is (1%)2 = 0.01%

/ 2 error ∆1

I1

I2

fclk

Io

Io/2

/ 2 error ∆2

I3 I4

fclk

Io/4Io/4

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 46

MOS Sampling Circuits

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 47

Re-Cap

• How can we build circuits that "sample"

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 48

Ideal Sampling

• In an ideal world, zero resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C

• Not realizable!

vIN vOUT

CS1

φ1

φ1

T=1/fS

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 49

Ideal T/H Sampling

vIN vOUT

CS1

φ1

• Vout tracks input when switch is closed• Grab exact value of Vin when switch opens• "Track and Hold" (T/H)

φ1

T=1/fS

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 50

Ideal T/H Sampling

ContinuousTime

T/H signal(SD Signal)

Clock

DT Signal

time

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 51

Practical Sampling

vIN vOUT

CM1

φ1

• kT/C noise• Finite Rswà limited bandwidth• Rsw = f(Vin) à distortion• Switch charge injection (EE240)• Clock jitter

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 52

kT/C Noise

In high resolution ADCs kT/C noise usually dominates overall error (power dissipation considerations).

2

2

1212

12

−≥

∆≤

FS

B

B

B

VTkC

CTk

0.003 pF0.8 pF13 pF

206 pF52,800 pF

812141620

Cmin (VFS = 1V)B

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 53

Acquisition Bandwidth

• The resistance R of switch S1 turns the sampling network into a lowpass filter with risetime = RC = τ

• Assuming Vin is constant during the sampling period and C is initially discharged

vIN vOUT

CS1

φ1

R

( )τ/1)( tinout evtv −−=

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 54

Switch On-Resistance

Example:B = 14, C = 13pF, fs = 100MHz

T/τ >> 19.4, R << 40Ω

vIN vOUT

CS1

φ1

φ1

T=1/fS

R

( )

( )

12

12

Worst Case:

12 ln 2 1

1 12 ln 2 1

s

in outs

fin

in FS

B

Bs

V V tf

V e

V V

T

Rf C

τ

τ

− = << ∆

<< ∆=

<< −−

<< −−

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 55

Switch On-Resistance

( ) ( )

( )

( )( )

0

1,

2

1 1

1 for

1

DS

D triodeDSD triode ox GS TH DS

ON DS V

ON

ox GS th ox DD th in

o

ox DD th

oON

in

DD th

dIW VI C V V V

L R dV

RW W

C V V C V V VL L

RW

C V VL

RR

VV V

µ

µ µ

µ

= − − ≅

= =− − −

=−

=−

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 56

Sampling Distortion

in

DD th

outT V

12 V V

in

v

v 1 e τ

− − −

= −

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

EECS 247 Lecture 15: Data Converters © 2004 H.K. Page 57

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR is very sensitive to sampling distortion

• Solutions:• Overdesignà Larger

switchesà increased switch

charge injection• Complementary switch• Maximize VDD/VFSà decreased dynamic range

• Constant VGS ? f(Vin)à …