dac architecture

30
– 1 – Data Converters DAC Professor Y. Chiu EECT 7327 Fall 2014 DAC Architecture

Upload: herrod-carrillo

Post on 31-Dec-2015

93 views

Category:

Documents


0 download

DESCRIPTION

DAC Architecture. DAC Architecture. Nyquist DAC architectures Binary-weighted DAC Unit-element (thermometer-coded) DAC Segmented DAC Resistor-string, current-steering, charge-redistribution DACs Oversampling DAC Oversampling performed in digital domain (zero stuffing) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DAC Architecture

– 1 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

DAC Architecture

Page 2: DAC Architecture

DAC Architecture

– 2 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Nyquist DAC architectures– Binary-weighted DAC– Unit-element (thermometer-coded) DAC– Segmented DAC– Resistor-string, current-steering, charge-redistribution DACs

• Oversampling DAC– Oversampling performed in digital domain (zero stuffing)– Digital noise shaping (ΣΔ modulator)– 1-bit DAC can be used– Analog reconstruction/smoothing filter

Page 3: DAC Architecture

– 3 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Binary-Weighted DAC

Page 4: DAC Architecture

Binary-Weighted CR DAC

– 4 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Binary-weighted capacitor array → most efficient architecture

• Bottom plate @ VR with bj = 1 and @ GND with bj = 0

Cu = unit capacitance

VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Page 5: DAC Architecture

Binary-Weighted CR DAC

– 5 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Cp → gain error (nonlinearity if Cp is nonlinear)

• INL and DNL limited by capacitor array mismatch

Ru

Np

N

1ju

jNjN

RN

1ju

jNup

N

1ju

jNjN

o

VC2C

C2b

VC2CC

C2b

V

N

1jj

j-NR

uN

p

uN

o 2

bV

C2C

C2V

VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

Page 6: DAC Architecture

Stray-Insensitive CR DAC

– 6 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

VX

2Cu Cu

16Cu

8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP

A

N

1jj

j-NR

uu1N

pu

N

uN

o 2

bV

A

CC2CC2

C2V

Large A needed to attenuate summing-node charge sharing

Page 7: DAC Architecture

MSB Transition

– 7 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Largest DNL error occurs at the midpoint where MSB transitions, determined by the mismatch between the MSB capacitor and the rest of the array.

4

o R4

p 0 jj=1

CV 1000 V

C +C + C

1 2 3

o R4

p 0 jj=1

C C CV 0111 V

C +C + C

δC,CCCCC :Assume u3214

uu

oo

CδCC

CC

δC

1LSB1LSB0111V1000VDNL

Code 0111 Code 1000

Page 8: DAC Architecture

Midpoint DNL

– 8 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• δC > 0 results in positive DNL

• δC < 0 results in negative DNL or even nonmonotonicity

δC > 0 δC < 0

Di

Ao

00111 1000

+DNL

Di

Ao

00111 1000

-DNL

Page 9: DAC Architecture

Output Glitches

– 9 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Glitches cause waveform distortion, spurs and elevated noise floors

• High-speed DAC output is often followed by a de-glitching SHA

• Cause: Signal and clock skew in circuits

• Especially severe at MSB transition where all bits are switching –

0111…111 →

1000…000Time

Vo

Page 10: DAC Architecture

De-Glitching SHA

– 10 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Time

Vo

DAC...

b1

bN

VoSHA

SHA output must be smooth (exponential settling can be viewed as pulse shaping → SHA BW does not have to be excessively large).

SHA samples the output of the DAC after it settles and then hold it for T, removing the glitching energy.

Page 11: DAC Architecture

Frequency Response

– 11 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

f

|H(f)|

0 fs 2fs 3fs

SHA

ZOH

2ωT

2ωTsin

ejωH 2

ωTj

ZOH

3dB

SHA

ωωj1

1jωH

Page 12: DAC Architecture

Binary-Weighted Current DAC

– 12 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Current switching is simple and fast

• Vo depends on Rout of current sources without op-amp

• INL and DNL depend on matching, not inherently monotonic

• Large component spread (2N-1:1)

VX

Vob3 b2 b1 b0 A

I/2 I/4 I/8 I/16

R

N

1jj

j-No 2

bIRV

Page 13: DAC Architecture

R-2R DAC

– 13 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• A binary-weighted current DAC

• Component spread greatly reduced (2:1)

N

1jj

j-No 2

bIRV

VX

Vob3 b2 b1 b0 A

R

R R R

2R 2R 2R 2R

I

2RI/2 I/4 I/8 I/16

Page 14: DAC Architecture

– 14 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Unit-Element DAC

Page 15: DAC Architecture

Resistor-String DAC

– 15 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Simple, inherently monotonic → good DNL performance

• Complexity ↑ speed ↓ for large N, typically N ≤ 8 bits

VR

Vo

Vo

Di

0

b0 b0 b1 b1

1

2

3

Page 16: DAC Architecture

Code-Dependent Ro

– 16 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Ro of ladder varies with signal (code)

• On-resistance of switches depend on tap voltage

t

Vo

VR

Vo

Ro

Di

b0 b0 b1 b1

Co

Signal-dependentRoCo causes HD

Page 17: DAC Architecture

DNL

– 17 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

RN

1k

1j

1k

RN

1k

1j

1k

j VΔRNR

ΔRR1jV

R

RV

R+ΔRNR+ΔRN-1R+ΔR1 R+ΔR2

VR...

V1 V2 VN VN+1

RN

1k

2j

1k

1j- VΔRNR

ΔRR2jV

j 1 j 1R

j j-1 R RN

k1

j 1 RR Rj j j-1 DNL

R ΔR ΔRVV V V V

N NRNR ΔR

ΔR σV VDNL V V DNL 0, σ

N N R R

Rσ0,ΔR

Page 18: DAC Architecture

INL

– 18 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

R2

N

jk

1j

1k

RRN

1k

1j

1k

RN

1k

1j

1k

j VRN

ΔR1jΔR1j-N

VN

1jV

ΔRNR

ΔRR1jV

R

RV

RR

j j R INL

σNVj -1INL V V INL 0, σ max

N N 2 R

j

j

22 2R

j R V R3 2

22 2R

V R2

j 1 N- j 1 σj 1V V , σ V

N N Rσ1 N N

σ max V , when j 14N R 2 2

Page 19: DAC Architecture

INL and DNL of BW DAC

– 19 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

RINL

RDNL

σNINL 0, σ max

2 R

σDNL 0, σ max 2 INL N

R

A BW DAC is typically constructed using unit elements, the same way as that of a UE DAC, for good component matching accuracy.

Page 20: DAC Architecture

Current-Steering DAC

– 20 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• Fast, inherently monotonic → good DNL performance

• Complexity increases for large N, requires B2T decoder

Io

…… …

Binary-to-Thermometer Decoder

...b1 bN

I I I

Page 21: DAC Architecture

Unit Current Cell

– 21 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

• 2N current cells typically decomposed into a (2N/2×2N/2) matrix

• Current source cascoded to improve accuracy (Ro effect)

• Coupled inverters improve synchronization of current switches

Io

ROW/COL Decoder

...

b1

bN

I

Φ

Φ

...

Sj Sj

Page 22: DAC Architecture

– 22 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Segmented DAC

Page 23: DAC Architecture

BW vs. UE DACs

– 23 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Binary-weighted DAC

• Pros– Min. # of switched elements– Simple and fast– Compact and efficient

• Cons– Large DNL and glitches– Monotonicity not guaranteed

• INL/DNL– INL(max) ≈ (√N/2)σ– DNL(max) ≈ 2*INL

Unit-element DAC

• Pros– Good DNL, small glitches– Linear glitch energy– Guaranteed monotonic

• Cons– Needs B2T decoder– complex for N ≥ 8

• INL/DNL– INL(max) ≈ (√N/2)σ– DNL(max) ≈ σ

Combine BW and UE architectures → Segmentation

Page 24: DAC Architecture

Segmented DAC

– 24 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

0

VFS

Di

Vo

2N-10

LSB’s

MSB’s

• MSB DAC: M-bit UE DAC

• LSB DAC: L-bit BW DAC

• Resolution: N = M + L

• 2M+L switching elements

• Good DNL• Small glitches• Same INL as

BW or UE

Page 25: DAC Architecture

Comparison

– 25 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Example: N = 12, M = 8, L= 4, σ = 1%

Architecture σINL σDNL # of s.e.

Unit-element 0.32 LSB’s 0.01 LSB’s 2N = 4096

Binary-weighted 0.32 LSB’s 0.64 LSB’s N = 12

Segmented 0.32 LSB’s 0.06 LSB’s 2M+L = 260

Max. DNL error occurs at the transitions of MSB segments

Page 26: DAC Architecture

Example: “8+2” Segmented Current DAC

– 26 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Ref: C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, issue 12, 1998.

Page 27: DAC Architecture

MSB-DAC Biasing Scheme

– 27 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Common-centroid global biasing + divided 4 quadrants of current cells

Page 28: DAC Architecture

MSB-DAC Biasing Scheme

– 28 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Page 29: DAC Architecture

Randomization and Dummies

– 29 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

Page 30: DAC Architecture

References

– 30 –

Data Converters DACProfessor Y. Chiu

EECT 7327Fall 2014

1. M. J. M. Pelgrom, JSSC, pp. 1347-1352, issue 6, 1990.

2. D. K. Su and B. A. Wooley, JSSC, pp. 1224-1233, issue 12, 1993.

3. C.-H. Lin and K. Bult, JSSC, pp. 1948-1958, issue 12, 1998.

4. K. Khanoyan, F. Behbahani, A. A. Abidi, VLSI, 1999, pp. 73-76.

5. K. Falakshahi, C.-K. Yang, B. A. Wooley, JSSC, pp. 607-615, issue 5, 1999.

6. G. A. M. Van Der Plas et al., JSSC, pp. 1708-1718, issue 12, 1999.

7. A. R. Bugeja and B.-S. Song, JSSC, pp. 1719-1732, issue 12, 1999.

8. A. R. Bugeja and B.-S. Song, JSSC, pp. 1841-1852, issue 12, 2000.

9. A. van den Bosch et al., JSSC, pp. 315-324, issue 3, 2001.